import os import json import time from typing import Dict, List, Tuple import gradio as gr import streamlit as st import streamlit_chat from huggingface_hub import InferenceClient, hf_hub_url, cached_download import git from langchain_community.llms import HuggingFaceHub from langchain_community.chains import ConversationChain from langchain_community.memory import ConversationBufferMemory from langchain_community.chains.question_answering import load_qa_chain from langchain_community.utils import CharacterTextSplitter # --- Constants --- MODEL_NAME = "google/flan-t5-xl" # Consider using a more powerful model like 'google/flan-t5-xl' MAX_NEW_TOKENS = 2048 # Increased for better code generation TEMPERATURE = 0.7 TOP_P = 0.95 REPETITION_PENALTY = 1.2 # --- Model & Tokenizer --- @st.cache_resource def load_model_and_tokenizer(): model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto") # Use 'auto' for optimal device selection tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) return model, tokenizer model, tokenizer = load_model_and_tokenizer() # --- Agents --- agents = { "WEB_DEV": { "description": "Expert in web development technologies and frameworks.", "skills": ["HTML", "CSS", "JavaScript", "React", "Vue.js", "Flask", "Django", "Node.js", "Express.js"], "system_prompt": "You are a web development expert. Your goal is to assist the user in building and deploying web applications. Provide code snippets, explanations, and guidance on best practices.", }, "AI_SYSTEM_PROMPT": { "description": "Expert in designing and implementing AI systems.", "skills": ["Machine Learning", "Deep Learning", "Natural Language Processing", "Computer Vision", "Reinforcement Learning"], "system_prompt": "You are an AI system expert. Your goal is to assist the user in designing and implementing AI systems. Provide code snippets, explanations, and guidance on best practices.", }, "PYTHON_CODE_DEV": { "description": "Expert in Python programming and development.", "skills": ["Python", "Data Structures", "Algorithms", "Object-Oriented Programming", "Functional Programming"], "system_prompt": "You are a Python code development expert. Your goal is to assist the user in writing and debugging Python code. Provide code snippets, explanations, and guidance on best practices.", }, "CODE_REVIEW_ASSISTANT": { "description": "Expert in code review and quality assurance.", "skills": ["Code Style", "Best Practices", "Security", "Performance", "Maintainability"], "system_prompt": "You are a code review expert. Your goal is to assist the user in reviewing and improving their code. Provide feedback on code quality, style, and best practices.", }, } # --- Session State --- if "workspace_projects" not in st.session_state: st.session_state.workspace_projects = {} if "chat_history" not in st.session_state: st.session_state.chat_history = [] if "active_agent" not in st.session_state: st.session_state.active_agent = None if "selected_agents" not in st.session_state: st.session_state.selected_agents = [] if "current_project" not in st.session_state: st.session_state.current_project = None # --- Helper Functions --- def add_code_to_workspace(project_name: str, code: str, file_name: str): if project_name in st.session_state.workspace_projects: st.session_state.workspace_projects[project_name]['files'].append({'file_name': file_name, 'code': code}) return f"Added code to {file_name} in project {project_name}" else: return f"Project {project_name} does not exist" def terminal_interface(command: str, project_name: str): if project_name in st.session_state.workspace_projects: result = subprocess.run(command, cwd=project_name, shell=True, capture_output=True, text=True) return result.stdout + result.stderr else: return f"Project {project_name} does not exist" def get_agent_response(message: str, system_prompt: str): llm = HuggingFaceHub(repo_id=MODEL_NAME, model_kwargs={"temperature": TEMPERATURE, "top_p": TOP_P, "repetition_penalty": REPETITION_PENALTY, "max_length": MAX_NEW_TOKENS}) memory = ConversationBufferMemory() conversation = ConversationChain(llm=llm, memory=memory) response = conversation.run(system_prompt + "\n" + message) return response def display_agent_info(agent_name: str): agent = agents[agent_name] st.sidebar.subheader(f"Active Agent: {agent_name}") st.sidebar.write(f"Description: {agent['description']}") st.sidebar.write(f"Skills: {', '.join(agent['skills'])}") def display_workspace_projects(): st.subheader("Workspace Projects") for project_name, project_data in st.session_state.workspace_projects.items(): with st.expander(project_name): for file in project_data['files']: st.text(file['file_name']) st.code(file['code'], language="python") def display_chat_history(): st.subheader("Chat History") html_string = "" for idx, message in enumerate(st.session_state.chat_history): if idx % 2 == 0: role = "User:" else: role = "Assistant:" html_string += f"

{role}

" html_string += f"

