DevToolKit / app.py
acecalisto3's picture
Update app.py
51fec96 verified
raw
history blame
25.7 kB
import subprocess
import os
from io import StringIO
import sys
import black
import streamlit as st
from pylint import lint
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from transformers import pipeline as transformers_pipeline
from huggingface_hub import hf_hub_url, cached_download
import json
import time
import shutil
import gradio as gr
# --- Global State ---
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'available_clusters' not in st.session_state:
st.session_state.available_clusters = []
if 'current_project' not in st.session_state:
st.session_state.current_project = None
# --- Agent Class ---
class AIAgent:
def __init__(self, name, description, skills, persona_prompt=None):
self.name = name
self.description = description
self.skills = skills
self.persona_prompt = persona_prompt
def create_agent_prompt(self):
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
agent_prompt = f"""
I am an AI agent named {self.name}, designed to assist developers with their projects.
My expertise lies in the following areas:
{skills_str}
{self.persona_prompt if self.persona_prompt else ''}
I am here to help you build, deploy, and improve your applications.
Feel free to ask me any questions or present me with any challenges you encounter.
I will do my best to provide helpful and insightful responses.
"""
return agent_prompt
def autonomous_build(self, chat_history, workspace_projects):
"""
Autonomous build logic that continues based on the state of chat history and workspace projects.
"""
# Example logic: Generate a summary of chat history and workspace state
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
# Example: Generate the next logical step in the project
next_step = "Based on the current state, the next logical step is to implement the main application logic."
return summary, next_step
# --- Agent Management ---
def save_agent_to_file(agent):
"""Saves the agent's prompt to a file."""
if not os.path.exists("agents"):
os.makedirs("agents")
file_path = os.path.join("agents", f"{agent.name}.txt")
with open(file_path, "w") as file:
file.write(agent.create_agent_prompt())
st.session_state.available_agents.append(agent.name)
def load_agent_prompt(agent_name):
"""Loads an agent prompt from a file."""
file_path = os.path.join("agents", f"{agent_name}.txt")
if os.path.exists(file_path):
with open(file_path, "r") as file:
agent_prompt = file.read()
return agent_prompt
else:
return None
def create_agent_from_text(name, text, persona_prompt=None):
skills = text.split('\n')
agent = AIAgent(name, "AI agent created from text input.", skills, persona_prompt)
save_agent_to_file(agent)
return agent.create_agent_prompt()
# --- Cluster Management ---
def create_agent_cluster(cluster_name, agent_names):
"""Creates a cluster of agents."""
if not os.path.exists("clusters"):
os.makedirs("clusters")
cluster_path = os.path.join("clusters", f"{cluster_name}.json")
with open(cluster_path, "w") as file:
json.dump({"agents": agent_names}, file)
st.session_state.available_clusters.append(cluster_name)
def load_agent_cluster(cluster_name):
"""Loads an agent cluster from a file."""
cluster_path = os.path.join("clusters", f"{cluster_name}.json")
if os.path.exists(cluster_path):
with open(cluster_path, "r") as file:
cluster_data = json.load(file)
return cluster_data["agents"]
else:
return None
# --- Chat Interface ---
def chat_interface_with_agent(input_text, agent_name):
agent_prompt = load_agent_prompt(agent_name)
if agent_prompt is None:
return f"Agent {agent_name} not found."
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
model_name = "gpt2"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Combine the agent prompt with user input
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
# Truncate input text to avoid exceeding the model's maximum length
max_input_length = model.config.max_length
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
if input_ids.shape[1] > max_input_length:
input_ids = input_ids[:, :max_input_length]
outputs = model.generate(input_ids, max_length=max_input_length, do_sample=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def chat_interface_with_cluster(input_text, cluster_name):
agent_names = load_agent_cluster(cluster_name)
if agent_names is None:
return f"Cluster {cluster_name} not found."
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
model_name = "gpt2"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Combine the agent prompt with user input
combined_input = f"User: {input_text}\n"
for agent_name in agent_names:
agent_prompt = load_agent_prompt(agent_name)
combined_input += f"\n{agent_name}:\n{agent_prompt}\n"
# Truncate input text to avoid exceeding the model's maximum length
max_input_length = model.config.max_length
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
if input_ids.shape[1] > max_input_length:
input_ids = input_ids[:, :max_input_length]
outputs = model.generate(input_ids, max_length=max_input_length, do_sample=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# --- Code Editor ---
def code_editor_interface(code):
"""Provides code completion, formatting, and linting in the code editor."""
