Spaces:
Running
Running
File size: 12,632 Bytes
b5504a7 51fec96 54ce177 0a3c7ba 54ce177 46b6e89 54ce177 e1f2f22 46b6e89 54ce177 e1f2f22 54ce177 e1f2f22 54ce177 154448a e1f2f22 154448a 54ce177 b5504a7 54ce177 51fec96 b5504a7 e1f2f22 01e5385 2db68c7 01e5385 54ce177 01e5385 b5504a7 01e5385 2db68c7 01e5385 5ae4817 01e5385 e1f2f22 154448a 54ce177 e1f2f22 c1beef4 e1f2f22 54ce177 e1f2f22 54ce177 e1f2f22 54ce177 e1f2f22 b5504a7 51fec96 54ce177 e1f2f22 b5504a7 54ce177 e1f2f22 54ce177 e1f2f22 54ce177 51fec96 e1f2f22 54ce177 bf284e0 54ce177 f95e124 54ce177 e1f2f22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
import json
import time
from typing import Dict, List, Tuple
import gradio as gr
import streamlit as st
import streamlit_chat
from huggingface_hub import InferenceClient, hf_hub_url, cached_download
import git
from langchain_community.llms import HuggingFaceHub
from langchain_community.chains import ConversationChain
from langchain_community.memory import ConversationBufferMemory
from langchain_community.chains.question_answering import load_qa_chain
from langchain_community.utils import CharacterTextSplitter
# --- Constants ---
MODEL_NAME = "google/flan-t5-xl" # Consider using a more powerful model like 'google/flan-t5-xl'
MAX_NEW_TOKENS = 2048 # Increased for better code generation
TEMPERATURE = 0.7
TOP_P = 0.95
REPETITION_PENALTY = 1.2
# --- Model & Tokenizer ---
@st.cache_resource
def load_model_and_tokenizer():
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto") # Use 'auto' for optimal device selection
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
return model, tokenizer
model, tokenizer = load_model_and_tokenizer()
# --- Agents ---
agents = {
"WEB_DEV": {
"description": "Expert in web development technologies and frameworks.",
"skills": ["HTML", "CSS", "JavaScript", "React", "Vue.js", "Flask", "Django", "Node.js", "Express.js"],
"system_prompt": "You are a web development expert. Your goal is to assist the user in building and deploying web applications. Provide code snippets, explanations, and guidance on best practices.",
},
"AI_SYSTEM_PROMPT": {
"description": "Expert in designing and implementing AI systems.",
"skills": ["Machine Learning", "Deep Learning", "Natural Language Processing", "Computer Vision", "Reinforcement Learning"],
"system_prompt": "You are an AI system expert. Your goal is to assist the user in designing and implementing AI systems. Provide code snippets, explanations, and guidance on best practices.",
},
"PYTHON_CODE_DEV": {
"description": "Expert in Python programming and development.",
"skills": ["Python", "Data Structures", "Algorithms", "Object-Oriented Programming", "Functional Programming"],
"system_prompt": "You are a Python code development expert. Your goal is to assist the user in writing and debugging Python code. Provide code snippets, explanations, and guidance on best practices.",
},
"CODE_REVIEW_ASSISTANT": {
"description": "Expert in code review and quality assurance.",
"skills": ["Code Style", "Best Practices", "Security", "Performance", "Maintainability"],
"system_prompt": "You are a code review expert. Your goal is to assist the user in reviewing and improving their code. Provide feedback on code quality, style, and best practices.",
},
}
# --- Session State ---
if "workspace_projects" not in st.session_state:
st.session_state.workspace_projects = {}
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "active_agent" not in st.session_state:
st.session_state.active_agent = None
if "selected_agents" not in st.session_state:
st.session_state.selected_agents = []
if "current_project" not in st.session_state:
st.session_state.current_project = None
# --- Helper Functions ---
def add_code_to_workspace(project_name: str, code: str, file_name: str):
if project_name in st.session_state.workspace_projects:
st.session_state.workspace_projects[project_name]['files'].append({'file_name': file_name, 'code': code})
return f"Added code to {file_name} in project {project_name}"
else:
return f"Project {project_name} does not exist"
def terminal_interface(command: str, project_name: str):
if project_name in st.session_state.workspace_projects:
