File size: 5,477 Bytes
8363049
a98a37e
 
8363049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import os
import subprocess
import random
import string
from huggingface_hub import cached_download, hf_hub_url
from transformers import pipeline

# Define functions for each feature

# 1. Chat Interface
def chat_interface(input_text, history):
    """Handles user input in the chat interface.

    Args:
        input_text: User's input text.
        history: Chat history.

    Returns:
        A tuple containing the updated chat history and the chatbot's response.
    """
    # Load the appropriate language model from Hugging Face
    model_name = 'google/flan-t5-xl'  # Choose a suitable model
    model_url = hf_hub_url(repo_id=model_name, revision='main', filename='config.json')
    model_path = cached_download(model_url)
    generator = pipeline('text-generation', model=model_path)

    # Generate chatbot response
    response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text']

    # Update chat history
    history.append((input_text, response))
    return history, response

# 2. Terminal
def terminal_interface(command, history):
    """Executes commands in the terminal.

    Args:
        command: User's command.
        history: Terminal command history.

    Returns:
        A tuple containing the updated command history and the terminal output.
    """
    # Execute command
    try:
        process = subprocess.run(command.split(), capture_output=True, text=True)
        output = process.stdout
    except Exception as e:
        output = f'Error: {e}'

    # Update command history
    history.append((command, output))
    return history, output

# 3. Code Editor
def code_editor_interface(code):
    """Provides code completion, formatting, and linting in the code editor.

    Args:
        code: User's code.

    Returns:
        Formatted and linted code.
    """
    # Implement code completion, formatting, and linting using appropriate libraries
    # For example, you can use the 'black' library for code formatting
    # and 'pylint' for linting
    # ...
    return code

# 4. Workspace
def workspace_interface(project_name, history):
    """Manages projects, files, and resources in the workspace.

    Args:
        project_name: Name of the new project.
        history: Workspace history.

    Returns:
        A tuple containing the updated workspace history and project creation status.
    """
    # Create project directory
    try:
        os.makedirs(os.path.join('projects', project_name))
        status = f'Project \"{project_name}\" created successfully.'
    except FileExistsError:
        status = f'Project \"{project_name}\" already exists.'

    # Update workspace history
    history.append((project_name, status))
    return history, status

# 5. AI-Infused Tools

# Define custom AI-powered tools using Hugging Face models

# Example: Text summarization tool
def summarize_text(text):
    """Summarizes a given text using a Hugging Face model.

    Args:
        text: Text to be summarized.

    Returns:
        Summarized text.
    """
    summarizer = pipeline('summarization', model='facebook/bart-large-cnn')
    summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text']
    return summary

# 6. Hugging Face Integration

# Define functions for accessing, training, and deploying models

# Example: Load a pre-trained model
def load_model(model_name):
    """Loads a pre-trained model from Hugging Face.

    Args:
        model_name: Name of the model to be loaded.

    Returns:
        The loaded model.
    """
    model_url = hf_hub_url(repo_id=model_name, revision='main')
    model = cached_download(model_url)
    return model

# Create Gradio interface
with gr.Blocks() as demo:
    # Chat interface
    chat_history = gr.State([])  # Initialize chat history
    chat_input = gr.Textbox(label="Chat with CodeCraft", lines=5)
    chat_output = gr.Textbox(label="CodeCraft Response", lines=5)
    chat_button = gr.Button(value="Send")
    chat_button.click(chat_interface, inputs=[chat_input, chat_history], outputs=[chat_history, chat_output])

    # Terminal interface
    terminal_history = gr.State([])  # Initialize terminal history
    terminal_input = gr.Textbox(label="Enter Command", lines=1)
    terminal_output = gr.Textbox(label="Terminal Output", lines=5)
    terminal_button = gr.Button(value="Run")
    terminal_button.click(terminal_interface, inputs=[terminal_input, terminal_history], outputs=[terminal_history, terminal_output])

    # Code editor interface
    code_editor = gr.Code(label="Code Editor", lines=10, language="python")
    code_editor.change(code_editor_interface, inputs=code_editor, outputs=code_editor)

    # Workspace interface
    workspace_history = gr.State([])  # Initialize workspace history
    workspace_input = gr.Textbox(label="Project Name", lines=1)
    workspace_output = gr.Textbox(label="Workspace Data", lines=5)
    workspace_button = gr.Button(value="Create Project")
    workspace_button.click(workspace_interface, inputs=[workspace_input, workspace_history], outputs=[workspace_history, workspace_output])

    # AI-Infused Tools
    text_input = gr.Textbox(label="Enter text to summarize")
    summary_output = gr.Textbox(label="Summarized Text")
    summarize_button = gr.Button(value="Summarize")
    summarize_button.click(summarize_text, inputs=text_input, outputs=summary_output)

# Launch Gradio app
demo.launch(share=True, server_name='0.0.0.0')