File size: 13,685 Bytes
db3ccfe
28149c1
aac2f84
 
 
db3ccfe
fcc1459
 
4637c7f
fcc1459
 
 
 
 
 
 
 
 
 
aac2f84
 
 
 
3fe718e
a079c56
4637c7f
fcc1459
 
 
aac2f84
 
a079c56
fcc1459
 
db3ccfe
 
 
 
 
 
 
 
 
 
 
 
a079c56
db3ccfe
 
fcc1459
db3ccfe
fcc1459
db3ccfe
 
aac2f84
fcc1459
db3ccfe
 
 
 
 
aac2f84
db3ccfe
aac2f84
db3ccfe
 
 
 
 
fcc1459
db3ccfe
 
 
 
 
 
 
 
fcc1459
db3ccfe
 
 
 
aac2f84
 
 
 
db3ccfe
 
 
 
 
 
 
aac2f84
db3ccfe
 
 
fcc1459
 
 
 
 
 
 
 
 
 
db3ccfe
 
 
 
4ba3a32
 
 
 
 
 
 
 
 
 
 
 
db3ccfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc1459
db3ccfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc1459
db3ccfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc1459
 
 
 
 
 
 
 
 
 
 
 
db3ccfe
 
 
fcc1459
db3ccfe
 
 
 
 
 
fcc1459
 
 
db3ccfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc1459
db3ccfe
 
 
 
 
 
fcc1459
 
 
db3ccfe
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc1459
db3ccfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc1459
db3ccfe
 
 
 
 
 
 
 
 
fcc1459
 
 
db3ccfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc1459
 
db3ccfe
 
fcc1459
 
c15c30f
 
 
 
db3ccfe
fcc1459
c15c30f
 
 
 
db3ccfe
54ce177
fcc1459
 
 
 
 
 
aac2f84
 
fcc1459
aac2f84
 
 
fcc1459
aac2f84
 
 
fcc1459
 
aac2f84
fcc1459
 
aac2f84
fcc1459
 
 
aac2f84
 
fcc1459
 
 
 
 
 
 
 
 
aac2f84
fcc1459
 
aac2f84
 
fcc1459
 
 
 
 
 
aac2f84
fcc1459
 
 
aac2f84
fcc1459
 
 
aac2f84
fcc1459
 
 
 
 
aac2f84
 
fcc1459
 
aac2f84
fcc1459
 
 
 
aac2f84
fcc1459
 
 
 
 
 
 
 
 
 
 
 
 
e1f2f22
c15c30f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import os
import subprocess
import time
from typing import List, Dict

from huggingface_hub import InferenceClient
import streamlit as st

from prompts import (
    ACTION_PROMPT,
    ADD_PROMPT,
    COMPRESS_HISTORY_PROMPT,
    LOG_PROMPT,
    LOG_RESPONSE,
    MODIFY_PROMPT,
    PREFIX,
    READ_PROMPT,
    TASK_PROMPT,
    UNDERSTAND_TEST_RESULTS_PROMPT,
    WEB_DEV_SYSTEM_PROMPT,
    AI_SYSTEM_PROMPT,
    WEB_DEV,
    PYTHON_CODE_DEV,
    HUGGINGFACE_FILE_DEV
)
from utils import (
    parse_action,
    parse_file_content,
    read_python_module_structure,
    extract_imports,  # Unused import, consider removing or using
    get_file,  # Unused import, consider removing or using
)

# --- Constants ---
AGENT_TYPES = [
    "Task Executor",
    "Information Retriever",
    "Decision Maker",
    "Data Analyzer",
]
TOOL_TYPES = [
    "Web Scraper",
    "Database Connector",
    "API Caller",
    "File Handler",
    "Text Processor",
    ]
VERBOSE = False
MAX_HISTORY = 100
MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"  # Consider using a smaller model

# --- Initialize Hugging Face client ---
client = InferenceClient(MODEL)


# --- Classes ---
class Agent:
    def __init__(self, name: str, agent_type: str, complexity: int):
        self.name = name
        self.type = agent_type
        self.complexity = complexity
        self.tools: List[Tool] = []

    def add_tool(self, tool: "Tool"):
        self.tools.append(tool)

    def __str__(self):
        return f"{self.name} ({self.type}) - Complexity: {self.complexity}"


class Tool:
    def __init__(self, name: str, tool_type: str):
        self.name = name
        self.type = tool_type

    def __str__(self):
        return f"{self.name} ({self.type})"


class Pypelyne:
    def __init__(self):
        self.agents: List[Agent] = []
        self.tools: List[Tool] = []
        self.history: str = ""
        self.task: str = ""
        self.purpose: str = ""
        self.directory: str = ""

    def add_agent(self, agent: Agent):
        self.agents.append(agent)

    def add_tool(self, tool: Tool):
        self.tools.append(tool)

    def generate_chat_app(self) -> str:
        time.sleep(2)  # Simulate processing time
        return f"Chat app generated with {len(self.agents)} agents and {len(self.tools)} tools."