result = subprocess.run(command, cwd=project_name, shell=True, capture_output=True, text=True)
return result.stdout + result.stderr
else:
return f"Project {project_name} does not exist"
def get_agent_response(message: str, system_prompt: str):
llm = HuggingFaceHub(repo_id=MODEL_NAME, model_kwargs={"temperature": TEMPERATURE, "top_p": TOP_P, "repetition_penalty": REPETITION_PENALTY, "max_length": MAX_NEW_TOKENS})
memory = ConversationBufferMemory()
conversation = ConversationChain(llm=llm, memory=memory)
response = conversation.run(system_prompt + "\n" + message)
return response
def display_agent_info(agent_name: str):
agent = agents[agent_name]
st.sidebar.subheader(f"Active Agent: {agent_name}")
st.sidebar.write(f"Description: {agent['description']}")
st.sidebar.write(f"Skills: {', '.join(agent['skills'])}")
def display_workspace_projects():
st.subheader("Workspace Projects")
for project_name, project_data in st.session_state.workspace_projects.items():
with st.expander(project_name):
for file in project_data['files']:
st.text(file['file_name'])
st.code(file['code'], language="python")
def display_chat_history():
st.subheader("Chat History")
html_string = ""
for idx, message in enumerate(st.session_state.chat_history):
if idx % 2 == 0:
role = "User:"
else:
role = "Assistant:"
html_string += f"<p>{role}</p>"
html_string += f"<p>{message}</p>"
st.markdown(html_string, unsafe_allow_html=True)
def run_autonomous_build(selected_agents: List[str], project_name: str):
st.info("Starting autonomous build process...")
for agent in selected_agents:
st.write(f"Agent {agent} is working on the project...")
code = get_agent_response(f"Generate code for a simple web application in project {project_name}", agents[agent]['system_prompt'])
add_code_to_workspace(project_name, code, f"{agent.lower()}_app.py")
st.write(f"Agent {agent} has completed its task.")
st.success("Autonomous build process completed!")
def collaborative_agent_example(selected_agents: List[str], project_name: str, task: str):
st.info(f"Starting collaborative task: {task}")
responses = {}
for agent in selected_agents:
st.write(f"Agent {agent} is working on the task...")
response = get_agent_response(task, agents[agent]['system_prompt'])
responses[agent] = response
combined_response = combine_and_process_responses(responses, task)
st.success("Collaborative task completed!")
st.write(combined_response)
def combine_and_process_responses(responses: Dict[str, str], task: str) -> str:
# This is a placeholder function. In a real-world scenario, you would implement
# more sophisticated logic to combine and process the responses.
combined = "\n\n".join([f"{agent}: {response}" for agent, response in responses.items()])
return f"Combined response for task '{task}':\n\n{combined}"
# --- Streamlit UI ---
st.title("DevToolKit: AI-Powered Development Environment")
# --- Project Management ---
st.header("Project Management")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
if project_name and project_name not in st.session_state.workspace_projects:
st.session_state.workspace_projects[project_name] = {'files': []}
st.success(f"Created project: {project_name}")
elif project_name in st.session_state.workspace_projects:
st.warning(f"Project {project_name} already exists")
else:
st.warning("Please enter a project name")
# --- Code Editor ---
st.subheader("Code Editor")
if st.session_state.workspace_projects:
selected_project = st.selectbox("Select project", list(st.session_state.workspace_projects.keys()))
if selected_project:
files = [file['file_name'] for file in st.session_state.workspace_projects[selected_project]['files']]
selected_file = st.selectbox("Select file to edit", files) if files else None
if selected_file:
file_content = next((file['code'] for file in st.session_state.workspace_projects[selected_project]['files'] if file['file_name'] == selected_file), "")
edited_code = st_ace(value=file_content, language="python", theme="monokai", key="code_editor")
if st.button("Save Changes"):
for file in st.session_state.workspace_projects[selected_project]['files']:
if file['file_name'] == selected_file:
file['code'] = edited_code
st.success("Changes saved successfully!")
