Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ import logging
|
|
8 |
|
9 |
import gradio as gr
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
11 |
-
|
12 |
from IPython.display import display, HTML
|
13 |
import streamlit.components.v1 as components
|
14 |
|
@@ -48,7 +48,7 @@ def load_model(model_name: str):
|
|
48 |
|
49 |
# Fetch and store the model description
|
50 |
api = HfApi()
|
51 |
-
model_info
|
52 |
model_descriptions[model_name] = model_info.pipeline_tag
|
53 |
return f"Successfully loaded model: {model_name}"
|
54 |
except Exception as e:
|
@@ -59,7 +59,7 @@ def model_selection():
|
|
59 |
st.write("Select a model to use for code generation:")
|
60 |
models = ["distilbert", "t5", "codellama-7b", "geminai-1.5b"]
|
61 |
selected_model = st.selectbox("Select a model:", models)
|
62 |
-
if
|
63 |
model = load_model(selected_model)
|
64 |
if model:
|
65 |
st.write(f"Model {selected_model} imported successfully!")
|
@@ -72,65 +72,56 @@ def run_command(command: str, project_path: str = None) -> str:
|
|
72 |
"""Executes a shell command and returns the output."""
|
73 |
try:
|
74 |
if project_path:
|
75 |
-
process = subprocess.Popen(command, shell=True,
|
76 |
-
else:
|
77 |
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
78 |
output, error = process.communicate()
|
79 |
if error:
|
80 |
return f"Error: {error.decode('utf-8')}"
|
81 |
-
return
|
82 |
except Exception as e:
|
83 |
-
return f"Error executing command: {
|
84 |
-
|
85 |
-
def create_project(project_name: str, project_path: str = DEFAULT_PROJECT_PATH):
|
86 |
"""Creates a new Hugging Face project."""
|
87 |
global repo
|
88 |
-
try:
|
89 |
-
if os.path.exists(project_path):
|
90 |
return f"Error: Directory '{project_path}' already exists!"
|
91 |
# Create the repository
|
92 |
repo = Repository(local_dir=project_path, clone_from=None)
|
93 |
repo.git_init()
|
94 |
|
95 |
-
# Add basic
|
96 |
-
with open(os.path.join(project_path, "README.md"), "w") as f:
|
97 |
-
f.write(f"# {project_name}\n\nA new Hugging Face project.")
|
98 |
|
99 |
-
# Stage all changes
|
100 |
-
repo.git_add(pattern="*")
|
101 |
repo.git_commit(commit_message="Initial commit")
|
102 |
|
103 |
-
return f"Hugging Face project '{project_name}' created successfully at '{
|
104 |
except Exception as e:
|
105 |
return f"Error creating Hugging Face project: {str(e)}"
|
106 |
|
107 |
-
def
|
108 |
"""Lists files in the project directory."""
|
109 |
try:
|
110 |
files = os.listdir(project_path)
|
111 |
if not files:
|
112 |
return "Project directory is empty."
|
113 |
return "\n".join(files)
|
114 |
-
|
115 |
-
return f"Error listing project files: {str(e)}"
|
116 |
|
117 |
-
def read_file(
|
118 |
-
"""Reads and returns the content of a file in the project."""
|
119 |
try:
|
120 |
-
|
121 |
with open(full_path, "r") as f:
|
122 |
content = f.read()
|
123 |
return content
|
124 |
except Exception as e:
|
125 |
return f"Error reading file: {str(e)}"
|
126 |
-
|
127 |
-
def write_file(file_path: str, content: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
|
128 |
"""Writes content to a file in the project."""
|
129 |
try:
|
130 |
-
full_path = os.path.join(
|
131 |
-
with open(full_path, "
|
132 |
-
f.
|
133 |
-
return
|
134 |
except Exception as e:
|
135 |
return f"Error writing to file: {str(e)}"
|
136 |
|
@@ -147,54 +138,47 @@ def preview(project_path: str = DEFAULT_PROJECT_PATH):
|
|
147 |
else:
|
148 |
return "No 'index.html' found for preview."