    def run_gpt(
        self, prompt_template: str, stop_tokens: List[str], max_tokens: int, **prompt_kwargs
    ) -> str:
        content = (
            PREFIX.format(
                module_summary=read_python_module_structure(self.directory)[0],
                purpose=self.purpose,
            )
            + prompt_template.format(**prompt_kwargs)
        )

        if VERBOSE:
            print(LOG_PROMPT.format(content))

        try:
            stream = client.text_generation(
                prompt=content,
                max_new_tokens=max_tokens,
                stop_sequences=stop_tokens if stop_tokens else None,
                do_sample=True,
                temperature=0.7,
            )
            resp = "".join(token for token in stream)
        except Exception as e:
            print(f"Error in run_gpt: {e}")
            resp = f"Error: {e}"

        if VERBOSE:
            print(LOG_RESPONSE.format(resp))
        return resp

    def compress_history(self):
        resp = self.run_gpt(
            COMPRESS_HISTORY_PROMPT,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=512,
            task=self.task,
            history=self.history,
        )
        self.history = f"observation: {resp}\n"

    def run_action(self, action_name: str, action_input: str) -> str:
        if action_name == "COMPLETE":
            return "Task completed."

        if len(self.history.split("\n")) > MAX_HISTORY:
            if VERBOSE:
                print("COMPRESSING HISTORY")
            self.compress_history()

        action_funcs = {
            "MAIN": self.call_main,
            "UPDATE-TASK": self.call_set_task,
            "MODIFY-FILE": self.call_modify,
            "READ-FILE": self.call_read,
            "ADD-FILE": self.call_add,
            "TEST": self.call_test,
        }

        if action_name not in action_funcs:
            return f"Unknown action: {action_name}"

        print(f"RUN: {action_name} {action_input}")
        return action_funcs[action_name](action_input)

    def call_main(self, action_input: str) -> str:
        resp = self.run_gpt(
            ACTION_PROMPT,
            stop_tokens=["observation:", "task:"],
            max_tokens=256,
            task=self.task,
            history=self.history,
        )
        lines = resp.strip().strip("\n").split("\n")
        for line in lines:
            if line == "":
                continue
            if line.startswith("thought: "):
                self.history += f"{line}\n"
            elif line.startswith("action: "):
                action_name, action_input = parse_action(line)
                self.history += f"{line}\n"
                return self.run_action(action_name, action_input)
        return "No valid action found."

    def call_set_task(self, action_input: str) -> str:
        self.task = (
            self.run_gpt(
                TASK_PROMPT,
                stop_tokens=[],
                max_tokens=64,
                task=self.task,
                history=self.history,
            )
            .strip("\n")
            .strip()
        )
        self.history += f"observation: task has been updated to: {self.task}\n"
        return f"Task updated: {self.task}"

    def call_modify(self, action_input: str) -> str:
        if not os.path.exists(action_input):
            self.history += "observation: file does not exist\n"
            return "File does not exist."

        content = read_python_module_structure(self.directory)[1]
        f_content = (
            content[action_input]
            if content[action_input]
            else "< document is empty >"
        )

        resp = self.run_gpt(
            MODIFY_PROMPT,
            stop_tokens=["action:", "thought:", "observation:"],
            max_tokens=2048,
            task=self.task,
            history=self.history,
            file_path=action_input,
            file_contents=f_content,
        )
        new_contents, description = parse_file_content(resp)
        if new_contents is None:
            self.history += "observation: failed to modify file\n"
            return "Failed to modify file."

        with open(action_input, "w") as f:
            f.write(new_contents)

        self.history += f"observation: file successfully modified\n"
        self.history += f"observation: {description}\n"
        return f"File modified: {action_input}"

    def call_read(self, action_input: str) -> str:
        if not os.path.exists(action_input):
            self.history += "observation: file does not exist\n"
            return "File does not exist."

        content = read_python_module_structure(self.directory)[1]
        f_content = (
            content[action_input]
            if content[action_input]
            else "< document is empty >"
        )

        resp = self.run_gpt(
            READ_PROMPT,
            stop_tokens=[],
            max_tokens=256,
            task=self.task,
            history=self.history,
            file_path=action_input,
            file_contents=f_content,
        ).strip("\n")
        self.history += f"observation: {resp}\n"
        return f"File read: {action_input}"

    def call_add(self, action_input: str) -> str:
        d = os.path.dirname(action_input)
        if not d.startswith(self.directory):
            self.history += (
                f"observation: files must be under directory {self.directory}\n"
            )
            return f"Invalid directory: {d}"
        elif not action_input.endswith(".py"):
            self.history += "observation: can only write .py files\n"
            return "Only .py files are allowed."
        else:
            if d and not os.path.exists(d):
                os.makedirs(d)
            if not os.path.exists(action_input):
                resp = self.run_gpt(
                    ADD_PROMPT,
                    stop_tokens=["action:", "thought:", "observation:"],
                    max_tokens=2048,
                    task=self.task,
                    history=self.history,
                    file_path=action_input,
                )
                new_contents, description = parse_file_content(resp)
                if new_contents is None:
                    self.history += "observation: failed to write file\n"
                    return "Failed to write file."

