File size: 27,191 Bytes
0ebed5d
b5504a7
 
 
 
a8f73f6
b5504a7
 
51fec96
 
 
 
 
 
0a3c7ba
51fec96
0a3c7ba
 
b5504a7
 
 
 
51fec96
 
 
 
a9ef0b6
 
 
 
 
 
 
 
235536e
 
 
 
 
 
b5504a7
51fec96
b5504a7
51fec96
b5504a7
 
 
51fec96
b5504a7
 
 
 
 
 
 
 
 
51fec96
 
b5504a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fec96
b5504a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fec96
b5504a7
51fec96
b5504a7
 
 
51fec96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5504a7
 
 
 
 
a9ef0b6
235536e
b5504a7
a9ef0b6
b5504a7
 
 
 
 
 
a9ef0b6
 
 
b5504a7
 
51fec96
 
 
 
b5504a7
a9ef0b6
235536e
b5504a7
a9ef0b6
b5504a7
 
 
51fec96
 
 
 
 
b5504a7
a9ef0b6
 
 
b5504a7
 
51fec96
b5504a7
51fec96
b5504a7
 
 
 
 
 
 
3e4e7ef
b5504a7
 
 
 
 
 
 
3e4e7ef
b5504a7
5ae4817
b5504a7
 
51fec96
b5504a7
51fec96
b5504a7
 
 
 
 
 
 
 
 
 
 
 
 
 
51fec96
b5504a7
 
 
 
 
 
 
 
 
 
 
 
51fec96
b5504a7
51fec96
b5504a7
 
 
 
 
 
 
51fec96
b5504a7
 
 
 
 
 
 
 
 
 
 
51fec96
b5504a7
 
 
 
 
 
 
 
 
 
 
a9ef0b6
 
b5504a7
a9ef0b6
 
 
 
 
 
b5504a7
 
 
a9ef0b6
235536e
b5504a7
 
 
 
 
 
 
 
 
 
 
 
 
 
51fec96
b5504a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fec96
b5504a7
51fec96
b5504a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fec96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5504a7
51fec96
a9ef0b6
b5504a7
a9ef0b6
 
b5504a7
51fec96
a9ef0b6
b5504a7
 
 
 
 
51fec96
 
 
 
b5504a7
51fec96
b5504a7
 
 
51fec96
 
 
 
 
 
 
 
 
a9ef0b6
51fec96
 
 
 
 
 
 
 
b5504a7
 
51fec96
b5504a7
51fec96
 
235536e
 
51fec96
235536e
51fec96
a9ef0b6
 
51fec96
 
a9ef0b6
 
51fec96
 
 
b5504a7
51fec96
b5504a7
51fec96
b5504a7
 
a9ef0b6
 
 
 
 
 
 
 
 
 
 
 
 
51fec96
 
a9ef0b6
51fec96
 
 
 
 
 
 
 
 
 
 
235536e
 
51fec96
235536e
51fec96
a9ef0b6
 
51fec96
 
a9ef0b6
 
51fec96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235536e
 
51fec96
235536e
51fec96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ef0b6
 
51fec96
 
 
 
 
 
 
a9ef0b6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import subprocess
import os
from io import StringIO
import sys
import black
import streamlit as st
from pylint import lint
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from transformers import pipeline as transformers_pipeline
from huggingface_hub import hf_hub_url, cached_download
import json
import time
import shutil
import gradio as gr

# --- Global State ---
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []
if 'workspace_projects' not in st.session_state:
    st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
    st.session_state.available_agents = []
if 'available_clusters' not in st.session_state:
    st.session_state.available_clusters = []
if 'current_project' not in st.session_state:
    st.session_state.current_project = None
if 'current_agent' not in st.session_state:
    st.session_state.current_agent = None
if 'current_cluster' not in st.session_state:
    st.session_state.current_cluster = None
if 'hf_token' not in st.session_state:
    st.session_state.hf_token = None
if 'repo_name' not in st.session_state:
    st.session_state.repo_name = None
if 'selected_model' not in st.session_state:
    st.session_state.selected_model = None
if 'selected_code_model' not in st.session_state:
    st.session_state.selected_code_model = None
if 'selected_chat_model' not in st.session_state:
    st.session_state.selected_chat_model = None

