acecalisto3 commited on
Commit
f3dfbf7
·
verified ·
1 Parent(s): 9573d2c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -213
app.py CHANGED
@@ -1,21 +1,14 @@
 
1
  import os
2
  import subprocess
3
- import streamlit as st
4
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
5
- import black
6
- from pylint import lint
7
- from io import StringIO
8
- import sys
9
- import torch
10
- from huggingface_hub import hf_hub_url, cached_download, HfApi
11
- from datetime import datetime
12
 
13
  # Set your Hugging Face API key here
14
  hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
15
 
16
- HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
17
  PROJECT_ROOT = "projects"
18
  AGENT_DIRECTORY = "agents"
 
19
 
20
  # Global state to manage communication between Tool Box and Workspace Chat App
21
  if 'chat_history' not in st.session_state:
@@ -26,93 +19,51 @@ if 'workspace_projects' not in st.session_state:
26
  st.session_state.workspace_projects = {}
27
  if 'available_agents' not in st.session_state:
28
  st.session_state.available_agents = []
29
- if 'current_state' not in st.session_state:
30
- st.session_state.current_state = {
31
- 'toolbox': {},
32
- 'workspace_chat': {}
33
- }
34
-
35
- # List of top downloaded free code-generative models from Hugging Face Hub
36
- AVAILABLE_CODE_GENERATIVE_MODELS = [
37
- "bigcode/starcoder", # Popular and powerful
38
- "Salesforce/codegen-350M-mono", # Smaller, good for quick tasks
39
- "microsoft/CodeGPT-small", # Smaller, good for quick tasks
40
- "google/flan-t5-xl", # Powerful, good for complex tasks
41
- "facebook/bart-large-cnn", # Good for text-to-code tasks
42
- ]
43
-
44
- # Load pre-trained RAG retriever
45
- rag_retriever = RagRetriever.from_pretrained("neural-bridge/rag-dataset-1200") # Use a Hugging Face RAG model
46
-
47
- # Load pre-trained chat model
48
- chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
49
-
50
- # Load tokenizer
51
- tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
52
 
53
  class AIAgent:
54
- def __init__(self, name, description, skills, hf_api=None):
55
  self.name = name
56
  self.description = description
57
  self.skills = skills
58
- self._hf_api = hf_api
59
- self._hf_token = hf_token # Store the token here
60
 
61
- @property
62
- def hf_api(self):
63
- if not self._hf_api and self.has_valid_hf_token():
64
- self._hf_api = HfApi(token=self._hf_token)
65
- return self._hf_api
 
 
 
 
66
 
67
- def has_valid_hf_token(self):
68
- return bool(self._hf_token)
 
 
 
 
 
69
 
70
- async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token):
71
- self._hf_token = hf_token
72
- # Continuation of previous methods
 
73
 
74
  def deploy_built_space_to_hf(self):
75
- if not self._hf_api or not self._hf_token:
76
- raise ValueError("Cannot deploy the Space since no valid Hugging Face API connection was established.")
77
- repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
78
- files = get_built_space_files()
79
- commit_response = self.hf_api.commit_repo(
80
- repo_id=repository_name,
81
- branch="main",
82
- commits=[{"message": "Built Space Commit", "tree": tree_payload}]
83
- )
84
- print("Commit successful:", commit_response)
85
- self.publish_space(repository_name)
86
-
87
- def publish_space(self, repository_name):
88
- publishing_response = self.hf_api.create_model_version(
89
- model_name=repository_name,
90
- repo_id=repository_name,
91
- model_card={},
92
- library_card={}
93
- )
94
- print("Space published:", publishing_response)
95
-
96
- def process_input(user_input):
97
- # Input pipeline: Tokenize and preprocess user input
98
- input_ids = tokenizer(user_input, return_tensors="pt").input_ids
99
- attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
100
-
101
- # RAG model: Generate response
102
- with torch.no_grad():
103
- output = rag_retriever(input_ids, attention_mask=attention_mask)
104
- response = output.generator_outputs[0].sequences[0]
105
-
106
- # Chat model: Refine response
107
- chat_input = tokenizer(response, return_tensors="pt")
108
- chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
109
- chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
110
- with torch.no_grad():
111
- chat_output = chat_model(**chat_input)
112
- refined_response = chat_output.sequences[0]
113
-
114
- # Output pipeline: Return final response
115
- return refined_response
116
 