# Format code using black
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.InvalidInput:
formatted_code = code # Keep original code if formatting fails
# Lint code using pylint
try:
pylint_output = StringIO()
sys.stdout = pylint_output
sys.stderr = pylint_output
lint.Run(['--from-stdin'], stdin=StringIO(formatted_code))
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
lint_message = pylint_output.getvalue()
except Exception as e:
lint_message = f"Pylint error: {e}"
return formatted_code, lint_message
# --- Workspace Management ---
def workspace_interface(project_name):
"""Manages projects, files, and resources in the workspace."""
project_path = os.path.join("projects", project_name)
# Create project directory
try:
os.makedirs(project_path)
requirements_path = os.path.join(project_path, "requirements.txt")
with open(requirements_path, "w") as req_file:
req_file.write("") # Initialize an empty requirements.txt file
status = f'Project "{project_name}" created successfully.'
st.session_state.workspace_projects[project_name] = {'files': []}
except FileExistsError:
status = f'Project "{project_name}" already exists.'
return status
def add_code_to_workspace(project_name, code, file_name):
"""Adds selected code files to the workspace."""
project_path = os.path.join("projects", project_name)
file_path = os.path.join(project_path, file_name)
try:
with open(file_path, "w") as code_file:
code_file.write(code)
status = f'File "{file_name}" added to project "{project_name}" successfully.'
st.session_state.workspace_projects[project_name]['files'].append(file_name)
except Exception as e:
status = f"Error: {e}"
return status
# --- AI Tools ---
def summarize_text(text):
"""Summarizes a given text using a Hugging Face model."""
model_name = "facebook/bart-large-cnn"
try:
summarizer = pipeline("summarization", model=model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Truncate input text to avoid exceeding the model's maximum length
max_input_length = model.config.max_length
inputs = text
if len(text) > max_input_length:
inputs = text[:max_input_length]
# Generate summary
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
"summary_text"
]
return summary
def sentiment_analysis(text):
"""Performs sentiment analysis on a given text using a Hugging Face model."""
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
try:
analyzer = pipeline("sentiment-analysis", model=model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Perform sentiment analysis
result = analyzer(text)[0]
return result
def translate_code(code, source_language, target_language):
"""Translates code from one programming language to another using OpenAI Codex."""
# You might want to replace this with a Hugging Face translation model
# for example, "Helsinki-NLP/opus-mt-en-fr"
# Refer to Hugging Face documentation for model usage.
prompt = f"Translate the following {source_language} code to {target_language}:\n\n{code}"
try:
# Use a Hugging Face translation model instead of OpenAI Codex
# ...
translated_code = "Translated code" # Replace with actual translation
except Exception as e:
translated_code = f"Error: {e}"
return translated_code
def generate_code(idea):
"""Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model."""
model_name = "EleutherAI/gpt-neo-2.7B"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Generate the code
input_text = f"""
# Idea: {idea}
# Code:
"""
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_sequences = model.generate(
input_ids=input_ids,
max_length=model.config.max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True,
temperature=0.7, # Adjust temperature for creativity
top_k=50, # Adjust top_k for diversity
)
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
# Remove the prompt and formatting
parts = generated_code.split("\n# Code:")
if len(parts) > 1:
generated_code = parts[1].strip()
else:
generated_code = generated_code.strip()
return generated_code
# --- AI Personas Creator ---
def create_persona_from_text(text):
"""Creates an AI persona from the given text."""
persona_prompt = f"""
As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas:
Streamlit:
* In-depth knowledge of Streamlit's architecture, components, and customization options.
* Expertise in creating interactive and user-friendly dashboards and applications.
* Proficiency in integrating Streamlit with various data sources and machine learning models.
Gradio:
* Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces.
* Expertise in creating custom Gradio components and integrating them with Streamlit applications.
* Proficiency in using Gradio to deploy models from Hugging Face and other frameworks.
Hugging Face:
* Comprehensive knowledge of Hugging Face's model hub and Transformers library.
* Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks.
* Proficiency in using Hugging Face's Spaces platform for model deployment and sharing.
Deployment:
* In-depth understanding of best practices for deploying Streamlit and Gradio applications.
* Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP.
* Proficiency in optimizing deployment configurations for performance and scalability.
Additional Skills:
* Strong programming skills in Python and JavaScript.
* Familiarity with Docker and containerization technologies.
* Excellent communication and problem-solving abilities.
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter.
Example:
Task:
Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction.
Solution:
import streamlit as st
import gradio as gr
from transformers import pipeline
# Create a Hugging Face pipeline
huggingface_model = pipeline("text-generation")
# Create a Streamlit app
st.title("Hugging Face Text Generation App")
# Define a Gradio component
demo = gr.Interface(
fn=huggingface_model,
inputs=gr.Textbox(lines=2),
outputs=gr.Textbox(lines=1),
)
# Display the Gradio component in the Streamlit app
st.write(demo)
"""
return persona_prompt
# --- Terminal Interface ---
def terminal_interface(command, project_name=None):
"""Executes commands in the terminal."""