|
149 |
except Exception as e:
|
150 |
-
return f
|
151 |
|
152 |
def main():
|
153 |
-
|
154 |
-
gr.Markdown("## IDEvIII: Your Hugging
|
155 |
-
|
156 |
-
# --- Model Selection ---
|
157 |
-
with gr.Tab("Model"):
|
158 |
-
# --- Model Dropdown with Categories ---
|
159 |
model_categories = gr.Dropdown(
|
160 |
-
choices=
|
161 |
label="Model Category",
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
label="Hugging Face Model Name",
|
167 |
)
|
168 |
load_button = gr.Button("Load Model")
|
169 |
load_output = gr.Textbox(label="Output")
|
170 |
model_description = gr.Markdown(label="Model Description")
|
171 |
|
172 |
-
# --- Function to
|
173 |
-
|
174 |
models = []
|
175 |
api = HfApi()
|
176 |
for model in api.list_models():
|
177 |
-
if model.pipeline_tag ==
|
178 |
-
models.append(model.modelId)
|
179 |
-
return gr.Dropdown.update(choices=models)
|
180 |
|
181 |
# --- Event handler for category dropdown ---
|
182 |
model_categories.change(
|
183 |
-
fn=
|
184 |
-
inputs=model_categories,
|
185 |
outputs=model_name,
|
186 |
)
|
187 |
-
|
188 |
# --- Event handler to display model description ---
|
189 |
def display_model_description(model_name):
|
190 |
global model_descriptions
|
191 |
if model_name in model_descriptions:
|
192 |
-
return model_descriptions[
|
193 |
else:
|
194 |
-
return "Model description
|
195 |
|
196 |
model_name.change(
|
197 |
-
|
198 |
inputs=model_name,
|
199 |
outputs=model_description,
|
200 |
)
|
@@ -211,126 +195,114 @@ def main():
|
|
211 |
load_button.click(load_selected_model, inputs=model_name, outputs=load_output)
|
212 |
|
213 |
# --- Chat Interface ---
|
214 |
-
with gr.Tab("Chat
|
215 |
-
chatbot
|
216 |
-
message = gr.Textbox(
|
217 |
-
purpose = gr.Textbox(label="Purpose", placeholder="What is the
|
218 |
-
agent_name = gr.
|
219 |
-
|
220 |
-
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more
|
221 |
-
|
222 |
-
|
223 |
-
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
|
224 |
submit_button = gr.Button(value="Send")
|
225 |
history = gr.State([])
|
226 |
|
227 |
-
|
228 |
if not current_model:
|
229 |
return [(history, history), "Please load a model first."]
|
230 |
-
|
231 |
-
def generate_response(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty):
|
232 |
-
if not current_model:
|
233 |
-
return "Please load a model first."
|
234 |
-
|
235 |
-
conversation = [{"role": "system", "content": sys_prompt}]
|
236 |
-
for message, response in history:
|
237 |
-
conversation.append({"role": "user", "content": message})
|
238 |
-
conversation.append({"role": "assistant", "content": response})
|
239 |
-
conversation.append({"role": "user", "content": message})
|
240 |
-
|
241 |
-
response = current_model.generate(
|
242 |
-
conversation,
|
243 |
-
max_new_tokens=max_new_tokens,
|
244 |
-
temperature=temperature,
|
245 |
-
top_p=top_p,
|
246 |
-
repetition_penalty=repetition_penalty,
|
247 |
-
)
|
248 |
-
|
249 |
-
return response.text.strip()
|
250 |
-
|
251 |
-
def create_project(project_name):
|
252 |
-
try:
|
253 |
-
repo_name = get_full_repo_name(project_name, token=HfApi().token)
|
254 |
-
repo = HfFolder.create_repo(repo_name, exist_ok=True)
|
255 |
-
repo.save_data("README.md", f"# {project_name}")
|
256 |
-
return f"Created project '{project_name}' on Hugging Face Hub."
|
257 |
-
except Exception as e:
|
258 |
-
return f"Error creating project: {str(e)}"
|
259 |
-
|
260 |
-
def read_file(file_path):
|
261 |
-
if not os.path.exists(file_path):
|
262 |
-
return f"File '{file_path}' does not exist."
|
263 |
-
|
264 |
-
try:
|
265 |
-
with open(file_path, "r") as file:
|
266 |
-
content = file.read()
|
267 |
-
return content
|
268 |
-
except Exception as e:
|
269 |
-
return f"Error reading file '{file_path}': {str(e)}"
|
270 |
-
|
271 |
-
def write_file(file_path, file_content):
|
272 |
-
try:
|
273 |
-
with open(file_path, "w") as file:
|
274 |
-
file.write(file_content)
|
275 |
-
return f"Wrote to file '{file_path}' successfully."
