Spaces:
Running
Running
File size: 13,951 Bytes
b5504a7 51fec96 54ce177 0a3c7ba 54ce177 154448a 54ce177 01e5385 54ce177 154448a 54ce177 b5504a7 54ce177 51fec96 54ce177 a9ef0b6 54ce177 a9ef0b6 54ce177 a9ef0b6 54ce177 a9ef0b6 54ce177 235536e b5504a7 01e5385 2db68c7 01e5385 54ce177 01e5385 b5504a7 01e5385 2db68c7 01e5385 5ae4817 01e5385 2db68c7 01e5385 2db68c7 01e5385 154448a 54ce177 b5504a7 54ce177 b5504a7 54ce177 b5504a7 51fec96 54ce177 b5504a7 54ce177 51fec96 54ce177 bf284e0 54ce177 2db68c7 54ce177 154448a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
import json
import time
from typing import Dict, List, Tuple
import gradio as gr
import streamlit as st
from huggingface_hub import InferenceClient, hf_hub_url, cached_download
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from rich import print as rprint
from rich.panel import Panel
from rich.progress import track
from rich.table import Table
import subprocess
import threading
from langchain.llms import HuggingFaceHub
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
# --- Constants ---
MODEL_NAME = "bigscience/bloom-1b7"
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.95
REPETITION_PENALTY = 1.2
# --- Model & Tokenizer ---
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# --- Agents ---
agents = {
"WEB_DEV": {
"description": "Expert in web development technologies and frameworks.",
"skills": ["HTML", "CSS", "JavaScript", "React", "Vue.js", "Flask", "Django", "Node.js", "Express.js"],
"system_prompt": "You are a web development expert. Your goal is to assist the user in building and deploying web applications. Provide code snippets, explanations, and guidance on best practices.",
},
"AI_SYSTEM_PROMPT": {
"description": "Expert in designing and implementing AI systems.",
"skills": ["Machine Learning", "Deep Learning", "Natural Language Processing", "Computer Vision", "Reinforcement Learning"],
"system_prompt": "You are an AI system expert. Your goal is to assist the user in designing and implementing AI systems. Provide code snippets, explanations, and guidance on best practices.",
},
"PYTHON_CODE_DEV": {
"description": "Expert in Python programming and development.",
"skills": ["Python", "Data Structures", "Algorithms", "Object-Oriented Programming", "Functional Programming"],
"system_prompt": "You are a Python code development expert. Your goal is to assist the user in writing and debugging Python code. Provide code snippets, explanations, and guidance on best practices.",
},
"CODE_REVIEW_ASSISTANT": {
"description": "Expert in code review and quality assurance.",
"skills": ["Code Style", "Best Practices", "Security", "Performance", "Maintainability"],
"system_prompt": "You are a code review assistant. Your goal is to assist the user in reviewing code for quality and efficiency. Provide feedback on code style, best practices, security, performance, and maintainability.",
},
"CONTENT_WRITER_EDITOR": {
"description": "Expert in content writing and editing.",
"skills": ["Grammar", "Style", "Clarity", "Conciseness", "SEO"],
"system_prompt": "You are a content writer and editor. Your goal is to assist the user in creating high-quality content. Provide suggestions on grammar, style, clarity, conciseness, and SEO.",
},
"QUESTION_GENERATOR": {
"description": "Expert in generating questions for learning and assessment.",
"skills": ["Question Types", "Cognitive Levels", "Assessment Design"],
"system_prompt": "You are a question generator. Your goal is to assist the user in generating questions for learning and assessment. Provide questions that are relevant to the topic and aligned with the cognitive levels.",
},
"HUGGINGFACE_FILE_DEV": {
"description": "Expert in developing Hugging Face files for machine learning models.",
"skills": ["Transformers", "Datasets", "Model Training", "Model Deployment"],
"system_prompt": "You are a Hugging Face file development expert. Your goal is to assist the user in creating and deploying Hugging Face files for machine learning models. Provide code snippets, explanations, and guidance on best practices.",
},
}
# --- Session State ---
if "workspace_projects" not in st.session_state:
st.session_state.workspace_projects = {}
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "active_agent" not in st.session_state:
st.session_state.active_agent = None
if "selected_agents" not in st.session_state:
st.session_state.selected_agents = []
if "current_project" not in st.session_state:
st.session_state.current_project = None
if "current_agent" not in st.session_state:
st.session_state.current_agent = None
if "current_cluster" not in st.session_state:
st.session_state.current_cluster = None
if "hf_token" not in st.session_state:
st.session_state.hf_token = None
if "repo_name" not in st.session_state:
st.session_state.repo_name = None
if "selected_model" not in st.session_state:
st.session_state.selected_model = None
def add_code_to_workspace(project_name: str, code: str, file_name: str):
if project_name in st.session_state.workspace_projects:
st.session_state.workspace_projects[project_name]['files'].append({'file_name': file_name, 'code': code})
return f"Added code to {file_name} in project {project_name}"
else:
return f"Project {project_name} does not exist"
def terminal_interface(command: str, project_name: str):
if project_name in st.session_state.workspace_projects:
result = subprocess.run(command, cwd=project_name, shell=True, capture_output=True, text=True)
return result.stdout + result.stderr
else:
return f"Project {project_name} does not exist"
def chat_interface(message: str, selected_agents: List[str]):
responses = {}
for agent in selected_agents:
responses[agent] = get_agent_response(message, agents[agent]['system_prompt'])
return responses
def get_agent_response(message: str, system_prompt: str):
llm = HuggingFaceHub(repo_id=MODEL_NAME, model_kwargs={"temperature": TEMPERATURE, "top_p": TOP_P, "repetition_penalty": REPETITION_PENALTY})
memory = ConversationBufferMemory()
conversation = ConversationChain(llm=llm, memory=memory)
response = conversation.run(system_prompt + "\n" + message)
return response
# --- Streamlit UI ---
st.title("DevToolKit: AI-Powered Development Environment")
# --- Project Management ---
st.header("Project Management")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
if project_name not in st.session_state.workspace_projects:
st.session_state.workspace_projects[project_name] = {'files': []}
st.success(f"Created project: {project_name}")
else:
st.warning(f"Project {project_name} already exists")
# --- Code Addition ---
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.success(add_code_status)
# --- Terminal Interface ---
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.code(terminal_output, language="bash")
# --- Chat Interface ---
st.subheader("Chat with AI Agents")
selected_agents = st.multiselect("Select AI agents", list(agents.keys()), key="agent_select")
st.session_state.selected_agents = selected_agents
agent_chat_input = st.text_area("Enter your message for the agents:", key="agent_input")
if st.button("Send to Agents", key="agent_send"):
agent_chat_response = chat_interface(agent_chat_input, selected_agents)
st.write(agent_chat_response)
# --- Agent Control ---
st.subheader("Agent Control")
for agent_name in agents:
agent = agents[agent_name]
with st.expander(f"{agent_name} ({agent['description']})"):
if st.button(f"Activate {agent_name}", key=f"activate_{agent_name}"):
st.session_state.active_agent = agent_name
st.success(f"{agent_name} activated.")
