import gradio as gr from transformers import pipeline from components.database_page import database_page from components.documentation_page import documentation_page from components.home import home from components.lang_page import lang_page from components.optimization_page import optimization_page from components.refactor_page import refactor_page from components.style_page import style_page from components.test_page import test_page # Gradio interface def setup_interface(): with gr.Blocks() as demo: gr.Markdown("### Select Model and Task") with gr.Row(): model_name = gr.Dropdown(label="Model", choices=["gpt2", "bert-base-uncased"]) task = gr.Dropdown(label="Task", choices=["text-generation", "text-classification"]) input_data = gr.Textbox(label="Input") output = gr.Textbox(label="Output") input_data.change(fn=model_inference, inputs=[model_name, task, input_data], outputs=output) return demo # Function to generate text or perform other tasks based on model selection def model_inference(model_name, task, input_data): try: model_pipeline = pipeline(task, model=model_name) result = model_pipeline(input_data) return result except Exception as e: return f"Error: {e}" if __name__ == "__main__": interface = setup_interface() interface.launch()