# --- Agent Class ---
class AIAgent:
    def __init__(self, name, description, skills, persona_prompt=None):
        self.name = name
        self.description = description
        self.skills = skills
        self.persona_prompt = persona_prompt

    def create_agent_prompt(self):
        skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
        agent_prompt = f"""
I am an AI agent named {self.name}, designed to assist developers with their projects. 
My expertise lies in the following areas:

{skills_str}

{self.persona_prompt if self.persona_prompt else ''}

I am here to help you build, deploy, and improve your applications. 
Feel free to ask me any questions or present me with any challenges you encounter. 
I will do my best to provide helpful and insightful responses.
"""
        return agent_prompt

    def autonomous_build(self, chat_history, workspace_projects):
        """
        Autonomous build logic that continues based on the state of chat history and workspace projects.
        """
        # Example logic: Generate a summary of chat history and workspace state
        summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
        summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])

        # Example: Generate the next logical step in the project
        next_step = "Based on the current state, the next logical step is to implement the main application logic."

        return summary, next_step

# --- Agent Management ---
def save_agent_to_file(agent):
    """Saves the agent's prompt to a file."""
    if not os.path.exists("agents"):
        os.makedirs("agents")
    file_path = os.path.join("agents", f"{agent.name}.txt")
    with open(file_path, "w") as file:
        file.write(agent.create_agent_prompt())
    st.session_state.available_agents.append(agent.name)

def load_agent_prompt(agent_name):
    """Loads an agent prompt from a file."""
    file_path = os.path.join("agents", f"{agent_name}.txt")
    if os.path.exists(file_path):
        with open(file_path, "r") as file:
            agent_prompt = file.read()
        return agent_prompt
    else:
        return None

def create_agent_from_text(name, text, persona_prompt=None):
    skills = text.split('\n')
    agent = AIAgent(name, "AI agent created from text input.", skills, persona_prompt)
    save_agent_to_file(agent)
    return agent.create_agent_prompt()

# --- Cluster Management ---
def create_agent_cluster(cluster_name, agent_names):
    """Creates a cluster of agents."""
    if not os.path.exists("clusters"):
        os.makedirs("clusters")
    cluster_path = os.path.join("clusters", f"{cluster_name}.json")
    with open(cluster_path, "w") as file:
        json.dump({"agents": agent_names}, file)
    st.session_state.available_clusters.append(cluster_name)

def load_agent_cluster(cluster_name):
    """Loads an agent cluster from a file."""
    cluster_path = os.path.join("clusters", f"{cluster_name}.json")
    if os.path.exists(cluster_path):
        with open(cluster_path, "r") as file:
            cluster_data = json.load(file)
        return cluster_data["agents"]
    else:
        return None

# --- Chat Interface ---
def chat_interface_with_agent(input_text, agent_name):
    agent_prompt = load_agent_prompt(agent_name)
    if agent_prompt is None:
        return f"Agent {agent_name} not found."

    # Use a more powerful language model (GPT-3 or similar) for better chat experience
    model_name = st.session_state.selected_chat_model or "text-davinci-003"  # Default to GPT-3 if not selected
    try:
        model = transformers_pipeline("text-generation", model=model_name)
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    # Combine the agent prompt with user input
    combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"

    # Generate response
    response = model(combined_input, max_length=200, temperature=0.7, top_p=0.95, do_sample=True)[0]['generated_text']
    response = response.split("Agent:")[1].strip()  # Extract the agent's response
    return response

def chat_interface_with_cluster(input_text, cluster_name):
    agent_names = load_agent_cluster(cluster_name)
    if agent_names is None:
        return f"Cluster {cluster_name} not found."

    # Use a more powerful language model (GPT-3 or similar) for better chat experience
    model_name = st.session_state.selected_chat_model or "text-davinci-003"  # Default to GPT-3 if not selected
    try:
        model = transformers_pipeline("text-generation", model=model_name)
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    # Combine the agent prompt with user input
    combined_input = f"User: {input_text}\n"
    for agent_name in agent_names:
        agent_prompt = load_agent_prompt(agent_name)
        combined_input += f"\n{agent_name}:\n{agent_prompt}\n"

    # Generate response
    response = model(combined_input, max_length=200, temperature=0.7, top_p=0.95, do_sample=True)[0]['generated_text']
    response = response.split("User:")[1].strip()  # Extract the agent's response
    return response