117
  def workspace_interface(project_name):
118
  project_path = os.path.join(PROJECT_ROOT, project_name)
@@ -134,130 +85,15 @@ def add_code_to_workspace(project_name, code, file_name):
134
  st.session_state.workspace_projects[project_name]['files'].append(file_name)
135
  return f"Code added to '{file_name}' in project '{project_name}'."
136
 
137
- def run_code(command, project_name=None):
138
- if project_name:
139
- project_path = os.path.join(PROJECT_ROOT, project_name)
140
- result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
141
- else:
142
- result = subprocess.run(command, shell=True, capture_output=True, text=True)
143
- return result.stdout
144
-
145
- def display_chat_history(history):
146
- chat_history = ""
147
- for user_input, response in history:
148
- chat_history += f"User: {user_input}\nAgent: {response}\n\n"
149
- return chat_history
150
-
151
- def display_workspace_projects(projects):
152
- workspace_projects = ""
153
- for project, details in projects.items():
154
- workspace_projects += f"Project: {project}\nFiles:\n"
155
- for file in details['files']:
156
- workspace_projects += f" - {file}\n"
157
- return workspace_projects
158
-
159
- # Streamlit App
160
- st.title("AI Agent Creator")
161
-
162
- # Sidebar navigation
163
- st.sidebar.title("Navigation")
164
- app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
165
-
166
- if app_mode == "AI Agent Creator":
167
- # AI Agent Creator
168
- st.header("Create an AI Agent from Text")
169
-
170
- st.subheader("From Text")
171
- agent_name = st.text_input("Enter agent name:")
172
- text_input = st.text_area("Enter skills (one per line):")
173
- if st.button("Create Agent"):
174
- skills = text_input.split('\n')
175
- agent = AIAgent(agent_name, "AI agent created from text input", skills)
176
- st.success(f"Agent '{agent_name}' created and saved successfully.")
177
- st.session_state.available_agents.append(agent_name)
178
-
179
- elif app_mode == "Tool Box":
180
- # Tool Box
181
- st.header("AI-Powered Tools")
182
-
183
- # Chat Interface
184
- st.subheader("Chat with CodeCraft")
185
- chat_input = st.text_area("Enter your message:")
186
- if st.button("Send"):
187
- response = process_input(chat_input)
188
- st.session_state.chat_history.append((chat_input, response))
189
- st.write(f"CodeCraft: {response}")
190
-
191
- # Terminal Interface
192
- st.subheader("Terminal")
193
- terminal_input = st.text_input("Enter a command:")
194
- if st.button("Run"):
195
- output = run_code(terminal_input)
196
- st.session_state.terminal_history.append((terminal_input, output))
197
- st.code(output, language="bash")
198
-
199
- # Project Management
200
- st.subheader("Project Management")
201
- project_name_input = st.text_input("Enter Project Name:")
202
- if st.button("Create Project"):
203
- status = workspace_interface(project_name_input)
204
- st.write(status)
205
-
206
- code_to_add = st.text_area("Enter Code to Add to Workspace:", height=150)
207
- file_name_input = st.text_input("Enter File Name (e.g., 'app.py'):")
208
- if st.button("Add Code"):
209
- status = add_code_to_workspace(project_name_input, code_to_add, file_name_input)
210
- st.write(status)
211
-
212
- # Display Chat History
213
- st.subheader("Chat History")
214
- chat_history = display_chat_history(st.session_state.chat_history)
215
- st.text_area("Chat History", value=chat_history, height=200)
216
-
217
- # Display Workspace Projects
218
- st.subheader("Workspace Projects")
219
- workspace_projects = display_workspace_projects(st.session_state.workspace_projects)
220
- st.text_area("Workspace Projects", value=workspace_projects, height=200)
221
-
222
- elif app_mode == "Workspace Chat App":
223
- # Workspace Chat App
224
- st.header("Workspace Chat App")
225
-
226
- # Chat Interface with AI Agents
227
- st.subheader("Chat with AI Agents")
228
- selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
229
- agent_chat_input = st.text_area("Enter your message for the agent:")
230
- if st.button("Send to Agent"):
231
- response = process_input(agent_chat_input)
232
- st.session_state.chat_history.append((agent_chat_input, response))
233
- st.write(f"{selected_agent}: {response}")
234
-
235
- # Code Generation
236
- st.subheader("Code Generation")
237
- code_idea = st.text_input("Enter your code idea:")
238
- selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
239
- if st.button("Generate Code"):
240
- generated_code = run_code(code_idea)
241
- st.code(generated_code, language="python")
242
-
243
- # Automate Build Process
244
- st.subheader("Automate Build Process")
245
- if st.button("Automate"):
246
- agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
247
- summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token)
248
- st.write("Autonomous Build Summary:")
249
- st.write(summary)
250
- st.write("Next Step:")
251
- st.write(next_step)
252
-
253
- if agent._hf_api and agent.has_valid_hf_token():
254
- repository = agent.deploy_built_space_to_hf()
255
- st.markdown("## Congratulations! Successfully deployed Space 🚀 ##")
256
- st.markdown("[Check out your new Space here](hf.co/" + repository.name + ")")
257
-
258
- if __name__ == "__main__":
259
- st.sidebar.title("Navigation")
260
- app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
261
 
