import os
import subprocess
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
import black
from pylint import lint
from io import StringIO
import sys
import torch
from huggingface_hub import hf_hub_url, cached_download, HfApi, InferenceClient
import base64
import streamlit as st
# Use a publicly available model that doesn't require authentication
rag_retriever = pipeline("retrieval-question-answering", model="distilbert-base-nq")
st.write("Pipeline created successfully")
# Add the new HTML code below
custom_html = '''
'''
# Update the markdown function to accept custom HTML code
def markdown_with_custom_html(md, html):
md_content = md
if html:
return f"{md_content}\n\n{html}"
else:
return md_content
markdown_text = "Compare model responses with me!"
markdown_with_custom_html(markdown_text, custom_html)
# Set your Hugging Face API key here
# hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
# Get Hugging Face token from secrets.toml - this line should already be in the main code
hf_token = os.environ.get("HUGGINGFACE_TOKEN")("key")
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
# List of top downloaded free code-generative models from Hugging Face Hub
AVAILABLE_CODE_GENERATIVE_MODELS = [
"bigcode/starcoder", # Popular and powerful
"Salesforce/codegen-350M-mono", # Smaller, good for quick tasks
"microsoft/CodeGPT-small", # Smaller, good for quick tasks
"google/flan-t5-xl", # Powerful, good for complex tasks
"facebook/bart-large-cnn", # Good for text-to-code tasks
]
# Load pre-trained RAG retriever
# rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base") # Use a Hugging Face RAG model
# Load pre-trained chat model
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
def process_input(user_input):
# Input pipeline: Tokenize and preprocess user input
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
# RAG model: Generate response
with torch.no_grad():
output = rag_retriever(input_ids, attention_mask=attention_mask)
response = output.generator_outputs[0].sequences[0]
# Chat model: Refine response
chat_input = tokenizer(response, return_tensors="pt")
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
with torch.no_grad():
chat_output = chat_model(**chat_input)
refined_response = chat_output.sequences[0]
# Output pipeline: Return final response
return refined_response
class AIAgent:
def __init__(self, name, description, skills, hf_api=None):
self.name = name
self.description = description
self.skills = skills
self._hf_api = hf_api
self._hf_token = hf_token # Store the token here
@property
def hf_api(self):
if not self._hf_api and self.has_valid_hf_token():
self._hf_api = HfApi(token=self._hf_token)
return self._hf_api
def has_valid_hf_token(self):
return bool(self._hf_token)
async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token):
self._hf_token = hf_token
# Continuation of previous methods
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
# Analyze chat history and workspace projects to suggest actions
# Example:
# - Check if the user has requested to create a new file
# - Check if the user has requested to install a package
# - Check if the user has requested to run a command
# - Check if the user has requested to generate code
# - Check if the user has requested to translate code
# - Check if the user has requested to summarize text
# - Check if the user has requested to analyze sentiment
# Generate a response based on the analysis
next_step = "Based on the current state, the next logical step is to implement the main application logic."
# Ensure project folder exists
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
os.makedirs(project_path)
# Create requirements.txt if it doesn't exist
requirements_file = os.path.join(project_path, "requirements.txt")
if not os.path.exists(requirements_file):
with open(requirements_file, "w") as f:
f.write("# Add your project's dependencies here\n")
# Create app.py if it doesn't exist
app_file = os.path.join(project_path, "app.py")
if not os.path.exists(app_file):
with open(app_file, "w") as f:
f.write("# Your project's main application logic goes here\n")
# Generate GUI code for app.py if requested
if "create a gui" in summary.lower():
gui_code = generate_code("Create a simple GUI for this application", selected_model)
with open(app_file, "a") as f:
f.write(gui_code)
# Run the default build process
build_command = "pip install -r requirements.txt && python app.py"
try:
result = subprocess.run(build_command, shell=True, capture_output=True, text=True, cwd=project_path)
st.write(f"Build Output:\n{result.stdout}")
if result.stderr:
st.error(f"Build Errors:\n{result.stderr}")
except Exception as e:
st.error(f"Build Error: {e}")
return summary, next_step
def deploy_built_space_to_hf(self):
if not self._hf_api or not self._hf_token:
raise ValueError("Cannot deploy the Space since no valid Hugoging Face API connection was established.")
# Assuming you have a function to get the files for your Space
repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
files = get_built_space_files() # Placeholder - you'll need to define this function
# Create the Space
create_space(self.hf_api, repository_name, "Description", True, files)
st.markdown("## Congratulations! Successfully deployed Space 🚀 ##")
st.markdown(f"[Check out your new Space here](https://huggingface.co/spaces/{repository_name})")
# Add any missing functions from your original code (e.g., get_built_space_files)
def get_built_space_files():
# Replace with your logic to gather the files you want to deploy
return {
"app.py": "# Your Streamlit app code here",
"requirements.txt": "streamlit\ntransformers"
# Add other files as needed
}
def save_agent_to_file(agent):
"""Saves the agent's prompt to a file."""
if not os.path.exists(AGENT_DIRECTORY):
os.makedirs(AGENT_DIRECTORY)
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
with open(file_path, "w") as file:
file.write(agent.create_agent_prompt())
st.session_state.available_agents.append(agent.name)
def load_agent_prompt(agent_name):
"""Loads an agent prompt from a file."""
