Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,16 @@ from langchain.memory import ConversationBufferMemory
|
|
19 |
from langchain.chains.question_answering import load_qa_chain
|
20 |
from langchain.document_loaders import TextLoader
|
21 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# --- Constants ---
|
24 |
MODEL_NAME = "bigscience/bloom-1b7"
|
@@ -27,10 +37,6 @@ TEMPERATURE = 0.7
|
|
27 |
TOP_P = 0.95
|
28 |
REPETITION_PENALTY = 1.2
|
29 |
|
30 |
-
# --- Model & Tokenizer ---
|
31 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
33 |
-
|
34 |
# --- Agents ---
|
35 |
agents = {
|
36 |
"WEB_DEV": {
|
|
|
19 |
from langchain.chains.question_answering import load_qa_chain
|
20 |
from langchain.document_loaders import TextLoader
|
21 |
from langchain.text_splitter import CharacterTextSplitter
|
22 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Seq2SeqLMForCausalGeneration
|
23 |
+
|
24 |
+
def create_causal_lm(model_name: str):
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).causal_decoder
|
27 |
+
return model, tokenizer
|
28 |
+
|
29 |
+
AutoModelForCausalLM = lambda model_name: create_causal_lm(model_name)[0]
|
30 |
+
AutoTokenizerForCausalLM = lambda model_name: create_causal_lm(model_name)[1]
|
31 |
+
|
32 |
|
33 |
# --- Constants ---
|
34 |
MODEL_NAME = "bigscience/bloom-1b7"
|
|
|
37 |
TOP_P = 0.95
|
38 |
REPETITION_PENALTY = 1.2
|
39 |
|
|
|
|
|
|
|
|
|
40 |
# --- Agents ---
|
41 |
agents = {
|
42 |
"WEB_DEV": {
|