acecalisto3 commited on
Commit
863b7cd
·
verified ·
1 Parent(s): 7d66d34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -180
app.py CHANGED
@@ -51,59 +51,6 @@ classifier = pipeline("text-classification", model="facebook/bart-large-mnli")
51
  model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
52
  tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
53
 
54
- import os
55
- import subprocess
56
- import streamlit as st
57
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
58
- from langchain_community.llms import HuggingFaceHub
59
- from langchain_community.embeddings import HuggingFaceHubEmbeddings
60
- from langchain_community.document_loaders import PyPDFLoader
61
- from langchain_community.vectorstores import FAISS
62
- from langchain.chains import ConversationalRetrievalChain
63
- from langchain.chains.question_answering import load_qa_chain
64
- from llama_cpp import Llama, LlamaCppPythonProvider, LlamaCppAgent
65
- from llama_cpp.llama_cpp_agent import get_messages_formatter_type, get_context_by_model
66
- from io import StringIO
67
- import tempfile
68
-
69
- # --- Global Variables ---
70
- CURRENT_PROJECT = {} # Store project data (code, packages, etc.)
71
- MODEL_OPTIONS = {
72
- "CodeQwen": "Qwen/CodeQwen1.5-7B-Chat-GGUF",
73
- "Codestral": "bartowski/Codestral-22B-v0.1-GGUF",
74
- "AutoCoder": "bartowski/AutoCoder-GGUF",
75
- }
76
- MODEL_FILENAMES = {
77
- "CodeQwen": "codeqwen-1_5-7b-chat-q6_k.gguf",
78
- "Codestral": "Codestral-22B-v0.1-Q6_K.gguf",
79
- "AutoCoder": "AutoCoder-Q6_K.gguf",
80
- }
81
- HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
82
- PROJECT_ROOT = "projects"
83
- AGENT_DIRECTORY = "agents"
84
-
85
- # Global state to manage communication between Tool Box and Workspace Chat App
86
- if 'chat_history' not in st.session_state:
87
- st.session_state.chat_history = []
88
- if 'terminal_history' not in st.session_state:
89
- st.session_state.terminal_history = []
90
- if 'workspace_projects' not in st.session_state:
91
- st.session_state.workspace_projects = {}
92
- if 'available_agents' not in st.session_state:
93
- st.session_state.available_agents = []
94
- if 'current_state' not in st.session_state:
95
- st.session_state.current_state = {
96
- 'toolbox': {},
97
- 'workspace_chat': {}
98
- }
99
-
100
- # --- Load NLP Pipelines ---
101
- classifier = pipeline("text-classification", model="facebook/bart-large-mnli")
102
-
103
- # --- Load the model and tokenizer ---
104
- model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
105
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
106
-
107
  # --- Utility Functions ---
108
  def install_and_import(package_name):
109
  """Installs a package using pip and imports it."""
@@ -335,133 +282,6 @@ inputs = tokenizer(prompt, return_tensors="pt")
335
  edited_code = tokenizer.decode(output[0], skip_special_tokens=True).split("
336
 