{message}

" st.markdown(html_string, unsafe_allow_html=True) def run_autonomous_build(selected_agents: List[str], project_name: str): st.info("Starting autonomous build process...") for agent in selected_agents: st.write(f"Agent {agent} is working on the project...") code = get_agent_response(f"Generate code for a simple web application in project {project_name}", agents[agent]['system_prompt']) add_code_to_workspace(project_name, code, f"{agent.lower()}_app.py") st.write(f"Agent {agent} has completed its task.") st.success("Autonomous build process completed!") def collaborative_agent_example(selected_agents: List[str], project_name: str, task: str): st.info(f"Starting collaborative task: {task}") responses = {} for agent in selected_agents: st.write(f"Agent {agent} is working on the task...") response = get_agent_response(task, agents[agent]['system_prompt']) responses[agent] = response combined_response = combine_and_process_responses(responses, task) st.success("Collaborative task completed!") st.write(combined_response) def combine_and_process_responses(responses: Dict[str, str], task: str) -> str: # This is a placeholder function. In a real-world scenario, you would implement # more sophisticated logic to combine and process the responses. combined = "\n\n".join([f"{agent}: {response}" for agent, response in responses.items()]) return f"Combined response for task '{task}':\n\n{combined}" # --- Streamlit UI --- st.title("DevToolKit: AI-Powered Development Environment") # --- Project Management --- st.header("Project Management") project_name = st.text_input("Enter project name:") if st.button("Create Project"): if project_name and project_name not in st.session_state.workspace_projects: st.session_state.workspace_projects[project_name] = {'files': []} st.success(f"Created project: {project_name}") elif project_name in st.session_state.workspace_projects: st.warning(f"Project {project_name} already exists") else: st.warning("Please enter a project name") # --- Code Editor --- st.subheader("Code Editor") if st.session_state.workspace_projects: selected_project = st.selectbox("Select project", list(st.session_state.workspace_projects.keys())) if selected_project: files = [file['file_name'] for file in st.session_state.workspace_projects[selected_project]['files']] selected_file = st.selectbox("Select file to edit", files) if files else None if selected_file: file_content = next((file['code'] for file in st.session_state.workspace_projects[selected_project]['files'] if file['file_name'] == selected_file), "") edited_code = st_ace(value=file_content, language="python", theme="monokai", key="code_editor") if st.button("Save Changes"): for file in st.session_state.workspace_projects[selected_project]['files']: if file['file_name'] == selected_file: file['code'] = edited_code st.success("Changes saved successfully!") break else: st.info("No files in the project. Use the chat interface to generate code.") else: st.info("No projects created yet. Create a project to start coding.") # --- Terminal Interface --- st.subheader("Terminal (Workspace Context)") if st.session_state.workspace_projects: selected_project = st.selectbox("Select project for terminal", list(st.session_state.workspace_projects.keys())) terminal_input = st.text_input("Enter a command within the workspace:") if st.button("Run Command"): terminal_output = terminal_interface(terminal_input, selected_project) st.code(terminal_output, language="bash") else: st.info("No projects created yet. Create a project to use the terminal.") # --- Chat Interface --- st.subheader("Chat with AI Agents") selected_agents = st.multiselect("Select AI agents", list(agents.keys()), key="agent_select") st.session_state.selected_agents = selected_agents agent_chat_input = st.text_area("Enter your message for the agents:", key="agent_input") if st.button("Send to Agents", key="agent_send"): if selected_agents and agent_chat_input: responses = {} for agent in selected_agents: response = get_agent_response(agent_chat_input, agents[agent]['system_prompt']) responses[agent] = response st.session_state.chat_history.append(f"User: {agent_chat_input}") for agent, response in responses.items(): st.session_state.chat_history.append(f"{agent}: {response}") st_chat(st.session_state.chat_history) # Display chat history using st_chat else: st.warning("Please select at least one agent and enter a message.") # --- Agent Control --- st.subheader("Agent Control") for agent_name in agents: agent = agents[agent_name] with st.expander(f"{agent_name} ({agent['description']})"): if st.button(f"Activate {agent_name}", key=f"activate_{agent_name}"): st.session_state.active_agent = agent_name st.success(f"{agent_name} activated.") if st.button(f"Deactivate {agent_name}", key=f"deactivate_{agent_name}"): st.session_state.active_agent = None st.success(f"{agent_name} deactivated.") # --- Automate Build Process --- st.subheader("Automate Build Process") if st.button("Automate"): if st.session_state.selected_agents and project_name: run_autonomous_build(st.session_state.selected_agents, project_name) else: st.warning("Please select at least one agent and create a project.") # --- Version Control --- st.subheader("Version Control") repo_url = st.text_input("Enter repository URL:") if st.button("Clone Repository"): if repo_url and project_name: try: git.Repo.clone_from(repo_url, project_name) st.success(f"Repository cloned successfully to {project_name}") except git.GitCommandError as e: st.error(f"Error cloning repository: {e}") else: st.warning("Please enter a repository URL and create a project.") # --- Collaborative Agent Example --- st.subheader("Collaborative Agent Example") collab_agents = st.multiselect("Select AI agents for collaboration", list(agents.keys()), key="collab_agent_select") collab_project = st.text_input("Enter project name for collaboration:") collab_task = st.text_input("Enter a task for the agents to collaborate on:") if st.button("Run Collaborative Task"): if collab_agents and collab_project and collab_task: collaborative_agent_example(collab_agents, collab_project, collab_task) else: st.warning("Please select agents, enter a project name, and specify a task.") # --- Display Information --- st.sidebar.subheader("Current State") st.sidebar.json(st.session_state) if st.session_state.active_agent: display_agent_info(st.session_state.active_agent) display_workspace_projects() display_chat_history() if __name__ == "__main__": st.sidebar.title("DevToolKit") st.sidebar.info("This is an AI-powered development environment.")