|
276 |
-
except Exception as e:
|
277 |
-
return f"Error writing to file '{file_path}': {str(e)}"
|
278 |
-
|
279 |
-
def run_command(command):
|
280 |
-
try:
|
281 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
282 |
-
if result.returncode == 0:
|
283 |
-
return result.stdout
|
284 |
-
else:
|
285 |
-
return f"Command '{command}' failed with exit code {result.returncode}:\n{result.stderr}"
|
286 |
-
except Exception as e:
|
287 |
-
return f"Error running command '{command}': {str(e)}"
|
288 |
-
|
289 |
-
|
290 |
-
def preview():
|
291 |
-
# Get the current working directory
|
292 |
-
cwd = os.getcwd()
|
293 |
-
|
294 |
-
# Create a temporary directory for the preview
|
295 |
-
temp_dir = tempfile.mkdtemp()
|
296 |
-
|
297 |
-
try:
|
298 |
-
# Copy the project files to the temporary directory
|
299 |
-
shutil.copytree(cwd, temp_dir, ignore=shutil.ignore_patterns("__pycache__", "*.pyc"))
|
300 |
-
|
301 |
-
# Change to the temporary directory
|
302 |
-
os.chdir(temp_dir)
|
303 |
-
|
304 |
-
# Find the main Python file (e.g., app.py, main.py)
|
305 |
-
main_file = next((f for f in os.listdir(".") if f.endswith(".py")), None)
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
main()
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
11 |
+
huggingface_hub import InferenceClient, cached_download, Repository, HfApi
|
12 |
from IPython.display import display, HTML
|
13 |
import streamlit.components.v1 as components
|
14 |
|
|
|
48 |
|
49 |
# Fetch and store the model description
|
50 |
api = HfApi()
|
51 |
+
model_info =.model_info(model_name)
|
52 |
model_descriptions[model_name] = model_info.pipeline_tag
|
53 |
return f"Successfully loaded model: {model_name}"
|
54 |
except Exception as e:
|
|
|
59 |
st.write("Select a model to use for code generation:")
|
60 |
models = ["distilbert", "t5", "codellama-7b", "geminai-1.5b"]
|
61 |
selected_model = st.selectbox("Select a model:", models)
|
62 |
+
if selected_:
|
63 |
model = load_model(selected_model)
|
64 |
if model:
|
65 |
st.write(f"Model {selected_model} imported successfully!")
|
|
|
72 |
"""Executes a shell command and returns the output."""
|
73 |
try:
|
74 |
if project_path:
|
75 |
+
process = subprocess.Popen(command, shell=True, cwdproject_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE) else:
|
|
|
76 |
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
77 |
output, error = process.communicate()
|
78 |
if error:
|
79 |
return f"Error: {error.decode('utf-8')}"
|
80 |
+
return.decode("utf-8
|
81 |
except Exception as e:
|
82 |
+
return f"Error executing command: {stre)}"
|
83 |
+
_project(project_name: str, project_path: str = DEFAULT_PROJECTPATH):
|
|
|
84 |
"""Creates a new Hugging Face project."""
|
85 |
global repo
|
86 |
+
try os.path.exists(project_path):
|
|
|
87 |
return f"Error: Directory '{project_path}' already exists!"
|
88 |
# Create the repository
|
89 |
repo = Repository(local_dir=project_path, clone_from=None)
|
90 |
repo.git_init()
|
91 |
|
92 |
+
# Add basic filesoptional, can customize this) with open(path.join(_path, "README.md"), "w") as f: f.write(f {project_name}\n\nA new Face project.")
|
|
|
|
|
93 |
|
94 |
+
# Stage all changes repo.git_add(pattern="*")
|
|
|
95 |
repo.git_commit(commit_message="Initial commit")
|
96 |
|
97 |
+
return f"Hugging Face project '{project_name}' created successfully at '{project_"
|
98 |
except Exception as e:
|
99 |
return f"Error creating Hugging Face project: {str(e)}"
|
100 |
|
101 |
+
def list(project_path: str = DEFAULT_PROJECT_PATH) -> str:
|
102 |
"""Lists files in the project directory."""
|
103 |
try:
|
104 |
files = os.listdir(project_path)
|
105 |
if not files:
|
106 |
return "Project directory is empty."
|
107 |
return "\n".join(files)
|
108 |
+
except Exception as e: return f"Error listing project {str()}"
|
|
|
109 |
|
110 |
+
def read_file(filepath: str, project_path: str = DEFAULT_PROPATH) -> str """Reads and returns the content of a file in the project."""