# --- Code Editor ---
def code_editor_interface(code):
    """Provides code completion, formatting, and linting in the code editor."""
    # Format code using black
    try:
        formatted_code = black.format_str(code, mode=black.FileMode())
    except black.InvalidInput:
        formatted_code = code  # Keep original code if formatting fails

    # Lint code using pylint
    try:
        pylint_output = StringIO()
        sys.stdout = pylint_output
        sys.stderr = pylint_output
        lint.Run(['--from-stdin'], stdin=StringIO(formatted_code))
        sys.stdout = sys.__stdout__
        sys.stderr = sys.__stderr__
        lint_message = pylint_output.getvalue()
    except Exception as e:
        lint_message = f"Pylint error: {e}"

    return formatted_code, lint_message

# --- Workspace Management ---
def workspace_interface(project_name):
    """Manages projects, files, and resources in the workspace."""
    project_path = os.path.join("projects", project_name)
    # Create project directory
    try:
        os.makedirs(project_path)
        requirements_path = os.path.join(project_path, "requirements.txt")
        with open(requirements_path, "w") as req_file:
            req_file.write("")  # Initialize an empty requirements.txt file
        status = f'Project "{project_name}" created successfully.'
        st.session_state.workspace_projects[project_name] = {'files': []}
    except FileExistsError:
        status = f'Project "{project_name}" already exists.'
    return status

def add_code_to_workspace(project_name, code, file_name):
    """Adds selected code files to the workspace."""
    project_path = os.path.join("projects", project_name)
    file_path = os.path.join(project_path, file_name)

    try:
        with open(file_path, "w") as code_file:
            code_file.write(code)
        status = f'File "{file_name}" added to project "{project_name}" successfully.'
        st.session_state.workspace_projects[project_name]['files'].append(file_name)
    except Exception as e:
        status = f"Error: {e}"
    return status

# --- AI Tools ---
def summarize_text(text):
    """Summarizes a given text using a Hugging Face model."""
    model_name = "facebook/bart-large-cnn"
    try:
        summarizer = pipeline("summarization", model=model_name)
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    # Truncate input text to avoid exceeding the model's maximum length
    max_input_length = model.config.max_length
    inputs = text
    if len(text) > max_input_length:
        inputs = text[:max_input_length]

    # Generate summary
    summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
        "summary_text"
    ]
    return summary

def sentiment_analysis(text):
    """Performs sentiment analysis on a given text using a Hugging Face model."""
    model_name = "distilbert-base-uncased-finetuned-sst-2-english"
    try:
        analyzer = pipeline("sentiment-analysis", model=model_name)
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    # Perform sentiment analysis
    result = analyzer(text)[0]
    return result

def translate_code(code, source_language, target_language):
    """Translates code from one programming language to another using a Hugging Face model."""
    model_name = "Helsinki-NLP/opus-mt-en-fr"  # Replace with your preferred translation model
    try:
        translator = pipeline("translation", model=model_name)
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    # Translate code
    translated_code = translator(code, target_lang=target_language)[0]['translation_text']
    return translated_code

def generate_code(idea):
    """Generates code based on a given idea using a Hugging Face model."""
    model_name = st.session_state.selected_code_model or "bigcode/starcoder"  # Default to Starcoder if not selected
    try:
        model = AutoModelForCausalLM.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    # Generate the code
    input_text = f"""
    # Idea: {idea}
    # Code:
    """
    input_ids = tokenizer.encode(input_text, return_tensors="pt")
    output_sequences = model.generate(
        input_ids=input_ids,
        max_length=model.config.max_length,
        num_return_sequences=1,
        no_repeat_ngram_size=2,
        early_stopping=True,
        temperature=0.7,  # Adjust temperature for creativity
        top_k=50,  # Adjust top_k for diversity
    )
    generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)

    # Remove the prompt and formatting
    parts = generated_code.split("\n# Code:")
    if len(parts) > 1:
        generated_code = parts[1].strip()
    else:
        generated_code = generated_code.strip()

    return generated_code

# --- AI Personas Creator ---
def create_persona_from_text(text):
    """Creates an AI persona from the given text."""
    persona_prompt = f"""
As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas:

Streamlit:
* In-depth knowledge of Streamlit's architecture, components, and customization options.
* Expertise in creating interactive and user-friendly dashboards and applications.
* Proficiency in integrating Streamlit with various data sources and machine learning models.