337
 
338
- python\n")[1].split("\n
339
-
340
- st.success(f"Code edited successfully!\n{edited_code}")
341
- update_project_data("code", edited_code)
342
- code_area.value = edited_code
343
- except Exception as e:
344
- st.error(f"Error editing code: {e}")
345
-
346
- # --- Prebuilt Tools ---
347
- st.markdown("## Prebuilt Tools:")
348
- with st.expander("Generate Code"):
349
- code_input = st.text_area("Enter your code request:", key="code_input")
350
- if st.button("Generate"):
351
- code_output = generate_code_tool(code_input, chat_history)
352
- st.markdown(code_output)
353
-
354
- with st.expander("Analyze Code"):
355
- code_input = st.text_area("Enter your code:", key="analyze_code_input")
356
- if st.button("Analyze"):
357
- analysis_output = analyze_code_tool(code_input, chat_history)
358
- st.markdown(analysis_output)
359
-
360
- # --- Additional Features ---
361
- # Add features like:
362
- # - Code editing
363
- # - Integration with external APIs
364
- # - Advanced AI agents for more complex tasks
365
- # - User account management
366
-
367
- # --- AI Agent Interaction ---
368
- if USER_INTENT is None:
369
- add_message("System", analyze_user_intent(input_text))
370
- add_message("System", "What kind of mini-app do you have in mind?")
371
- elif not MINI_APPS:
372
- add_message("System", "Here are some ideas:")
373
- for idea in generate_mini_app_ideas(input_text):
374
- add_message("System", f"- {idea}")
375
- add_message("System", "Which one would you like to build?")
376
- elif CURRENT_APP["name"] is None:
377
- selected_app = input_text
378
- app_description = next((app for app in MINI_APPS if selected_app in app), None)
379
- if app_description:
380
- add_message("System", f"Generating code for {app_description}...")
381
- code = generate_app_code(selected_app, app_description, "CodeQwen", history) # Use CodeQwen by default
382
- add_message("System", f"
383
-
384
-
385
- python\n{code}\n
386
-
387
- add_message("System", "Code generated! What else can I do for you?")
388
- update_project_data("code", code)
389
- update_project_data("app_name", selected_app)
390
- update_project_data("app_description", app_description)
391
- else:
392
- add_message("System", "Please choose from the provided mini-app ideas.")
393
- else:
394
- add_message("System", "You already have an app in progress. Do you want to start over?")
395
-
396
- return history, dynamic_functions
397
-
398
- # --- Prebuilt Tools ---
399
- def generate_code_tool(input_text, history):
400
- """Prebuilt tool for code generation."""
401
- code = generate_app_code("MyTool", "A tool to do something", "CodeQwen", history) # Use CodeQwen by default
402
- return f"
403
-
404
-
405
- python\n{code}\n
406
-
407
- def analyze_code_tool(input_text, history):
408
- """Prebuilt tool for code analysis."""
409
- agent = get_agent("Codestral")
410
- analysis = agent.chat(input_text, history)
411
- return analysis
412
-
413
- # --- Streamlit Interface ---
414
- st.title("AI4ME: Your Personal AI App Workshop")
415
- st.markdown("## Let's build your dream app together! 🤖")
416
-
417
- # --- Hugging Face Token Input ---
418
- huggingface_token = st.text_input("Enter your Hugging Face Token", type="password", key="huggingface_token")
419
- os.environ["huggingface_token"] = huggingface_token
420
-
421
- # --- Chat Interface ---
422
- chat_history = []
423
- chat_input = st.text_input("Tell me your idea...", key="chat_input")
424
- if chat_input:
425
- chat_history, dynamic_functions = handle_chat(chat_input, chat_history)
426
- for sender, message in chat_history:
427
- st.markdown(f"**{sender}:** {message}")
428
-
429
- # --- Code Execution and Deployment ---
430
- if CURRENT_APP["code"]:
431
- st.markdown("## Your App Code:")
432
- code_area = st.text_area("Your App Code", value=CURRENT_APP["code"], key="code_area")
433
-
434
- st.markdown("## Deploy Your App (Coming Soon!)")
435
- # Add deployment functionality here using Streamlit's deployment features.
436
- # For example, you could use Streamlit's `st.button` to trigger deployment.
437
-
438
- # --- Code Execution ---
439
- st.markdown("## Run Your App:")
440
- if st.button("Execute Code"):
441
- try:
442
- # Use Hugging Face's text-generation pipeline for code execution
443
- inputs = tokenizer(code_area, return_tensors="pt")
444
- output = model.generate(**inputs, max_length=500, num_return_sequences=1)
445
- output = tokenizer.decode(output[0], skip_special_tokens=True)
446
- st.success(f"Code executed successfully!\n{output}")
447
- except Exception as e:
448
- st.error(f"Error executing code: {e}")
449
-
450
- # --- Code Editing ---
451
- st.markdown("## Edit Your Code:")
452
- if st.button("Edit Code"):
453
- try:
454
- # Use Hugging Face's text-generation pipeline for code editing
455
- prompt = f"Improve the following Python code:\n
456
-
457
-
458
- python\n{code_area}\n
459
-
460
- inputs = tokenizer(prompt, return_tensors="pt")
461
- output = model.generate(**inputs, max_length=500, num_return_sequences=1)
462
- edited_code = tokenizer.decode(output[0], skip_special_tokens=True).split("
463
-
464
-
465
  python\n")[1].split("\n
466
 
467
  st.success(f"Code edited successfully!\n{edited_code}")
 
51
  model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
52
  tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  # --- Utility Functions ---
55
  def install_and_import(package_name):
56
  """Installs a package using pip and imports it."""
 
282
  edited_code = tokenizer.decode(output[0], skip_special_tokens=True).split("
283
 
284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
  python\n")[1].split("\n
286
 
287
  st.success(f"Code edited successfully!\n{edited_code}")