|
|
|
111 |
try:
|
112 |
+
_path = os.path.join(project_path, file_path)
|
113 |
with open(full_path, "r") as f:
|
114 |
content = f.read()
|
115 |
return content
|
116 |
except Exception as e:
|
117 |
return f"Error reading file: {str(e)}"
|
118 |
+
def write_file(file_: str, content str project_path str =PROJECT_PATH:
|
|
|
119 |
"""Writes content to a file in the project."""
|
120 |
try:
|
121 |
+
full_path = os.path.join(project, file_path)
|
122 |
+
with open(full_path, "") as f:
|
123 |
+
f.(
|
124 |
+
return"Successfully wrote to '{_path}'"
|
125 |
except Exception as e:
|
126 |
return f"Error writing to file: {str(e)}"
|
127 |
|
|
|
138 |
else:
|
139 |
return "No 'index.html' found for preview."
|
140 |
except Exception as e:
|
141 |
+
return f preview project: {str(e)}"
|
142 |
|
143 |
def main():
|
144 |
+
.Blocks() as demo:
|
145 |
+
gr.Markdown("## IDEvIII: Your Hugging No- App Builder")
|
146 |
+
--- Model Selection --- with gr.Tab("Model"): --- Model Drop with Categories ---
|
|
|
|
|
|
|
147 |
model_categories = gr.Dropdown(
|
148 |
+
choices=Text Generation", "Text Summarization", "Code Generation", "Translation", "Question Answering"],
|
149 |
label="Model Category",
|
150 |
+
value=" Generation" )
|
151 |
+
_name = gr.Dropdown(
|
152 |
+
choices=[], # Initially empty, will be pop based on category
|
153 |
+
label="Hugging Face Model Name",
|
|
|
154 |
)
|
155 |
load_button = gr.Button("Load Model")
|
156 |
load_output = gr.Textbox(label="Output")
|
157 |
model_description = gr.Markdown(label="Model Description")
|
158 |
|
159 |
+
# --- Function to pop model names category ---
|
160 |
+
update_modeldropdown(category):
|
161 |
models = []
|
162 |
api = HfApi()
|
163 |
for model in api.list_models():
|
164 |
+
if model.pipeline_tag ==
|
165 |
+
models.append(model.modelId) return gr.Dropdown.update(choices=models)
|
|
|
166 |
|
167 |
# --- Event handler for category dropdown ---
|
168 |
model_categories.change(
|
169 |
+
fn=update_model_ inputs=model_categories,
|
|
|
170 |
outputs=model_name,
|
171 |
)
|
|
|
172 |
# --- Event handler to display model description ---
|
173 |
def display_model_description(model_name):
|
174 |
global model_descriptions
|
175 |
if model_name in model_descriptions:
|
176 |
+
return model_descriptions[modelname]
|
177 |
else:
|
178 |
+
return "Model description available."
|
179 |
|
180 |
model_name.change(
|
181 |
+
=display_model_description,
|
182 |
inputs=model_name,
|
183 |
outputs=model_description,
|
184 |
)
|
|
|
195 |
load_button.click(load_selected_model, inputs=model_name, outputs=load_output)
|
196 |
|
197 |
# --- Chat Interface ---
|
198 |
+
with gr.Tab("Chat
|
199 |
+
chatbot gr.Chatbot(show_label=False, show_share_button=False_copy_button, likeable)
|
200 |
+
message = gr.Textbox(Enter your message="Ask me anything!")
|
201 |
+
purpose = gr.Textbox(label="Purpose", placeholder="What is the of this interaction)
|
202 |
+
agent_name = gr.(label="Ag=["Generic Agent"], value="Generic Agent", interactive=True)
|
203 |
+
prompt = gr.Textboxlabel="System Prompt", max_lines=1, interactive=True)
|
204 |
+
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more max_newtokens =Slider(labelMax new tokens", value=MAX_TOKENS, minimum=0, maximum=1048 * 10, step=64, interactive=True, info="The maximum numbers of new tokens")
|
205 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", valueTOP_P, minimum=0, maximum=1 step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
|
206 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY minimum=1., maximum=2.0,=0.05, interactive=True, info="Penalize repeated tokens")
|
|
|
207 |
submit_button = gr.Button(value="Send")
|
208 |
history = gr.State([])
|
209 |
|
210 |
+
run_chat(purpose: str, message: str, agent_name str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str,]], List[[str, str]]]:
|
211 |
if not current_model:
|
212 |
return [(history, history), "Please load a model first."]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
def generate_response(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top, repetition_penalty):
|
215 |
+
if not current_model:
|
216 |
+
return "Please load a model first."
