Spaces:
Running
Running
File size: 13,499 Bytes
b5504a7 51fec96 54ce177 0a3c7ba 54ce177 b5504a7 54ce177 51fec96 54ce177 a9ef0b6 54ce177 a9ef0b6 54ce177 a9ef0b6 54ce177 a9ef0b6 54ce177 235536e 54ce177 235536e 54ce177 235536e b5504a7 54ce177 b5504a7 54ce177 b5504a7 54ce177 3e4e7ef 54ce177 3e4e7ef 54ce177 5ae4817 54ce177 b5504a7 54ce177 b5504a7 54ce177 b5504a7 54ce177 b5504a7 51fec96 54ce177 b5504a7 54ce177 51fec96 54ce177 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import json
import time
from typing import Dict, List, Tuple
import gradio as gr
import streamlit as st
from huggingface_hub import InferenceClient, hf_hub_url, cached_download
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from rich import print as rprint
from rich.panel import Panel
from rich.progress import track
from rich.table import Table
import subprocess
import threading
# --- Constants ---
MODEL_NAME = "bigscience/bloom-1b7" # Choose a suitable model
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.95
REPETITION_PENALTY = 1.2
# --- Model & Tokenizer ---
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# --- Agents ---
agents = {
"WEB_DEV": {
"description": "Expert in web development technologies and frameworks.",
"skills": ["HTML", "CSS", "JavaScript", "React", "Vue.js", "Flask", "Django", "Node.js", "Express.js"],
"system_prompt": "You are a web development expert. Your goal is to assist the user in building and deploying web applications. Provide code snippets, explanations, and guidance on best practices.",
},
"AI_SYSTEM_PROMPT": {
"description": "Expert in designing and implementing AI systems.",
"skills": ["Machine Learning", "Deep Learning", "Natural Language Processing", "Computer Vision", "Reinforcement Learning"],
"system_prompt": "You are an AI system expert. Your goal is to assist the user in designing and implementing AI systems. Provide code snippets, explanations, and guidance on best practices.",
},
"PYTHON_CODE_DEV": {
"description": "Expert in Python programming and development.",
"skills": ["Python", "Data Structures", "Algorithms", "Object-Oriented Programming", "Functional Programming"],
"system_prompt": "You are a Python code development expert. Your goal is to assist the user in writing and debugging Python code. Provide code snippets, explanations, and guidance on best practices.",
},
"CODE_REVIEW_ASSISTANT": {
"description": "Expert in code review and quality assurance.",
"skills": ["Code Style", "Best Practices", "Security", "Performance", "Maintainability"],
"system_prompt": "You are a code review assistant. Your goal is to assist the user in reviewing code for quality and efficiency. Provide feedback on code style, best practices, security, performance, and maintainability.",
},
"CONTENT_WRITER_EDITOR": {
"description": "Expert in content writing and editing.",
"skills": ["Grammar", "Style", "Clarity", "Conciseness", "SEO"],
"system_prompt": "You are a content writer and editor. Your goal is to assist the user in creating high-quality content. Provide suggestions on grammar, style, clarity, conciseness, and SEO.",
},
"QUESTION_GENERATOR": {
"description": "Expert in generating questions for learning and assessment.",
"skills": ["Question Types", "Cognitive Levels", "Assessment Design"],
"system_prompt": "You are a question generator. Your goal is to assist the user in generating questions for learning and assessment. Provide questions that are relevant to the topic and aligned with the cognitive levels.",
},
"HUGGINGFACE_FILE_DEV": {
"description": "Expert in developing Hugging Face files for machine learning models.",
"skills": ["Transformers", "Datasets", "Model Training", "Model Deployment"],
"system_prompt": "You are a Hugging Face file development expert. Your goal is to assist the user in creating and deploying Hugging Face files for machine learning models. Provide code snippets, explanations, and guidance on best practices.",
},
}
# --- Session State ---
if "workspace_projects" not in st.session_state:
st.session_state.workspace_projects = {}
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "active_agent" not in st.session_state:
st.session_state.active_agent = None
if "selected_agents" not in st.session_state:
st.session_state.selected_agents = []
if "current_project" not in st.session_state:
st.session_state.current_project = None
if "current_agent" not in st.session_state:
st.session_state.current_agent = None
if "current_cluster" not in st.session_state:
st.session_state.current_cluster = None
if "hf_token" not in st.session_state:
st.session_state.hf_token = None
if "repo_name" not in st.session_state:
st.session_state.repo_name = None
if "selected_model" not in st.session_state:
st.session_state.selected_model = None
if "selected_code_model" not in st.session_state:
st.session_state.selected_code_model = None
if "selected_chat_model" not in st.session_state:
st.session_state.selected_chat_model = None
# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], agent_prompt: str) -> str:
"""Formats the prompt for the language model."""
