import subprocess import os from io import StringIO import sys import black from pylint import lint from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Initialize chat_history in the session state if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] # Access and update chat_history chat_history = st.session_state['chat_history'] chat_history.append("New message") # Display chat history st.write("Chat History:") for message in chat_history: st.write(message) # Global state to manage communication between Tool Box and Workspace Chat App if 'workspace_projects' not in st.session_state: st.session_state.workspace_projects = {} if 'available_agents' not in st.session_state: st.session_state.available_agents = [] class AIAgent: def __init__(self, name, description, skills): self.name = name self.description = description self.skills = skills def create_agent_prompt(self): skills_str = '\n'.join([f"* {skill}" for skill in self.skills]) agent_prompt = f""" I am an AI agent named {self.name}, designed to assist developers with their projects. My expertise lies in the following areas: {skills_str} I am here to help you build, deploy, and improve your applications. Feel free to ask me any questions or present me with any challenges you encounter. I will do my best to provide helpful and insightful responses. """ return agent_prompt def autonomous_build(self, chat_history, workspace_projects): """ Autonomous build logic that continues based on the state of chat history and workspace projects. """ # Example logic: Generate a summary of chat history and workspace state summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) # Example: Generate the next logical step in the project next_step = "Based on the current state, the next logical step is to implement the main application logic." return summary, next_step def save_agent_to_file(agent): """Saves the agent's prompt to a file.""" if not os.path.exists("agents"): os.makedirs("agents") file_path = os.path.join("agents", f"{agent.name}.txt") with open(file_path, "w") as file: file.write(agent.create_agent_prompt()) st.session_state.available_agents.append(agent.name) def load_agent_prompt(agent_name): """Loads an agent prompt from a file.""" file_path = os.path.join("agents", f"{agent_name}.txt") if os.path.exists(file_path): with open(file_path, "r") as file: agent_prompt = file.read() return agent_prompt else: return None def create_agent_from_text(name, text): skills = text.split('\n') agent = AIAgent(name, "AI agent created from text input.", skills) save_agent_to_file(agent) return agent.create_agent_prompt() # Chat interface using a selected agent def chat_interface_with_agent(input_text, agent_name): agent_prompt = load_agent_prompt(agent_name) if agent_prompt is None: return f"Agent {agent_name} not found." # Load the GPT-2 model which is compatible with AutoModelForCausalLM model_name = "gpt2" try: model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) except EnvironmentError as e: return f"Error loading model: {e}" # Combine the agent prompt with user input combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:" # Truncate input text to avoid exceeding the model's maximum length max_input_length = max_input_length input_ids = tokenizer.encode(combined_input, return_tensors="pt") if input_ids.shape[1] > max_input_length: input_ids = input_ids[:, :max_input_length] outputs = model.generate(input_ids, max_length=max_input_length, do_sample=True) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Define functions for each feature # 1. Chat Interface def chat_interface(input_text): """Handles user input in the chat interface. Args: input_text: User's input text. Returns: The chatbot's response. """ # Load the GPT-2 model which is compatible with AutoModelForCausalLM model_name = "gpt2" try: model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) except EnvironmentError as e: return f"Error loading model: {e}" # Truncate input text to avoid exceeding the model's maximum length max_input_length = max_input_length input_ids = tokenizer.encode(input_text, return_tensors="pt") if input_ids.shape[1] > max_input_length: input_ids = input_ids[:, :max_input_length] outputs = model.generate(input_ids, max_length=max, do_sample=True) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # 2. Terminal def terminal_interface(command, project_name=None): """Executes commands in the terminal. Args: command: User's command. project_name: Name of the project workspace to add installed packages. Returns: The terminal output. """ # Execute command try: process = subprocess.run(command.split(), capture_output=True, text=True) output = process.stdout # If the command is to install a package, update the workspace if "install" in command and project_name: requirements_path = os.path.join("projects", project_name, "requirements.txt") with open(requirements_path, "a") as req_file: package_name = command.split()[-1] req_file.write(f"{package_name}\n") except Exception as e: output = f"Error: {e}" return output # 3. Code Editor def code_editor_interface(code): """Provides code completion, formatting, and linting in the code editor. Args: code: User's code. Returns: Formatted and linted code. """ # Format code using black try: formatted_code = black.format_str(code, mode=black.FileMode()) except black.InvalidInput: formatted_code = code # Keep original code if formatting fails # Lint code using pylint try: pylint_output = StringIO() sys.stdout = pylint_output sys.stderr = pylint_output lint.Run(['--from-stdin'], stdin=StringIO(formatted_code)) sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ lint_message = pylint_output.getvalue() except Exception as e: lint_message = f"Pylint error: {e}" return formatted_code, lint_message # 4. Workspace def workspace_interface(project_name): """Manages projects, files, and resources in the workspace. Args: project_name: Name of the new project. Returns: Project creation status. """ project_path = os.path.join("projects", project_name) # Create project directory try: os.makedirs(project_path) requirements_path = os.path.join(project_path, "requirements.txt") with open(requirements_path, "w") as req_file: req_file.write("") # Initialize an empty requirements.txt file status = f'Project "{project_name}" created successfully.' st.session_state.workspace_projects[project_name] = {'files': []} except FileExistsError: status = f'Project "{project_name}" already exists.' return status def add_code_to_workspace(project_name, code, file_name): """Adds selected code files to the workspace. Args: project_name: Name of the project. code: Code to be added. file_name: Name of the file to be created. Returns: File creation status. """ project_path = os.path.join("projects", project_name) file_path = os.path.join(project_path, file_name) try: with open(file_path, "w") as code_file: code_file.write(code) status = f'File "{file_name}" added to project "{project_name}" successfully.' st.session_state.workspace_projects[project_name]['files'].append(file_name) except Exception as e: status = f"Error: {e}" return status # 5. AI-Infused Tools # Define custom AI-powered tools using Hugging Face models # Example: Text summarization tool def summarize_text(text): """Summarizes a given text using a Hugging Face model. Args: text: Text to be summarized. Returns: Summarized text. """ # Load the summarization model model_name = "facebook/bart-large-cnn" try: summarizer = pipeline("summarization", model=model_name) except EnvironmentError as e: return f"Error loading model: {e}" # Truncate input text to avoid exceeding the model's maximum length max_input_length = max_input_length inputs = text if len(text) > max_input_length: inputs = text[:max_input_length] # Generate summary summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][ "summary_text" ] return summary # Example: Sentiment analysis tool def sentiment_analysis(text): """Performs sentiment analysis on a given text using a Hugging Face model. Args: text: Text to be analyzed. Returns: Sentiment analysis result. """ # Load the sentiment analysis model model_name = "distilbert-base-uncased-finetuned-sst-2-english" try: analyzer = pipeline("sentiment-analysis", model=model_name) except EnvironmentError as e: return f"Error loading model: {e}" # Perform sentiment analysis result = analyzer(text)[0] return result # Example: Text translation tool (code translation) def translate_code(code, source_language, target_language): """Translates code from one programming language to another using OpenAI Codex. Args: code: Code to be translated. source_language: The source programming language. target_language: The target programming language. Returns: Translated code. """ # You might want to replace this with a Hugging Face translation model # for example, "Helsinki-NLP/opus-mt-en-fr" # Refer to Hugging Face documentation for model usage. prompt = f"Translate the following {source_language} code to {target_language}:\n\n{code}" try: # Use a Hugging Face translation model instead of OpenAI Codex # ... translated_code = "Translated code" # Replace with actual translation except Exception as e: translated_code = f"Error: {e}" return translated_code # 6. Code Generation def generate_code(idea): """Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model. Args: idea: The idea for the code to be generated. Returns: The generated code as a string. """ # Load the code generation model model_name = "EleutherAI/gpt-neo-2.7B" try: model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) except EnvironmentError as e: return f"Error loading model: {e}" # Generate the code input_text = f""" # Idea: {idea} # Code: """ input_ids = tokenizer.encode(input_text, return_tensors="pt") output_sequences = model.generate( input_ids=input_ids, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True, temperature=0.7, # Adjust temperature for creativity top_k=50, # Adjust top_k for diversity ) generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True) # Remove the prompt and formatting parts = generated_code.split("\n# Code:") if len(parts) > 1: generated_code = parts[1].strip() else: generated_code = generated_code.strip() return generated_code # 7. AI Personas Creator def create_persona_from_text(text): """Creates an AI persona from the given text. Args: text: Text to be used for creating the persona. Returns: Persona prompt. """ persona_prompt = f""" As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas: Streamlit: * In-depth knowledge of Streamlit's architecture, components, and customization options. * Expertise in creating interactive and user-friendly dashboards and applications. * Proficiency in integrating Streamlit with various data sources and machine learning models. Gradio: * Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces. * Expertise in creating custom Gradio components and integrating them with Streamlit applications. * Proficiency in using Gradio to deploy models from Hugging Face and other frameworks. Hugging Face: * Comprehensive knowledge of Hugging Face's model hub and Transformers library. * Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks. * Proficiency in using Hugging Face's Spaces platform for model deployment and sharing. Deployment: * In-depth understanding of best practices for deploying Streamlit and Gradio applications. * Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP. * Proficiency in optimizing deployment configurations for performance and scalability. Additional Skills: * Strong programming skills in Python and JavaScript. * Familiarity with Docker and containerization technologies. * Excellent communication and problem-solving abilities. I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter. Example: Task: Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction. Solution: import streamlit as st import gradio as gr from transformers import pipeline # Create a Hugging Face pipeline huggingface_model = pipeline("text-generation") # Create a Streamlit app st.title("Hugging Face Text Generation App") # Define a Gradio component demo = gr.Interface( fn=huggingface_model, inputs=gr.Textbox(lines=2), outputs=gr.Textbox(lines=1), ) # Display the Gradio component in the Streamlit app st.write(demo) """ return persona_prompt # Streamlit App st.title("AI Agent Creator") # Sidebar navigation st.sidebar.title("Navigation") app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) if app_mode == "AI Agent Creator": # AI Agent Creator st.header("Create an AI Agent from Text") st.subheader("From Text") agent_name = st.text_input("Enter agent name:") text_input = st.text_area("Enter skills (one per line):") if st.button("Create Agent"): agent_prompt = create_agent_from_text(agent_name, text_input) st.success(f"Agent '{agent_name}' created and saved successfully.") st.session_state.available_agents.append(agent_name) elif app_mode == "Tool Box": # Tool Box for project, details in st.session_state.workspace_projects.items(): st.write(f"Project: {project}") for file in details['files']: st.write(f" - {file}") # Chat with AI Agents st.subheader("Chat with AI Agents") selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents) agent_chat_input = st.text_area("Enter your message for the agent:") if st.button("Send to Agent"): agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent) st.session_state.chat_history.append((agent_chat_input, agent_chat_response)) st.write(f"{selected_agent}: {agent_chat_response}") # Automate Build Process st.subheader("Automate Build Process") if st.button("Automate"): agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects) st.write("Autonomous Build Summary:") st.write(summary) st.write("Next Step:") st.write(next_step)