|
217 |
+
|
218 |
+
conversation = [{"role": "system", "content sys_pt}]
|
219 |
+
for message, response history:
|
220 |
+
conversationappend({": "", "content": message})
|
221 |
+
conversation.append({"": "assistant", "content": response})
|
222 |
+
conversation.append({"role": "user", "content": message})
|
223 |
+
|
224 |
+
response = currentmodel.generate(
|
225 |
+
conversation,
|
226 |
+
max_new_tokensmax_new_tokens,
|
227 |
+
temperaturetemperature,
|
228 |
+
top_p=top_p,
|
229 |
+
repetition_penalty=petition_al
|
230 |
+
)
|
231 |
+
|
232 |
+
response.text.strip()
|
233 |
+
|
234 |
+
def create_project(project_name):
|
235 |
+
try:
|
236 |
+
repo_name = get_full_repo_name(project_name, token=HfApi().token)
|
237 |
+
repofFolder.create_repo(repo_name, exist_ok=True)
|
238 |
+
repo.save_data("README.md", f"# {project_name
|
239 |
+
return f" '{project_name}' on Hugging Face Hub."
|
240 |
+
except Exception as e:
|
241 |
+
return"Error project: {str(e)}
|
242 |
+
def read_file(file_path):
|
243 |
+
if not os.path.exists(file_path):
|
244 |
+
return f"File_path}' does exist."
|
245 |
+
|
246 |
+
try
|
247 |
+
with open(file, "r") as file: content = file()
|
248 |
+
return content
|
249 |
+
as e:
|
250 |
+
return f"Error reading file '{file_path}': {str(e)}"
|
251 |
+
|
252 |
+
def write_file(file_path, file_content): try
|
253 |
+
with open(file_ "w") as file:
|
254 |
+
file.write(_content)
|
255 |
+
f"Wrote to file '{file_path}' successfully."
|
256 |
+
except Exception as e:
|
257 |
+
return f"Error writing to file '{file_path}': {str(e)}"
|
258 |
+
|
259 |
+
def run_command(command):
|
260 |
+
try:
|
261 |
+
result =.run(command shell=True, capture_outputTrue,=True)
|
262 |
+
if result.returncode == 0:
|
263 |
+
return result.stdout else:
|
264 |
+
return f"Command '{command failed with exit code {.}:\n{result.stderr}"
|
265 |
+
except Exception:
|
266 |
+
return f"Error running command '{command}': {str(e)}"
|
267 |
+
|
268 |
+
def preview():
|
269 |
+
# Get the current working directory
|
270 |
+
cwd = os.getcwd()
|
271 |
+
|
272 |
+
# Create a temporary directory for the preview
|
273 |
+
temp_dir = tempfile.mkdtemp()
|
274 |
+
|
275 |
+
try:
|
276 |
+
Copy the project files the temporary directory
|
277 |
+
shutil.copytree(cwd, temp_dir, ignore=shutil.ignore_patterns("__py__", "*.pyc"))
|
278 |
+
# Change to the temporary directory
|
279 |
+
os.chdir(temp_dir)
|
280 |
+
# Find the Python file (e.g., app.py, main.py)
|
281 |
+
main_file = next((f for f in os.listdir(".") if f.endswith(".py")), None)
|
282 |
+
|
283 |
+
if main_file:
|
284 |
+
# Run the main Python file to generate the preview
|
285 |
+
subprocess.run(["streamlit", "run", main_file], check)
|
286 |
+
|
287 |
+
# Get preview URL
|
288 |
+
preview_url = components.get_url(_file)
|
289 |
+
|
290 |
+
# Change back to original working directory
|
291 |
+
os.chdir(cwd)
|
292 |
+
# Return the preview URL return preview_url
|
293 |
+
else:
|
294 |
+
return "No main found in the project."
|
295 |
+
except Exception as:
|
296 |
+
return f"Error generating preview: {str(e)}" finally:
|
297 |
+
# Remove the directory
|
298 |
+
.rmtree(tempdir)
|
299 |
+
|
300 |
+
# Custom server_ = "0.0.0. # Listen on available network interfaces
|
301 |
+
server_port 760 # an available
|
302 |
+
sharegradio_link = True # Share a public URL for the app
|
303 |
+
|
304 |
+
# Launch the interface
|
305 |
+
demo.launch(server_name=server, server_portserver_port, shareshare_gradio)
|
306 |
+
|
307 |
+
if __name "__main__":
|
308 |
main()
|