break
else:
st.info("No files in the project. Use the chat interface to generate code.")
else:
st.info("No projects created yet. Create a project to start coding.")
# --- Terminal Interface ---
st.subheader("Terminal (Workspace Context)")
if st.session_state.workspace_projects:
selected_project = st.selectbox("Select project for terminal", list(st.session_state.workspace_projects.keys()))
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, selected_project)
st.code(terminal_output, language="bash")
else:
st.info("No projects created yet. Create a project to use the terminal.")
# --- Chat Interface ---
st.subheader("Chat with AI Agents")
selected_agents = st.multiselect("Select AI agents", list(agents.keys()), key="agent_select")
st.session_state.selected_agents = selected_agents
agent_chat_input = st.text_area("Enter your message for the agents:", key="agent_input")
if st.button("Send to Agents", key="agent_send"):
if selected_agents and agent_chat_input:
responses = {}
for agent in selected_agents:
response = get_agent_response(agent_chat_input, agents[agent]['system_prompt'])
responses[agent] = response
st.session_state.chat_history.append(f"User: {agent_chat_input}")
for agent, response in responses.items():
st.session_state.chat_history.append(f"{agent}: {response}")
st_chat(st.session_state.chat_history) # Display chat history using st_chat
else:
st.warning("Please select at least one agent and enter a message.")
# --- Agent Control ---
st.subheader("Agent Control")
for agent_name in agents:
agent = agents[agent_name]
with st.expander(f"{agent_name} ({agent['description']})"):
if st.button(f"Activate {agent_name}", key=f"activate_{agent_name}"):
st.session_state.active_agent = agent_name
st.success(f"{agent_name} activated.")
if st.button(f"Deactivate {agent_name}", key=f"deactivate_{agent_name}"):
st.session_state.active_agent = None
st.success(f"{agent_name} deactivated.")
# --- Automate Build Process ---
st.subheader("Automate Build Process")
if st.button("Automate"):
if st.session_state.selected_agents and project_name:
run_autonomous_build(st.session_state.selected_agents, project_name)
else:
st.warning("Please select at least one agent and create a project.")
# --- Version Control ---
st.subheader("Version Control")
repo_url = st.text_input("Enter repository URL:")
if st.button("Clone Repository"):
if repo_url and project_name:
try:
git.Repo.clone_from(repo_url, project_name)
st.success(f"Repository cloned successfully to {project_name}")
except git.GitCommandError as e:
st.error(f"Error cloning repository: {e}")
else:
st.warning("Please enter a repository URL and create a project.")
# --- Collaborative Agent Example ---
st.subheader("Collaborative Agent Example")
collab_agents = st.multiselect("Select AI agents for collaboration", list(agents.keys()), key="collab_agent_select")
collab_project = st.text_input("Enter project name for collaboration:")
collab_task = st.text_input("Enter a task for the agents to collaborate on:")
if st.button("Run Collaborative Task"):
if collab_agents and collab_project and collab_task:
collaborative_agent_example(collab_agents, collab_project, collab_task)
else:
st.warning("Please select agents, enter a project name, and specify a task.")
# --- Display Information ---
st.sidebar.subheader("Current State")
st.sidebar.json(st.session_state)
if st.session_state.active_agent:
display_agent_info(st.session_state.active_agent)
display_workspace_projects()
display_chat_history()
if __name__ == "__main__":
st.sidebar.title("DevToolKit")
st.sidebar.info("This is an AI-powered development environment.") |