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
if os.path.exists(file_path):
with open(file_path, "r") as file:
agent_prompt = file.read()
return agent_prompt
else:
return None
def create_agent_from_text(name, text):
skills = text.split('\n')
agent = AIAgent(name, "AI agent created from text input.", skills)
save_agent_to_file(agent)
return agent.create_agent_prompt()
def chat_interface_with_agent(input_text, agent_name):
agent_prompt = load_agent_prompt(agent_name)
if agent_prompt is None:
return f"Agent {agent_name} not found."
model_name ="bigscience/T0_3B"
try:
from transformers import AutoModel, AutoTokenizer # Import AutoModel here
model = ("bigscience/T0_3B")
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
except EnvironmentError as e:
return f"Error loading model: {e}"
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
max_input_length = 900
if input_ids.shape[1] > max_input_length:
input_ids = input_ids[:, :max_input_length]
outputs = model.generate(
input_ids, max_new_tokens=1000, num_return_sequences=1, do_sample=True,
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Terminal interface
def terminal_interface(command, project_name=None):
if project_name:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project {project_name} does not exist."
result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
else:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
return result.stdout
# Code editor interface
def code_editor_interface(code):
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.NothingChanged:
formatted_code = code
result = StringIO()
sys.stdout = result
sys.stderr = result
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
return formatted_code, lint_message
# Text summarization tool
def summarize_text(text):
summarizer = pipeline("summarization")
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
return summary[0]['summary_text']
# Sentiment analysis tool
def sentiment_analysis(text):
analyzer = pipeline("sentiment-analysis")
result = analyzer(text)
return result[0]['label']
# Text translation tool (code translation)
def translate_code(code, source_language, target_language):
# Use a Hugging Face translation model instead of OpenAI
translator = pipeline("translation", model="bartowski/Codestral-22B-v0.1-GGUF") # Example: English to Spanish
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
return translated_code
def generate_code(code_idea, model_name):
"""Generates code using the selected model."""
try:
generator = pipeline('text-generation', model=model_name)
generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
return generated_code
except Exception as e:
return f"Error generating code: {e}"
def chat_interface(input_text):
"""Handles general chat interactions with the user."""
# Use a Hugging Face chatbot model or your own logic
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
return response
# Workspace interface
def workspace_interface(project_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {'files': []}
return f"Project '{project_name}' created successfully."
else:
return f"Project '{project_name}' already exists."
# Add code to workspace
def add_code_to_workspace(project_name, code, file_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project '{project_name}' does not exist."
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]['files'].append(file_name)
return f"Code added to '{file_name}' in project '{project_name}'."
def create_space(api, name, description, public, files, entrypoint="launch.py"):
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
headers = {"Authorization": f"Bearer {api.access_token}"}
payload = {
"public": public,
"gitignore_template": "web",
"default_branch": "main",
"archived": False,
"files": []
}
for filename, contents in files.items():
data = {
"content": contents,
"path": filename,
"encoding": "utf-8",
"mode": "overwrite" if "#\{random.randint(0, 1)\}" not in contents else "merge",
}
payload["files"].append(data)
response = requests.post(url, json=payload, headers=headers)
response.raise_for_status()
location = response.headers.get("Location")
# wait_for_processing(location, api) # You might need to implement this if it's not already defined
return Repository(name=name, api=api)
# Streamlit App
st.title("AI Agent Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
# Get Hugging Face token from secrets.toml
hf_token = st.secrets["huggingface"]
if app_mode == "AI Agent Creator":
# AI Agent Creator
st.header("Create an AI Agent from Text")
st.subheader("From Text")
agent_name = st.text_input("Enter agent name:")
text_input = st.text_area("Enter skills (one per line):")
if st.button("Create Agent"):
agent_prompt = create_agent_from_text(agent_name, text_input)
st.success(f"Agent '{agent_name}' created and saved successfully.")
st.session_state.available_agents.append(agent_name)
elif app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Terminal Interface
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.session_state.terminal_history.append((terminal_input, terminal_output))
st.code(terminal_output, language="bash")
# Code Editor Interface
st.subheader("Code Editor")
code_editor = st.text_area("Write your code:", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
# Text Summarization Tool
st.subheader("Summarize Text")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(f"Summary: {summary}")
# Sentiment Analysis Tool
st.subheader("Sentiment Analysis")
sentiment_text = st.text_area("Enter text for sentiment analysis:")
if st.button("Analyze Sentiment"):
sentiment = sentiment_analysis(sentiment_text)
st.write(f"Sentiment: {sentiment}")
# Text Translation Tool (Code Translation)
st.subheader("Translate Code")
code_to_translate = st.text_area("Enter code to translate:")
source_language = st.text_input("Enter source language (e.g., 'Python'):")
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
if st.button("Translate Code"):
translated_code = translate_code(code_to_translate, source_language, target_language)
st.code(translated_code, language=target_language.lower())
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
generated_code = generate_code(code_idea)
st.code(generated_code, language="python")
elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
def get_built_space_files():
"""
Gathers the necessary files for the Hugging Face Space,
handling different project structures and file types.
