Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,14 @@
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
-
import
|
4 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
5 |
-
import black
|
6 |
-
from pylint import lint
|
7 |
-
from io import StringIO
|
8 |
-
import sys
|
9 |
-
import torch
|
10 |
-
from huggingface_hub import hf_hub_url, cached_download, HfApi
|
11 |
-
from datetime import datetime
|
12 |
|
13 |
# Set your Hugging Face API key here
|
14 |
hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
|
15 |
|
16 |
-
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
17 |
PROJECT_ROOT = "projects"
|
18 |
AGENT_DIRECTORY = "agents"
|
|
|
19 |
|
20 |
# Global state to manage communication between Tool Box and Workspace Chat App
|
21 |
if 'chat_history' not in st.session_state:
|
@@ -26,93 +19,51 @@ if 'workspace_projects' not in st.session_state:
|
|
26 |
st.session_state.workspace_projects = {}
|
27 |
if 'available_agents' not in st.session_state:
|
28 |
st.session_state.available_agents = []
|
29 |
-
if 'current_state' not in st.session_state:
|
30 |
-
st.session_state.current_state = {
|
31 |
-
'toolbox': {},
|
32 |
-
'workspace_chat': {}
|
33 |
-
}
|
34 |
-
|
35 |
-
# List of top downloaded free code-generative models from Hugging Face Hub
|
36 |
-
AVAILABLE_CODE_GENERATIVE_MODELS = [
|
37 |
-
"bigcode/starcoder", # Popular and powerful
|
38 |
-
"Salesforce/codegen-350M-mono", # Smaller, good for quick tasks
|
39 |
-
"microsoft/CodeGPT-small", # Smaller, good for quick tasks
|
40 |
-
"google/flan-t5-xl", # Powerful, good for complex tasks
|
41 |
-
"facebook/bart-large-cnn", # Good for text-to-code tasks
|
42 |
-
]
|
43 |
-
|
44 |
-
# Load pre-trained RAG retriever
|
45 |
-
rag_retriever = RagRetriever.from_pretrained("neural-bridge/rag-dataset-1200") # Use a Hugging Face RAG model
|
46 |
-
|
47 |
-
# Load pre-trained chat model
|
48 |
-
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
|
49 |
-
|
50 |
-
# Load tokenizer
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
52 |
|
53 |
class AIAgent:
|
54 |
-
def __init__(self, name, description, skills
|
55 |
self.name = name
|
56 |
self.description = description
|
57 |
self.skills = skills
|
58 |
-
self._hf_api = hf_api
|
59 |
-
self._hf_token = hf_token # Store the token here
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
def
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
def deploy_built_space_to_hf(self):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
model_name=repository_name,
|
90 |
-
repo_id=repository_name,
|
91 |
-
model_card={},
|
92 |
-
library_card={}
|
93 |
-
)
|
94 |
-
print("Space published:", publishing_response)
|
95 |
-
|
96 |
-
def process_input(user_input):
|
97 |
-
# Input pipeline: Tokenize and preprocess user input
|
98 |
-
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
99 |
-
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
|
100 |
-
|
101 |
-
# RAG model: Generate response
|
102 |
-
with torch.no_grad():
|
103 |
-
output = rag_retriever(input_ids, attention_mask=attention_mask)
|
104 |
-
response = output.generator_outputs[0].sequences[0]
|
105 |
-
|
106 |
-
# Chat model: Refine response
|
107 |
-
chat_input = tokenizer(response, return_tensors="pt")
|
108 |
-
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
|
109 |
-
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
|
110 |
-
with torch.no_grad():
|
111 |
-
chat_output = chat_model(**chat_input)
|
112 |
-
refined_response = chat_output.sequences[0]
|
113 |
-
|
114 |
-
# Output pipeline: Return final response
|
115 |
-
return refined_response
|
116 |
|
117 |
def workspace_interface(project_name):
|
118 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
@@ -134,130 +85,15 @@ def add_code_to_workspace(project_name, code, file_name):
|
|
134 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
135 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
136 |
|
137 |
-
def
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
chat_history = ""
|
147 |
-
for user_input, response in history:
|
148 |
-
chat_history += f"User: {user_input}\nAgent: {response}\n\n"
|
149 |
-
return chat_history
|
150 |
-
|
151 |
-
def display_workspace_projects(projects):
|
152 |
-
workspace_projects = ""
|
153 |
-
for project, details in projects.items():
|
154 |
-
workspace_projects += f"Project: {project}\nFiles:\n"
|
155 |
-
for file in details['files']:
|
156 |
-
workspace_projects += f" - {file}\n"
|
157 |
-
return workspace_projects
|
158 |
-
|
159 |
-
# Streamlit App
|
160 |
-
st.title("AI Agent Creator")
|