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {agent_prompt}, {message} [/INST]"
return prompt
def generate_response(prompt: str, agent_name: str) -> str:
"""Generates a response from the language model."""
agent = agents[agent_name]
system_prompt = agent["system_prompt"]
generate_kwargs = dict(
temperature=TEMPERATURE,
max_new_tokens=MAX_NEW_TOKENS,
top_p=TOP_P,
repetition_penalty=REPETITION_PENALTY,
do_sample=True,
)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, **generate_kwargs)
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
def chat_interface(chat_input: str, agent_names: List[str]) -> str:
"""Handles chat interactions with the selected agents."""
if agent_names:
responses = []
for agent_name in agent_names:
prompt = format_prompt(chat_input, st.session_state.chat_history, agents[agent_name]["system_prompt"])
response = generate_response(prompt, agent_name)
responses.append(f"{agent_name}: {response}")
return "\n".join(responses)
else:
return "Please select at least one agent."
def terminal_interface(command: str, project_name: str) -> str:
"""Executes a command within the specified project directory."""
try:
result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_name)
return result.stdout if result.returncode == 0 else result.stderr
except Exception as e:
return str(e)
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
"""Adds code to a workspace project."""
project_path = os.path.join(os.getcwd(), project_name)
if not os.path.exists(project_path):
os.makedirs(project_path)
file_path = os.path.join(project_path, file_name)
with open(file_path, 'w') as file:
file.write(code)
if project_name not in st.session_state.workspace_projects:
st.session_state.workspace_projects[project_name] = {'files': []}
st.session_state.workspace_projects[project_name]['files'].append(file_name)
return f"Added {file_name} to {project_name}"
def display_workspace_projects():
"""Displays a table of workspace projects."""
table = Table(title="Workspace Projects")
table.add_column("Project Name", style="cyan", no_wrap=True)
table.add_column("Files", style="magenta")
for project_name, details in st.session_state.workspace_projects.items():
table.add_row(project_name, ", ".join(details['files']))
rprint(Panel(table, title="[bold blue]Workspace Projects[/bold blue]"))
def display_chat_history():
"""Displays the chat history in a formatted way."""
table = Table(title="Chat History")
table.add_column("User", style="cyan", no_wrap=True)
table.add_column("Agent", style="magenta")
for user_prompt, bot_response in st.session_state.chat_history:
table.add_row(user_prompt, bot_response)
rprint(Panel(table, title="[bold blue]Chat History[/bold blue]"))
def display_agent_info(agent_name: str):
"""Displays information about the selected agent."""
agent = agents[agent_name]
table = Table(title=f"{agent_name} - Agent Information")
table.add_column("Description", style="cyan", no_wrap=True)
table.add_column("Skills", style="magenta")
table.add_row(agent["description"], ", ".join(agent["skills"]))
rprint(Panel(table, title=f"[bold blue]{agent_name} - Agent Information[/bold blue]"))
def run_autonomous_build(agent_names: List[str], project_name: str):
"""Runs the autonomous build process."""
for agent_name in agent_names:
agent = agents[agent_name]
chat_history = st.session_state.chat_history
workspace_projects = st.session_state.workspace_projects
summary, next_step = agent.autonomous_build(chat_history, workspace_projects)
rprint(Panel(summary, title="[bold blue]Current State[/bold blue]"))
rprint(Panel(next_step, title="[bold blue]Next Step[/bold blue]"))
# Implement logic for autonomous build based on the current state
# ...
# --- Streamlit UI ---
st.title("DevToolKit: AI-Powered Development Environment")
# --- Project Management ---
st.header("Project Management")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
if project_name not in st.session_state.workspace_projects:
st.session_state.workspace_projects[project_name] = {'files': []}
st.success(f"Created project: {project_name}")
else:
st.warning(f"Project {project_name} already exists")
# --- Code Addition ---
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.success(add_code_status)
# --- Terminal Interface ---
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.code(terminal_output, language="bash")
# --- Chat Interface ---
st.subheader("Chat with AI Agents")
selected_agents = st.multiselect("Select AI agents", list(agents.keys()), key="agent_select")
st.session_state.selected_agents = selected_agents
agent_chat_input = st.text_area("Enter your message for the agents:", key="agent_input")
if st.button("Send to Agents", key="agent_send"):
agent_chat_response = chat_interface(agent_chat_input, selected_agents)
st.write(agent_chat_response)
# --- Agent Control ---
st.subheader("Agent Control")
for agent_name in agents:
agent = agents[agent_name]
with st.expander(f"{agent_name} ({agent['description']})"):
if st.button(f"Activate {agent_name}", key=f"activate_{agent_name}"):
st.session_state.active_agent = agent_name
st.success(f"{agent_name} activated.")
if st.button(f"Deactivate {agent_name}", key=f"deactivate_{agent_name}"):
st.session_state.active_agent = None
st.success(f"{agent_name} deactivated.")
# --- Automate Build Process ---
st.subheader("Automate Build Process")
if st.button("Automate"):
if st.session_state.selected_agents:
run_autonomous_build(st.session_state.selected_agents, project_name)
else:
st.warning("Please select at least one agent.")
# --- Display Information ---
st.sidebar.subheader("Current State")
st.sidebar.json(st.session_state.current_state)
if st.session_state.active_agent:
display_agent_info(st.session_state.active_agent)
display_workspace_projects()
display_chat_history()
# --- Gradio Interface ---
additional_inputs = [
gr.Dropdown(label="Agents", choices=[s for s in agents.keys()], value=list(agents.keys())[0], interactive=True),
gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=MAX_NEW_TOKENS, minimum=0, maximum=1000*10, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens"),
]
examples = [
["Create a simple web application using Flask", "WEB_DEV"],
["Generate a Python script to perform a linear regression analysis", "PYTHON_CODE_DEV"],
["Create a Dockerfile for a Node.js application", "AI_SYSTEM_PROMPT"],
# Add more examples as needed
]
gr.ChatInterface(
fn=chat_interface,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="DevToolKit AI Assistant",
examples=examples,
concurrency_limit=20,
).launch(show_api=True) |