# Execute command
try:
process = subprocess.run(command.split(), capture_output=True, text=True)
output = process.stdout
# If the command is to install a package, update the workspace
if "install" in command and project_name:
requirements_path = os.path.join("projects", project_name, "requirements.txt")
with open(requirements_path, "a") as req_file:
package_name = command.split()[-1]
req_file.write(f"{package_name}\n")
except Exception as e:
output = f"Error: {e}"
return output
# --- Build and Deploy ---
def build_project(project_name):
"""Builds a project based on the workspace files."""
project_path = os.path.join("projects", project_name)
requirements_path = os.path.join(project_path, "requirements.txt")
# Install dependencies
os.chdir(project_path)
terminal_interface(f"pip install -r {requirements_path}")
os.chdir("..")
# Create a temporary directory for the built project
build_dir = os.path.join("build", project_name)
os.makedirs(build_dir, exist_ok=True)
# Copy project files to the build directory
for filename in os.listdir(project_path):
if filename == "requirements.txt":
continue
shutil.copy(os.path.join(project_path, filename), build_dir)
# Create a `main.py` file if it doesn't exist
main_file = os.path.join(build_dir, "main.py")
if not os.path.exists(main_file):
with open(main_file, "w") as f:
f.write("# Your Streamlit app code goes here\n")
# Return the path to the built project
return build_dir
def deploy_to_huggingface(build_dir, hf_token, repo_name):
"""Deploys the built project to Hugging Face Spaces."""
# Authenticate with Hugging Face
os.environ["HF_TOKEN"] = hf_token
# Create a new Hugging Face Space repository
try:
subprocess.run(f"huggingface-cli repo create {repo_name}", shell=True, check=True)
except subprocess.CalledProcessError as e:
st.error(f"Error creating Hugging Face Space repository: {e}")
return
# Upload the built project to the repository
try:
subprocess.run(f"huggingface-cli upload {repo_name} {build_dir}", shell=True, check=True)
except subprocess.CalledProcessError as e:
st.error(f"Error uploading project to Hugging Face Space repository: {e}")
return
# Deploy the project to Hugging Face Spaces
try:
subprocess.run(f"huggingface-cli space deploy {repo_name}", shell=True, check=True)
except subprocess.CalledProcessError as e:
st.error(f"Error deploying project to Hugging Face Spaces: {e}")
return
# Display the deployment URL
st.success(f"Project deployed successfully to Hugging Face Spaces: https://huggingface.co/spaces/{repo_name}")
def deploy_locally(build_dir):
"""Deploys the built project locally."""
# Run the project locally
os.chdir(build_dir)
subprocess.run("streamlit run main.py", shell=True, check=True)
os.chdir("..")
# Display a success message
st.success(f"Project deployed locally!")
# --- Streamlit App ---
st.title("AI Agent Creator")
# --- Sidebar Navigation ---
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
# --- AI Agent Creator ---
if app_mode == "AI Agent Creator":
st.header("Create an AI Agent from Text")
st.subheader("From Text")
agent_name = st.text_input("Enter agent name:")
text_input = st.text_area("Enter skills (one per line):")
persona_prompt_option = st.selectbox("Choose a persona prompt", ["None", "Expert Developer"])
persona_prompt = None
if persona_prompt_option == "Expert Developer":
persona_prompt = create_persona_from_text("Expert Developer")
if st.button("Create Agent"):
agent_prompt = create_agent_from_text(agent_name, text_input, persona_prompt)
st.success(f"Agent '{agent_name}' created and saved successfully.")
st.session_state.available_agents.append(agent_name)
st.subheader("Create an Agent Cluster")
cluster_name = st.text_input("Enter cluster name:")
agent_names = st.multiselect("Select agents for the cluster", st.session_state.available_agents)
if st.button("Create Cluster"):
create_agent_cluster(cluster_name, agent_names)
st.success(f"Cluster '{cluster_name}' created successfully.")
st.session_state.available_clusters.append(cluster_name)
# --- Tool Box ---
elif app_mode == "Tool Box":
st.header("Tool Box")
# --- Workspace ---
st.subheader("Workspace")
project_name = st.selectbox("Select a project", list(st.session_state.workspace_projects.keys()), key="project_select")
if project_name:
st.session_state.current_project = project_name
for file in st.session_state.workspace_projects[project_name]['files']:
st.write(f" - {file}")
# --- Chat with AI Agents ---
st.subheader("Chat with AI Agents")
selected_agent_or_cluster = st.selectbox("Select an AI agent or cluster", st.session_state.available_agents + st.session_state.available_clusters)
agent_chat_input = st.text_area("Enter your message:")
if st.button("Send"):
if selected_agent_or_cluster in st.session_state.available_agents:
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent_or_cluster)
elif selected_agent_or_cluster in st.session_state.available_clusters:
agent_chat_response = chat_interface_with_cluster(agent_chat_input, selected_agent_or_cluster)
else:
agent_chat_response = "Invalid selection."