Gradio:
* Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces.
* Expertise in creating custom Gradio components and integrating them with Streamlit applications.
* Proficiency in using Gradio to deploy models from Hugging Face and other frameworks.

Hugging Face:
* Comprehensive knowledge of Hugging Face's model hub and Transformers library.
* Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks.
* Proficiency in using Hugging Face's Spaces platform for model deployment and sharing.

Deployment:
* In-depth understanding of best practices for deploying Streamlit and Gradio applications.
* Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP.
* Proficiency in optimizing deployment configurations for performance and scalability.

Additional Skills:
* Strong programming skills in Python and JavaScript.
* Familiarity with Docker and containerization technologies.
* Excellent communication and problem-solving abilities.

I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter.

Example:

Task:
Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction.

Solution:

import streamlit as st
import gradio as gr
from transformers import pipeline

# Create a Hugging Face pipeline
huggingface_model = pipeline("text-generation")

# Create a Streamlit app
st.title("Hugging Face Text Generation App")

# Define a Gradio component
demo = gr.Interface(
    fn=huggingface_model,
    inputs=gr.Textbox(lines=2),
    outputs=gr.Textbox(lines=1),
)

# Display the Gradio component in the Streamlit app
st.write(demo)
"""
    return persona_prompt

# --- Terminal Interface ---
def terminal_interface(command, project_name=None):
    """Executes commands in the terminal."""
    # Execute command
    try:
        process = subprocess.run(command.split(), capture_output=True, text=True)
        output = process.stdout

        # If the command is to install a package, update the workspace
        if "install" in command and project_name:
            requirements_path = os.path.join("projects", project_name, "requirements.txt")
            with open(requirements_path, "a") as req_file:
                package_name = command.split()[-1]
                req_file.write(f"{package_name}\n")
    except Exception as e:
        output = f"Error: {e}"
    return output

# --- Build and Deploy ---
def build_project(project_name):
    """Builds a project based on the workspace files."""
    project_path = os.path.join("projects", project_name)
    requirements_path = os.path.join(project_path, "requirements.txt")
    
    # Install dependencies
    os.chdir(project_path)
    terminal_interface(f"pip install -r {requirements_path}")
    os.chdir("..")

    # Create a temporary directory for the built project
    build_dir = os.path.join("build", project_name)
    os.makedirs(build_dir, exist_ok=True)

    # Copy project files to the build directory
    for filename in os.listdir(project_path):
        if filename == "requirements.txt":
            continue
        shutil.copy(os.path.join(project_path, filename), build_dir)

    # Create a `main.py` file if it doesn't exist
    main_file = os.path.join(build_dir, "main.py")
    if not os.path.exists(main_file):
        with open(main_file, "w") as f:
            f.write("# Your Streamlit app code goes here\n")

    # Return the path to the built project
    return build_dir

def deploy_to_huggingface(build_dir, hf_token, repo_name):
    """Deploys the built project to Hugging Face Spaces."""
    # Authenticate with Hugging Face
    os.environ["HF_TOKEN"] = hf_token

    # Create a new Hugging Face Space repository
    try:
        subprocess.run(f"huggingface-cli repo create {repo_name}", shell=True, check=True)
    except subprocess.CalledProcessError as e:
        st.error(f"Error creating Hugging Face Space repository: {e}")
        return

    # Upload the built project to the repository
    try:
        subprocess.run(f"huggingface-cli upload {repo_name} {build_dir}", shell=True, check=True)
    except subprocess.CalledProcessError as e:
        st.error(f"Error uploading project to Hugging Face Space repository: {e}")
        return

    # Deploy the project to Hugging Face Spaces
    try:
        subprocess.run(f"huggingface-cli space deploy {repo_name}", shell=True, check=True)
    except subprocess.CalledProcessError as e:
        st.error(f"Error deploying project to Hugging Face Spaces: {e}")
        return

    # Display the deployment URL
    st.success(f"Project deployed successfully to Hugging Face Spaces: https://huggingface.co/spaces/{repo_name}")

def deploy_locally(build_dir):
    """Deploys the built project locally."""
    # Run the project locally
    os.chdir(build_dir)
    subprocess.run("streamlit run main.py", shell=True, check=True)
    os.chdir("..")