"""
files = {}
# Get the current project name (adjust as needed)
project_name = st.session_state.get('project_name', 'my_project')
project_path = os.path.join(PROJECT_ROOT, project_name)
# Define a list of files/directories to search for
targets = [
"app.py",
"requirements.txt",
"Dockerfile",
"docker-compose.yml", # Example YAML file
"src", # Example subdirectory
"assets" # Another example subdirectory
]
# Iterate through the targets
for target in targets:
target_path = os.path.join(project_path, target)
# If the target is a file, add it to the files dictionary
if os.path.isfile(target_path):
add_file_to_dictionary(files, target_path)
# If the target is a directory, recursively search for files within it
elif os.path.isdir(target_path):
for root, _, filenames in os.walk(target_path):
for filename in filenames:
file_path = os.path.join(root, filename)
add_file_to_dictionary(files, file_path)
return files
def add_file_to_dictionary(files, file_path):
"""Helper function to add a file to the files dictionary."""
filename = os.path.relpath(file_path, PROJECT_ROOT) # Get relative path
# Handle text and binary files
if filename.endswith((".py", ".txt", ".json", ".html", ".css", ".yml", ".yaml")):
with open(file_path, "r") as f:
files[filename] = f.read()
else:
with open(file_path, "rb") as f:
file_content = f.read()
files[filename] = base64.b64encode(file_content).decode("utf-8")
# Project Workspace Creation
st.subheader("Create a New Project")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
workspace_status = workspace_interface(project_name)
st.success(workspace_status)
# Automatically create requirements.txt and app.py
project_path = os.path.join(PROJECT_ROOT, project_name)
requirements_file = os.path.join(project_path, "requirements.txt")
if not os.path.exists(requirements_file):
with open(requirements_file, "w") as f:
f.write("# Add your project's dependencies here\n")
app_file = os.path.join(project_path, "app.py")
if not os.path.exists(app_file):
with open(app_file, "w") as f:
f.write("# Your project's main application logic goes here\n")
# Add Code to Workspace
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.session_state.terminal_history.append((f"Add Code: {code_to_add}", add_code_status))
st.success(add_code_status)
# Terminal Interface with Project Context
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.session_state.terminal_history.append((terminal_input, terminal_output))
st.code(terminal_output, language="bash")
# Chat Interface for Guidance
st.subheader("Chat with CodeCraft for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Display Chat History
st.subheader("Chat History")
for user_input, response in st.session_state.chat_history:
st.write(f"User: {user_input}")
st.write(f"CodeCraft: {response}")
# Display Terminal History
st.subheader("Terminal History")
for command, output in st.session_state.terminal_history:
st.write(f"Command: {command}")
st.code(output, language="bash")
# Display Projects and Files
st.subheader("Workspace Projects")
for project, details in st.session_state.workspace_projects.items():
st.write(f"Project: {project}")
for file in details['files']:
st.write(f" - {file}")
# Chat with AI Agents
st.subheader("Chat with AI Agents")
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
agent_chat_input = st.text_area("Enter your message for the agent:")
if st.button("Send to Agent"):
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
st.write(f"{selected_agent}: {agent_chat_response}")
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
# Model Selection Menu
selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
if st.button("Generate Code"):
generated_code = generate_code(code_idea, selected_model)
st.code(generated_code, language="python")
# Automate Build Process
st.subheader("Automate Build Process")
if st.button("Automate"):
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model)
st.write("Autonomous Build Summary:")
st.write(summary)
st.write("Next Step:")
st.write(next_step)
# Using the modified and extended class and functions, update the callback for the 'Automate' button in the Streamlit UI:
if st.button("Automate", args=(hf_token,)):
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token)
st.write("Autonomous Build Summary:")
st.write(summary)
st.write("Next Step:")
st.write(next_step)
# If everything went well, proceed to deploy the Space
if agent._hf_api and agent.has_valid_hf_token():
agent.deploy_built_space_to_hf()
# Use the hf_token to interact with the Hugging Face API
api = HfApi(token="HUGGINGFACE_TOKEN")
# Function to create a Space on Hugging Face
def create_space(api, name, description, public, files, entrypoint="launch.py"):
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
headers = {"Authorization": f"Bearer {api.access_token}"}