Spaces:
Paused
Paused
Create germmacode/code_generator.py
Browse files- germmacode/code_generator.py +25 -0
germmacode/code_generator.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
|
| 3 |
+
def generate(idea):
|
| 4 |
+
# Load the code generation model
|
| 5 |
+
model_name = "Salesforce/codegen-350M-mono"
|
| 6 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
|
| 7 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
|
| 9 |
+
# Generate the code
|
| 10 |
+
input_text = f"""
|
| 11 |
+
# Idea: {idea}
|
| 12 |
+
|
| 13 |
+
# Code:
|
| 14 |
+
"""
|
| 15 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
| 16 |
+
output_sequences = model.generate(
|
| 17 |
+
input_ids=input_ids,
|
| 18 |
+
max_length=1024,
|
| 19 |
+
num_return_sequences=1,
|
| 20 |
+
no_repeat_ngram_size=2,
|
| 21 |
+
early_stopping=True,
|
| 22 |
+
)
|
| 23 |
+
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
|
| 24 |
+
|
| 25 |
+
return generated_code
|