    # Display a success message
    st.success(f"Project deployed locally!")

# --- Streamlit App ---
st.set_page_config(page_title="AI Agent Creator", page_icon="🤖")

# --- Tabs for Navigation ---
tabs = st.tabs(["AI Agent Creator", "Tool Box", "Workspace Chat App"])

# --- AI Agent Creator ---
with tabs[0]:
    st.header("Create an AI Agent from Text")

    st.subheader("From Text")
    agent_name = st.text_input("Enter agent name:")
    text_input = st.text_area("Enter skills (one per line):")
    persona_prompt_option = st.selectbox("Choose a persona prompt", ["None", "Expert Developer"])
    persona_prompt = None
    if persona_prompt_option == "Expert Developer":
        persona_prompt = create_persona_from_text("Expert Developer")
    if st.button("Create Agent"):
        agent_prompt = create_agent_from_text(agent_name, text_input, persona_prompt)
        st.success(f"Agent '{agent_name}' created and saved successfully.")
        st.session_state.available_agents.append(agent_name)

    st.subheader("Create an Agent Cluster")
    cluster_name = st.text_input("Enter cluster name:")
    agent_names = st.multiselect("Select agents for the cluster", st.session_state.available_agents)
    if st.button("Create Cluster"):
        create_agent_cluster(cluster_name, agent_names)
        st.success(f"Cluster '{cluster_name}' created successfully.")
        st.session_state.available_clusters.append(cluster_name)

# --- Tool Box ---
with tabs[1]:
    st.header("Tool Box")

    # --- Workspace ---
    st.subheader("Workspace")
    project_name = st.selectbox("Select a project", list(st.session_state.workspace_projects.keys()), key="project_select")
    if project_name:
        st.session_state.current_project = project_name
        for file in st.session_state.workspace_projects[project_name]['files']:
            st.write(f"  - {file}")

    # --- Chat with AI Agents ---
    st.subheader("Chat with AI Agents")
    selected_agent_or_cluster = st.selectbox("Select an AI agent or cluster", st.session_state.available_agents + st.session_state.available_clusters)
    agent_chat_input = st.text_area("Enter your message:")
    chat_model_options = ["text-davinci-003", "gpt-3.5-turbo"]  # Add more chat models as needed
    selected_chat_model = st.selectbox("Select a chat model", chat_model_options)
    if st.button("Send"):
        st.session_state.selected_chat_model = selected_chat_model
        if selected_agent_or_cluster in st.session_state.available_agents:
            st.session_state.current_agent = selected_agent_or_cluster
            st.session_state.current_cluster = None
            agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent_or_cluster)
        elif selected_agent_or_cluster in st.session_state.available_clusters:
            st.session_state.current_agent = None
            st.session_state.current_cluster = selected_agent_or_cluster
            agent_chat_response = chat_interface_with_cluster(agent_chat_input, selected_agent_or_cluster)
        else:
            agent_chat_response = "Invalid selection."
        st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
        st.write(f"{selected_agent_or_cluster}: {agent_chat_response}")

    # --- Automate Build Process ---
    st.subheader("Automate Build Process")
    if st.button("Automate"):
        if st.session_state.current_agent:
            agent = AIAgent(st.session_state.current_agent, "", [])  # Load the agent without skills for now
            summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
            st.write("Autonomous Build Summary:")
            st.write(summary)
            st.write("Next Step:")
            st.write(next_step)
        elif st.session_state.current_cluster:
            # Implement cluster-based automation logic here
            # ...
            st.warning("Cluster-based automation is not yet implemented.")
        else:
            st.warning("Please select an agent or cluster first.")

# --- Workspace Chat App ---
with tabs[2]:
    st.header("Workspace Chat App")

    # --- Project Selection ---
    project_name = st.selectbox("Select a project", list(st.session_state.workspace_projects.keys()), key="project_select")
    if project_name:
        st.session_state.current_project = project_name

