Spaces:
Running
Running
File size: 5,477 Bytes
8363049 a98a37e 8363049 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import os
import subprocess
import random
import string
from huggingface_hub import cached_download, hf_hub_url
from transformers import pipeline
# Define functions for each feature
# 1. Chat Interface
def chat_interface(input_text, history):
"""Handles user input in the chat interface.
Args:
input_text: User's input text.
history: Chat history.
Returns:
A tuple containing the updated chat history and the chatbot's response.
"""
# Load the appropriate language model from Hugging Face
model_name = 'google/flan-t5-xl' # Choose a suitable model
model_url = hf_hub_url(repo_id=model_name, revision='main', filename='config.json')
model_path = cached_download(model_url)
generator = pipeline('text-generation', model=model_path)
# Generate chatbot response
response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text']
# Update chat history
history.append((input_text, response))
return history, response
# 2. Terminal
def terminal_interface(command, history):
"""Executes commands in the terminal.
Args:
command: User's command.
history: Terminal command history.
Returns:
A tuple containing the updated command history and the terminal output.
"""
# Execute command
try:
process = subprocess.run(command.split(), capture_output=True, text=True)
output = process.stdout
except Exception as e:
output = f'Error: {e}'
# Update command history
history.append((command, output))
return history, output
# 3. Code Editor
def code_editor_interface(code):
"""Provides code completion, formatting, and linting in the code editor.
Args:
code: User's code.
Returns:
Formatted and linted code.
"""
# Implement code completion, formatting, and linting using appropriate libraries
# For example, you can use the 'black' library for code formatting
# and 'pylint' for linting
# ...
return code
# 4. Workspace
def workspace_interface(project_name, history):
"""Manages projects, files, and resources in the workspace.
Args:
project_name: Name of the new project.
history: Workspace history.
Returns:
A tuple containing the updated workspace history and project creation status.
"""
# Create project directory
try:
os.makedirs(os.path.join('projects', project_name))
status = f'Project \"{project_name}\" created successfully.'
except FileExistsError:
status = f'Project \"{project_name}\" already exists.'
# Update workspace history
history.append((project_name, status))
return history, status
# 5. AI-Infused Tools
# Define custom AI-powered tools using Hugging Face models
# Example: Text summarization tool
def summarize_text(text):
"""Summarizes a given text using a Hugging Face model.
Args:
text: Text to be summarized.
Returns:
Summarized text.
"""
summarizer = pipeline('summarization', model='facebook/bart-large-cnn')
summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text']
return summary
# 6. Hugging Face Integration
# Define functions for accessing, training, and deploying models
# Example: Load a pre-trained model
def load_model(model_name):
"""Loads a pre-trained model from Hugging Face.
Args:
model_name: Name of the model to be loaded.
Returns:
The loaded model.
"""
model_url = hf_hub_url(repo_id=model_name, revision='main')
model = cached_download(model_url)
return model
# Create Gradio interface
with gr.Blocks() as demo:
# Chat interface
chat_history = gr.State([]) # Initialize chat history
chat_input = gr.Textbox(label="Chat with CodeCraft", lines=5)
chat_output = gr.Textbox(label="CodeCraft Response", lines=5)
chat_button = gr.Button(value="Send")
chat_button.click(chat_interface, inputs=[chat_input, chat_history], outputs=[chat_history, chat_output])
# Terminal interface
terminal_history = gr.State([]) # Initialize terminal history
terminal_input = gr.Textbox(label="Enter Command", lines=1)
terminal_output = gr.Textbox(label="Terminal Output", lines=5)
terminal_button = gr.Button(value="Run")
terminal_button.click(terminal_interface, inputs=[terminal_input, terminal_history], outputs=[terminal_history, terminal_output])
# Code editor interface
code_editor = gr.Code(label="Code Editor", lines=10, language="python")
code_editor.change(code_editor_interface, inputs=code_editor, outputs=code_editor)
# Workspace interface
workspace_history = gr.State([]) # Initialize workspace history
workspace_input = gr.Textbox(label="Project Name", lines=1)
workspace_output = gr.Textbox(label="Workspace Data", lines=5)
workspace_button = gr.Button(value="Create Project")
workspace_button.click(workspace_interface, inputs=[workspace_input, workspace_history], outputs=[workspace_history, workspace_output])
# AI-Infused Tools
text_input = gr.Textbox(label="Enter text to summarize")
summary_output = gr.Textbox(label="Summarized Text")
summarize_button = gr.Button(value="Summarize")
summarize_button.click(summarize_text, inputs=text_input, outputs=summary_output)
# Launch Gradio app
demo.launch(share=True, server_name='0.0.0.0') |