262
  if app_mode == "AI Agent Creator":
263
  # AI Agent Creator
@@ -333,14 +169,15 @@ elif app_mode == "Workspace Chat App":
333
  code_idea = st.text_input("Enter your code idea:")
334
  selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
335
  if st.button("Generate Code"):
336
- generated_code = run_code(code_idea)
 
337
  st.code(generated_code, language="python")
338
 
339
  # Automate Build Process
340
  st.subheader("Automate Build Process")
341
  if st.button("Automate"):
342
  agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
343
- summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token)
344
  st.write("Autonomous Build Summary:")
345
  st.write(summary)
346
  st.write("Next Step:")
 
1
+ import streamlit as st
2
  import os
3
  import subprocess
4
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, HfApi
 
 
 
 
 
 
 
 
5
 
6
  # Set your Hugging Face API key here
7
  hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
8
 
 
9
  PROJECT_ROOT = "projects"
10
  AGENT_DIRECTORY = "agents"
11
+ AVAILABLE_CODE_GENERATIVE_MODELS = ["bigcode/starcoder", "Salesforce/codegen-350M-mono", "microsoft/CodeGPT-small"]
12
 
13
  # Global state to manage communication between Tool Box and Workspace Chat App
14
  if 'chat_history' not in st.session_state:
 
19
  st.session_state.workspace_projects = {}
20
  if 'available_agents' not in st.session_state:
21
  st.session_state.available_agents = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  class AIAgent:
24
+ def __init__(self, name, description, skills):
25
  self.name = name
26
  self.description = description
27
  self.skills = skills
 
 
28
 
29
+ def create_agent_prompt(self):
30
+ skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
31
+ agent_prompt = f"""
32
+ As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
33
+ {skills_str}
34
+
35
+ I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
36
+ """
37
+ return agent_prompt
38
 
39
+ def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token):
40
+ """
41
+ Autonomous build logic that continues based on the state of chat history and workspace projects.
42
+ """
43
+ # Example logic: Generate a summary of chat history and workspace state
44
+ summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
45
+ summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
46
 
47
+ # Example: Generate the next logical step in the project
48
+ next_step = "Based on the current state, the next logical step is to implement the main application logic."
49
+
50
+ return summary, next_step
51
 
52
  def deploy_built_space_to_hf(self):
53
+ # Implement deployment logic here
54
+ pass
55
+
56
+ def process_input(input_text):
57
+ chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium")
58
+ response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
59
+ return response
60
+
61
+ def run_code(code):
62
+ try:
63
+ result = subprocess.run(code, shell=True, capture_output=True, text=True)
64
+ return result.stdout
65
+ except Exception as e:
66
+ return str(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
  def workspace_interface(project_name):
69
  project_path = os.path.join(PROJECT_ROOT, project_name)
 
85
  st.session_state.workspace_projects[project_name]['files'].append(file_name)
86
  return f"Code added to '{file_name}' in project '{project_name}'."
87
 
88
+ def display_chat_history(chat_history):
89
+ return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
90
+
91
+ def display_workspace_projects(workspace_projects):
92
+ return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
93
+
94
+ if __name__ == "__main__":
95
+ st.sidebar.title("Navigation")
96
+ app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
  if app_mode == "AI Agent Creator":
99
  # AI Agent Creator
 
169
  code_idea = st.text_input("Enter your code idea:")
170
  selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
171
  if st.button("Generate Code"):
172
+ generator = pipeline("text-generation", model=selected_model, tokenizer=selected_model)
173
+ generated_code = generator(code_idea, max_length=150, num_return_sequences=1)[0]['generated_text']
174
  st.code(generated_code, language="python")
175
 
176
  # Automate Build Process
177
  st.subheader("Automate Build Process")
178
  if st.button("Automate"):
179
  agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
180
+ summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name_input, selected_model, hf_token)
181
  st.write("Autonomous Build Summary:")
182
  st.write(summary)
183
  st.write("Next Step:")