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
st.write(f"{selected_agent_or_cluster}: {agent_chat_response}")
# --- Automate Build Process ---
st.subheader("Automate Build Process")
if st.button("Automate"):
agent = AIAgent(selected_agent_or_cluster, "", []) # Load the agent without skills for now
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
st.write("Autonomous Build Summary:")
st.write(summary)
st.write("Next Step:")
st.write(next_step)
# --- Workspace Chat App ---
elif app_mode == "Workspace Chat App":
st.header("Workspace Chat App")
# --- Project Selection ---
project_name = st.selectbox("Select a project", list(st.session_state.workspace_projects.keys()), key="project_select")
if project_name:
st.session_state.current_project = project_name
# --- Chat with AI Agents ---
st.subheader("Chat with AI Agents")
selected_agent_or_cluster = st.selectbox("Select an AI agent or cluster", st.session_state.available_agents + st.session_state.available_clusters)
agent_chat_input = st.text_area("Enter your message:")
if st.button("Send"):
if selected_agent_or_cluster in st.session_state.available_agents:
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent_or_cluster)
elif selected_agent_or_cluster in st.session_state.available_clusters:
agent_chat_response = chat_interface_with_cluster(agent_chat_input, selected_agent_or_cluster)
else:
agent_chat_response = "Invalid selection."
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
st.write(f"{selected_agent_or_cluster}: {agent_chat_response}")
# --- Code Editor ---
st.subheader("Code Editor")
code = st.text_area("Enter your code:")
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code)
st.code(formatted_code, language="python")
st.write("Linting Report:")
st.write(lint_message)
# --- Add Code to Workspace ---
st.subheader("Add Code to Workspace")
file_name = st.text_input("Enter file name:")
if st.button("Add Code"):
if st.session_state.current_project:
status = add_code_to_workspace(st.session_state.current_project, code, file_name)
st.write(status)
else:
st.warning("Please select a project first.")
# --- Terminal ---
st.subheader("Terminal")
command = st.text_input("Enter a command:")
if st.button("Execute"):
if st.session_state.current_project:
output = terminal_interface(command, st.session_state.current_project)
st.write(output)
else:
st.warning("Please select a project first.")
# --- AI Tools ---
st.subheader("AI Tools")
st.write("Summarize Text:")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(summary)
st.write("Sentiment Analysis:")
text_to_analyze = st.text_area("Enter text to analyze:")
if st.button("Analyze"):
result = sentiment_analysis(text_to_analyze)
st.write(result)
st.write("Code Translation:")
code_to_translate = st.text_area("Enter code to translate:")
source_language = st.selectbox("Source Language", ["Python", "JavaScript", "C++"])
target_language = st.selectbox("Target Language", ["Python", "JavaScript", "C++"])
if st.button("Translate"):
translated_code = translate_code(code_to_translate, source_language, target_language)
st.write(translated_code)
st.write("Code Generation:")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate"):
generated_code = generate_code(code_idea)
st.code(generated_code, language="python")
# --- Build and Deploy ---
st.subheader("Build and Deploy")
if st.session_state.current_project:
st.write(f"Current project: {st.session_state.current_project}")
if st.button("Build"):
# Implement build logic here
build_dir = build_project(st.session_state.current_project)
st.write(f"Project built successfully! Build directory: {build_dir}")
st.write("Select a deployment target:")
deployment_target = st.selectbox("Deployment Target", ["Local", "Hugging Face Spaces"])
if deployment_target == "Hugging Face Spaces":
hf_token = st.text_input("Enter your Hugging Face token:")
repo_name = st.text_input("Enter your Hugging Face Space repository name:")
if st.button("Deploy to Hugging Face Spaces"):
# Implement Hugging Face Spaces deployment logic here
deploy_to_huggingface(build_dir, hf_token, repo_name)
elif deployment_target == "Local":
if st.button("Deploy Locally"):
# Implement local deployment logic here
deploy_locally(build_dir)
else:
st.warning("Please select a project first.")
# --- Run the Streamlit App ---
if __name__ == "__main__":
st.set_page_config(page_title="AI Agent Creator", page_icon="🤖")
st.write("This is the AI Agent Creator application.")
st.write("You can create AI agents and agent clusters, and use them to chat, generate code, and more.")
st.write("You can also manage your project workspace, build and deploy your projects, and use AI tools.")