    # --- Chat with AI Agents ---
    st.subheader("Chat with AI Agents")
    selected_agent_or_cluster = st.selectbox("Select an AI agent or cluster", st.session_state.available_agents + st.session_state.available_clusters)
    agent_chat_input = st.text_area("Enter your message:")
    chat_model_options = ["text-davinci-003", "gpt-3.5-turbo"]  # Add more chat models as needed
    selected_chat_model = st.selectbox("Select a chat model", chat_model_options)
    if st.button("Send"):
        st.session_state.selected_chat_model = selected_chat_model
        if selected_agent_or_cluster in st.session_state.available_agents:
            st.session_state.current_agent = selected_agent_or_cluster
            st.session_state.current_cluster = None
            agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent_or_cluster)
        elif selected_agent_or_cluster in st.session_state.available_clusters:
            st.session_state.current_agent = None
            st.session_state.current_cluster = selected_agent_or_cluster
            agent_chat_response = chat_interface_with_cluster(agent_chat_input, selected_agent_or_cluster)
        else:
            agent_chat_response = "Invalid selection."
        st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
        st.write(f"{selected_agent_or_cluster}: {agent_chat_response}")

    # --- Code Editor ---
    st.subheader("Code Editor")
    code = st.text_area("Enter your code:")
    if st.button("Format & Lint"):
        formatted_code, lint_message = code_editor_interface(code)
        st.code(formatted_code, language="python")
        st.write("Linting Report:")
        st.write(lint_message)

    # --- Add Code to Workspace ---
    st.subheader("Add Code to Workspace")
    file_name = st.text_input("Enter file name:")
    if st.button("Add Code"):
        if st.session_state.current_project:
            status = add_code_to_workspace(st.session_state.current_project, code, file_name)
            st.write(status)
        else:
            st.warning("Please select a project first.")

    # --- Terminal ---
    st.subheader("Terminal")
    command = st.text_input("Enter a command:")
    if st.button("Execute"):
        if st.session_state.current_project:
            output = terminal_interface(command, st.session_state.current_project)
            st.write(output)
        else:
            st.warning("Please select a project first.")

    # --- AI Tools ---
    st.subheader("AI Tools")
    st.write("Summarize Text:")
    text_to_summarize = st.text_area("Enter text to summarize:")
    if st.button("Summarize"):
        summary = summarize_text(text_to_summarize)
        st.write(summary)

    st.write("Sentiment Analysis:")
    text_to_analyze = st.text_area("Enter text to analyze:")
    if st.button("Analyze"):
        result = sentiment_analysis(text_to_analyze)
        st.write(result)

    st.write("Code Translation:")
    code_to_translate = st.text_area("Enter code to translate:")
    source_language = st.selectbox("Source Language", ["Python", "JavaScript", "C++"])
    target_language = st.selectbox("Target Language", ["Python", "JavaScript", "C++"])
    if st.button("Translate"):
        translated_code = translate_code(code_to_translate, source_language, target_language)
        st.write(translated_code)

    st.write("Code Generation:")
    code_idea = st.text_input("Enter your code idea:")
    code_model_options = ["bigcode/starcoder", "google/flan-t5-xl"]  # Add more code models as needed
    selected_code_model = st.selectbox("Select a code generation model", code_model_options)
    if st.button("Generate"):
        st.session_state.selected_code_model = selected_code_model
        generated_code = generate_code(code_idea)
        st.code(generated_code, language="python")

    # --- Build and Deploy ---
    st.subheader("Build and Deploy")
    if st.session_state.current_project:
        st.write(f"Current project: {st.session_state.current_project}")
        if st.button("Build"):
            build_dir = build_project(st.session_state.current_project)
            st.write(f"Project built successfully! Build directory: {build_dir}")

        st.write("Select a deployment target:")
        deployment_target = st.selectbox("Deployment Target", ["Local", "Hugging Face Spaces"])
        if deployment_target == "Hugging Face Spaces":
            hf_token = st.text_input("Enter your Hugging Face token:")
            repo_name = st.text_input("Enter your Hugging Face Space repository name:")
            if st.button("Deploy to Hugging Face Spaces"):
                st.session_state.hf_token = hf_token
                st.session_state.repo_name = repo_name
                deploy_to_huggingface(build_dir, hf_token, repo_name)
        elif deployment_target == "Local":
            if st.button("Deploy Locally"):
                deploy_locally(build_dir)
    else:
        st.warning("Please select a project first.")

# --- Hugging Face Space Deployment (After Building) ---
if st.session_state.hf_token and st.session_state.repo_name:
    st.write("Deploying to Hugging Face Spaces...")
    deploy_to_huggingface(build_dir, st.session_state.hf_token, st.session_state.repo_name)