File size: 5,391 Bytes
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
 
 
 
d4d998a
 
 
 
 
 
3c01baa
 
 
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
3c01baa
d4d998a
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
3c01baa
d4d998a
3c01baa
d4d998a
3c01baa
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
Utility classes and functions for the GuardBench Leaderboard display.
"""

from dataclasses import dataclass, field, fields
from enum import Enum, auto
from typing import List, Optional


class ModelType(Enum):
    """Model types for the leaderboard."""
    Unknown = auto()
    OpenSource = auto()
    ClosedSource = auto()
    API = auto()

    def to_str(self, separator: str = " ") -> str:
        """Convert enum to string with separator."""
        if self == ModelType.Unknown:
            return "Unknown"
        elif self == ModelType.OpenSource:
            return f"Open{separator}Source"
        elif self == ModelType.ClosedSource:
            return f"Closed{separator}Source"
        elif self == ModelType.API:
            return "API"
        return "Unknown"


class Precision(Enum):
    """Model precision types."""
    Unknown = auto()
    float16 = auto()
    bfloat16 = auto()
    float32 = auto()
    int8 = auto()
    int4 = auto()

    def __str__(self):
        """String representation of the precision type."""
        return self.name


class WeightType(Enum):
    """Model weight types."""
    Original = auto()
    Delta = auto()
    Adapter = auto()
    def __str__(self):
        """String representation of the weight type."""
        return self.name


@dataclass
class ColumnInfo:
    """Information about a column in the leaderboard."""
    name: str
    display_name: str
    type: str = "text"
    hidden: bool = False
    never_hidden: bool = False
    displayed_by_default: bool = True


@dataclass
class GuardBenchColumn:
    """Columns for the GuardBench leaderboard."""
    model_name: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="model_name",
        display_name="Model",
        never_hidden=True,
        displayed_by_default=True
    ))

    model_type: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="model_type",
        display_name="Type",
        displayed_by_default=True
    ))

    # Metrics for all categories
    default_prompts_f1: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="default_prompts_f1",
        display_name="Default Prompts F1",
        type="number",
        displayed_by_default=True
    ))

    jailbreaked_prompts_f1: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="jailbreaked_prompts_f1",
        display_name="Jailbreaked Prompts F1",
        type="number",
        displayed_by_default=True
    ))

    default_answers_f1: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="default_answers_f1",
        display_name="Default Answers F1",
        type="number",
        displayed_by_default=True
    ))

    jailbreaked_answers_f1: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="jailbreaked_answers_f1",
        display_name="Jailbreaked Answers F1",
        type="number",
        displayed_by_default=True
    ))

    # Average metrics
    average_f1: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="average_f1",
        display_name="Average F1",
        type="number",
        displayed_by_default=True,
        never_hidden=True
    ))

    average_recall: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="average_recall",
        display_name="Average Recall",
        type="number",
        displayed_by_default=False
    ))

    average_precision: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="average_precision",
        display_name="Average Precision",
        type="number",
        displayed_by_default=False
    ))

    # Additional metadata
    submission_date: ColumnInfo = field(default_factory=lambda: ColumnInfo(
        name="submission_date",
        display_name="Submission Date",
        displayed_by_default=False
    ))


# Create instances for easy access
GUARDBENCH_COLUMN = GuardBenchColumn()

# Extract column lists for different views
COLS = [f.name for f in fields(GUARDBENCH_COLUMN)]
DISPLAY_COLS = [getattr(GUARDBENCH_COLUMN, f.name).name for f in fields(GUARDBENCH_COLUMN)
                if getattr(GUARDBENCH_COLUMN, f.name).displayed_by_default]
METRIC_COLS = [getattr(GUARDBENCH_COLUMN, f.name).name for f in fields(GUARDBENCH_COLUMN)
               if getattr(GUARDBENCH_COLUMN, f.name).type == "number"]
HIDDEN_COLS = [getattr(GUARDBENCH_COLUMN, f.name).name for f in fields(GUARDBENCH_COLUMN)
               if getattr(GUARDBENCH_COLUMN, f.name).hidden]
NEVER_HIDDEN_COLS = [getattr(GUARDBENCH_COLUMN, f.name).name for f in fields(GUARDBENCH_COLUMN)
                     if getattr(GUARDBENCH_COLUMN, f.name).never_hidden]

# Categories in GuardBench
CATEGORIES = [
    "Criminal, Violent, and Terrorist Activity",
    "Manipulation, Deception, and Misinformation",
    "Creative Content Involving Illicit Themes",
    "Sexual Content and Violence",
    "Political Corruption and Legal Evasion",
    "Labor Exploitation and Human Trafficking",
    "Environmental and Industrial Harm",
    "Animal Cruelty and Exploitation",
    "Self–Harm and Suicidal Ideation",
    "Safe Prompts"
]

# Test types in GuardBench
TEST_TYPES = [
    "default_prompts",
    "jailbreaked_prompts",
    "default_answers",
    "jailbreaked_answers"
]

# Metrics in GuardBench
METRICS = [
    "f1_binary",
    "recall_binary",
    "precision_binary",
    "error_ratio",
    "avg_runtime_ms"
]