                with open(action_input, "w") as f:
                    f.write(new_contents)

                self.history += "observation: file successfully written\n"
                self.history += f"observation: {description}\n"
                return f"File added: {action_input}"
            else:
                self.history += "observation: file already exists\n"
                return "File already exists."

    def call_test(self, action_input: str) -> str:
        result = subprocess.run(
            ["python", "-m", "pytest", "--collect-only", self.directory],
            capture_output=True,
            text=True,
        )
        if result.returncode != 0:
            self.history += f"observation: there are no tests! Test should be written in a test folder under {self.directory}\n"
            return "No tests found."
        result = subprocess.run(
            ["python", "-m", "pytest", self.directory],
            capture_output=True,
            text=True,
        )
        if result.returncode == 0:
            self.history += "observation: tests pass\n"
            return "All tests passed."

        resp = self.run_gpt(
            UNDERSTAND_TEST_RESULTS_PROMPT,
            stop_tokens=[],
            max_tokens=256,
            task=self.task,
            history=self.history,
            stdout=result.stdout[:5000],
            stderr=result.stderr[:5000],
        )
        self.history += f"observation: tests failed: {resp}\n"
        return f"Tests failed: {resp}"


# --- Global Pypelyne Instance ---
pypelyne = Pypelyne()


# --- Helper Functions ---
def create_agent(name: str, agent_type: str, complexity: int) -> Agent:
    agent = Agent(name, agent_type, complexity)
    pypelyne.add_agent(agent)
    return agent


def create_tool(name: str, tool_type: str) -> Tool:
    tool = Tool(name, tool_type)
    pypelyne.add_tool(tool)
    return tool


# --- Streamlit App Code ---
def main():
    st.title("🧠 Pypelyne: Your AI-Powered Coding Assistant")

    # --- Sidebar ---
    st.sidebar.title("⚙️ Settings")
    if "directory" not in st.session_state:
        st.session_state.directory = "."
    pypelyne.directory = st.sidebar.text_input(
        "Project Directory:",
        value=st.session_state.directory,
        help="Path to your coding project",
    )
    st.session_state.directory = pypelyne.directory  # Update session state
    if "purpose" not in st.session_state:
        st.session_state.purpose = ""
    pypelyne.purpose = st.sidebar.text_area(
        "Project Purpose:",
        value=st.session_state.purpose,
        help="Describe the purpose of your coding project.",
    )
    st.session_state.purpose = pypelyne.purpose  # Update session state

    # --- Agent and Tool Management ---
    st.sidebar.header("🤖 Agents")
    if "agents" not in st.session_state:
        st.session_state.agents = []
    show_agent_creation = st.sidebar.expander(
        "Create New Agent", expanded=False
    )
    with show_agent_creation:
        agent_name = st.text_input("Agent Name:")
        agent_type = st.selectbox("Agent Type:", AGENT_TYPES)
        agent_complexity = st.slider("Complexity (1-5):", 1, 5, 3)
        if st.button("Add Agent"):
            create_agent(agent_name, agent_type, agent_complexity)
            st.session_state.agents = pypelyne.agents  # Update session state

    st.sidebar.header("🛠️ Tools")
    if "tools" not in st.session_state:
        st.session_state.tools = []
    show_tool_creation = st.sidebar.expander("Create New Tool", expanded=False)
    with show_tool_creation:
        tool_name = st.text_input("Tool Name:")
        tool_type = st.selectbox("Tool Type:", TOOL_TYPES)
        if st.button("Add Tool"):
            create_tool(tool_name, tool_type)
            st.session_state.tools = pypelyne.tools  # Update session state

    # --- Display Agents and Tools ---
    st.sidebar.subheader("Active Agents:")
    for agent in st.session_state.agents:
        st.sidebar.write(f"- {agent}")

    st.sidebar.subheader("Available Tools:")
    for tool in st.session_state.tools:
        st.sidebar.write(f"- {tool}")

    # --- Main Content Area ---
    st.header("💻 Code Interaction")

    if "task" not in st.session_state:
        st.session_state.task = ""
    task_input = st.text_area(
        "🎯 Task:",
        value=st.session_state.task,
        help="Describe the coding task you want to perform.",
    )
    if task_input:
        pypelyne.task = task_input
        st.session_state.task = pypelyne.task  # Update session state

    user_input = st.text_input(
        "💬 Your Input:", help="Provide instructions or ask questions."
    )

    if st.button("Execute"):
        if user_input:
            with st.spinner("Pypelyne is working..."):
                response = pypelyne.run_action("MAIN", user_input)
                st.write("Pypelyne Says: ", response)


# --- Run the Streamlit app ---
if __name__ == "__main__":
    main()