161 |
-
|
162 |
-
# Sidebar navigation
|
163 |
-
st.sidebar.title("Navigation")
|
164 |
-
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
165 |
-
|
166 |
-
if app_mode == "AI Agent Creator":
|
167 |
-
# AI Agent Creator
|
168 |
-
st.header("Create an AI Agent from Text")
|
169 |
-
|
170 |
-
st.subheader("From Text")
|
171 |
-
agent_name = st.text_input("Enter agent name:")
|
172 |
-
text_input = st.text_area("Enter skills (one per line):")
|
173 |
-
if st.button("Create Agent"):
|
174 |
-
skills = text_input.split('\n')
|
175 |
-
agent = AIAgent(agent_name, "AI agent created from text input", skills)
|
176 |
-
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
177 |
-
st.session_state.available_agents.append(agent_name)
|
178 |
-
|
179 |
-
elif app_mode == "Tool Box":
|
180 |
-
# Tool Box
|
181 |
-
st.header("AI-Powered Tools")
|
182 |
-
|
183 |
-
# Chat Interface
|
184 |
-
st.subheader("Chat with CodeCraft")
|
185 |
-
chat_input = st.text_area("Enter your message:")
|
186 |
-
if st.button("Send"):
|
187 |
-
response = process_input(chat_input)
|
188 |
-
st.session_state.chat_history.append((chat_input, response))
|
189 |
-
st.write(f"CodeCraft: {response}")
|
190 |
-
|
191 |
-
# Terminal Interface
|
192 |
-
st.subheader("Terminal")
|
193 |
-
terminal_input = st.text_input("Enter a command:")
|
194 |
-
if st.button("Run"):
|
195 |
-
output = run_code(terminal_input)
|
196 |
-
st.session_state.terminal_history.append((terminal_input, output))
|
197 |
-
st.code(output, language="bash")
|
198 |
-
|
199 |
-
# Project Management
|
200 |
-
st.subheader("Project Management")
|
201 |
-
project_name_input = st.text_input("Enter Project Name:")
|
202 |
-
if st.button("Create Project"):
|
203 |
-
status = workspace_interface(project_name_input)
|
204 |
-
st.write(status)
|
205 |
-
|
206 |
-
code_to_add = st.text_area("Enter Code to Add to Workspace:", height=150)
|
207 |
-
file_name_input = st.text_input("Enter File Name (e.g., 'app.py'):")
|
208 |
-
if st.button("Add Code"):
|
209 |
-
status = add_code_to_workspace(project_name_input, code_to_add, file_name_input)
|
210 |
-
st.write(status)
|
211 |
-
|
212 |
-
# Display Chat History
|
213 |
-
st.subheader("Chat History")
|
214 |
-
chat_history = display_chat_history(st.session_state.chat_history)
|
215 |
-
st.text_area("Chat History", value=chat_history, height=200)
|
216 |
-
|
217 |
-
# Display Workspace Projects
|
218 |
-
st.subheader("Workspace Projects")
|
219 |
-
workspace_projects = display_workspace_projects(st.session_state.workspace_projects)
|
220 |
-
st.text_area("Workspace Projects", value=workspace_projects, height=200)
|
221 |
-
|
222 |
-
elif app_mode == "Workspace Chat App":
|
223 |
-
# Workspace Chat App
|
224 |
-
st.header("Workspace Chat App")
|
225 |
-
|
226 |
-
# Chat Interface with AI Agents
|
227 |
-
st.subheader("Chat with AI Agents")
|
228 |
-
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
|
229 |
-
agent_chat_input = st.text_area("Enter your message for the agent:")
|
230 |
-
if st.button("Send to Agent"):
|
231 |
-
response = process_input(agent_chat_input)
|
232 |
-
st.session_state.chat_history.append((agent_chat_input, response))
|
233 |
-
st.write(f"{selected_agent}: {response}")
|
234 |
-
|
235 |
-
# Code Generation
|
236 |
-
st.subheader("Code Generation")
|
237 |
-
code_idea = st.text_input("Enter your code idea:")
|
238 |
-
selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
|
239 |
-
if st.button("Generate Code"):
|
240 |
-
generated_code = run_code(code_idea)
|
241 |
-
st.code(generated_code, language="python")
|
242 |
-
|
243 |
-
# Automate Build Process
|
244 |
-
st.subheader("Automate Build Process")
|
245 |
-
if st.button("Automate"):
|
246 |
-
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
247 |
-
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token)
|
248 |
-
st.write("Autonomous Build Summary:")
|
249 |
-
st.write(summary)
|
250 |
-
st.write("Next Step:")
|
251 |
-
st.write(next_step)
|
252 |
-
|
253 |
-
if agent._hf_api and agent.has_valid_hf_token():
|
254 |
-
repository = agent.deploy_built_space_to_hf()
|
255 |
-
st.markdown("## Congratulations! Successfully deployed Space 🚀 ##")
|
256 |
-
st.markdown("[Check out your new Space here](hf.co/" + repository.name + ")")
|
257 |
-
|
258 |
-
if __name__ == "__main__":
|
259 |
-
st.sidebar.title("Navigation")
|
260 |
-
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
261 |
|
262 |
if app_mode == "AI Agent Creator":
|
263 |
# AI Agent Creator
|
@@ -333,14 +169,15 @@ elif app_mode == "Workspace Chat App":
|
|
333 |
code_idea = st.text_input("Enter your code idea:")
|
334 |
selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
|
335 |
if st.button("Generate Code"):
|
336 |
-
|
|
|
337 |
st.code(generated_code, language="python")
|
338 |
|
339 |
# Automate Build Process
|
340 |
st.subheader("Automate Build Process")
|
341 |
if st.button("Automate"):
|
342 |
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
343 |
-
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects,
|
344 |
st.write("Autonomous Build Summary:")
|
345 |
st.write(summary)
|
346 |
st.write("Next Step:")
|
|
|
1 |
+
import streamlit as st
|
2 |
import os
|
3 |
import subprocess
|
4 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, HfApi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Set your Hugging Face API key here
|
7 |
hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
|
8 |
|
|
|
9 |
PROJECT_ROOT = "projects"
|
10 |
AGENT_DIRECTORY = "agents"
|
11 |
+
AVAILABLE_CODE_GENERATIVE_MODELS = ["bigcode/starcoder", "Salesforce/codegen-350M-mono", "microsoft/CodeGPT-small"]
|
12 |
|
13 |
# Global state to manage communication between Tool Box and Workspace Chat App
|
14 |
if 'chat_history' not in st.session_state:
|
|
|
19 |
st.session_state.workspace_projects = {}
|
20 |
if 'available_agents' not in st.session_state:
|
21 |
st.session_state.available_agents = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
class AIAgent:
|
24 |
+
def __init__(self, name, description, skills):
|
25 |
self.name = name
|
26 |
self.description = description
|
27 |
self.skills = skills
|
|
|
|
|
28 |
|
29 |
+
def create_agent_prompt(self):
|
30 |
+
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
|
31 |
+
agent_prompt = f"""
|
32 |
+
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
|
33 |
+
{skills_str}
|
34 |
+
|
35 |
+
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
|
36 |
+
"""
|
37 |
+
return agent_prompt
|
38 |
|
39 |
+
def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token):
|
40 |
+
"""
|
41 |
+
Autonomous build logic that continues based on the state of chat history and workspace projects.
|
42 |
+
"""
|
43 |
+
# Example logic: Generate a summary of chat history and workspace state
|
44 |
+
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
45 |
+
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
46 |
|
47 |
+
# Example: Generate the next logical step in the project
|
48 |
+
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
49 |
+
|
50 |
+
return summary, next_step
|
51 |
|
52 |
def deploy_built_space_to_hf(self):
|
53 |
+
# Implement deployment logic here
|
54 |
+
pass
|
55 |
+
|
56 |
+
def process_input(input_text):
|
57 |
+
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium")
|
58 |
+
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
|
59 |
+
return response
|
60 |
+
|
61 |
+
def run_code(code):
|
62 |
+
try:
|
63 |
+
result = subprocess.run(code, shell=True, capture_output=True, text=True)
|
64 |
+
return result.stdout
|
65 |
+
except Exception as e:
|
66 |
+
return str(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def workspace_interface(project_name):
|
69 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
|
|
85 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
86 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
87 |
|
88 |
+
def display_chat_history(chat_history):
|
89 |
+
return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
90 |
+
|
91 |
+
def display_workspace_projects(workspace_projects):
|
92 |
+
return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
93 |
+
|
94 |
+
if __name__ == "__main__":
|
95 |
+
st.sidebar.title("Navigation")
|
96 |
+
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
if app_mode == "AI Agent Creator":
|
99 |
# AI Agent Creator
|
|
|
169 |
code_idea = st.text_input("Enter your code idea:")
|
170 |
selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
|
171 |
if st.button("Generate Code"):
|
172 |
+
generator = pipeline("text-generation", model=selected_model, tokenizer=selected_model)
|
173 |
+
generated_code = generator(code_idea, max_length=150, num_return_sequences=1)[0]['generated_text']
|
174 |
st.code(generated_code, language="python")
|
175 |
|
176 |
# Automate Build Process
|
177 |
st.subheader("Automate Build Process")
|
178 |
if st.button("Automate"):
|
179 |
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
180 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name_input, selected_model, hf_token)
|
181 |
st.write("Autonomous Build Summary:")
|
182 |
st.write(summary)
|
183 |
st.write("Next Step:")
|