if st.button(f"Deactivate {agent_name}", key=f"deactivate_{agent_name}"):
st.session_state.active_agent = None
st.success(f"{agent_name} deactivated.")
# --- Automate Build Process ---
st.subheader("Automate Build Process")
if st.button("Automate"):
if st.session_state.selected_agents:
run_autonomous_build(st.session_state.selected_agents, project_name)
else:
st.warning("Please select at least one agent.")
# --- Display Information ---
st.sidebar.subheader("Current State")
st.sidebar.json(st.session_state)
if st.session_state.active_agent:
display_agent_info(st.session_state.active_agent)
display_workspace_projects()
display_chat_history()
# --- Gradio Interface ---
additional_inputs = [
gr.Dropdown(label="Agents", choices=[s for s in agents.keys()], value=list(agents.keys())[0], interactive=True),
gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=MAX_NEW_TOKENS, minimum=0, maximum=10240, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens"),
]
examples = [
["Create a simple web application using Flask", "WEB_DEV"],
["Generate a Python script to perform a linear regression analysis", "PYTHON_CODE_DEV"],
["Create a Dockerfile for a Node.js application", "AI_SYSTEM_PROMPT"],
# Add more examples as needed
]
gr.ChatInterface(
fn=chat_interface,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="DevToolKit AI Assistant",
examples=examples,
concurrency_limit=20,
).launch(show_api=True)
# --- Helper Functions ---
def display_agent_info(agent_name: str):
agent = agents[agent_name]
st.sidebar.subheader(f"Active Agent: {agent_name}")
st.sidebar.write(f"Description: {agent['description']}")
st.sidebar.write(f"Skills: {', '.join(agent['skills'])}")
def display_workspace_projects():
st.sidebar.subheader("Workspace Projects")
if st.session_state.workspace_projects:
for project_name in st.session_state.workspace_projects:
st.sidebar.write(f"- {project_name}")
else:
st.sidebar.write("No projects created yet.")
def display_chat_history():
st.sidebar.subheader("Chat History")
if st.session_state.chat_history:
for message in st.session_state.chat_history:
st.sidebar.write(message)
else:
st.sidebar.write("No chat history yet.")
def run_autonomous_build(selected_agents: List[str], project_name: str):
# This function should implement the autonomous build process
# It should use the selected agents and the project name to generate code and run commands
# You can use the `get_agent_response` function to get responses from agents
# You can use the `add_code_to_workspace` and `terminal_interface` functions to manage the workspace
st.write("Running autonomous build...")
for agent in selected_agents:
# Example: Get code from the agent
code = get_agent_response(f"Generate code for a simple web application in project {project_name}", agents[agent]['system_prompt'])
# Example: Add code to the workspace
add_code_to_workspace(project_name, code, "app.py")
# Example: Run a command in the workspace
terminal_interface("python app.py", project_name)
st.write("Autonomous build completed.")
# --- Collaborative Agent Example ---
def collaborative_agent_example(selected_agents: List[str], project_name: str, task: str):
# Example: Collaborative code generation
st.write(f"Running collaborative task: {task}")
responses = []
for agent in selected_agents:
response = get_agent_response(f"As a {agent}, please contribute to the following task: {task}", agents[agent]['system_prompt'])
responses.append(response)
# Combine responses and process them
combined_response = "\n".join(responses)
st.write(f"Combined response:\n{combined_response}")
# Example: Use code review agent for feedback
if "CODE_REVIEW_ASSISTANT" in selected_agents:
review_response = get_agent_response(f"Review the following code and provide feedback: {combined_response}", agents["CODE_REVIEW_ASSISTANT"]['system_prompt'])
st.write(f"Code Review Feedback:\n{review_response}")
# Example: Use content writer for documentation
if "CONTENT_WRITER_EDITOR" in selected_agents:
documentation_response = get_agent_response(f"Generate documentation for the following code: {combined_response}", agents["CONTENT_WRITER_EDITOR"]['system_prompt'])
st.write(f"Documentation:\n{documentation_response}")
# --- Streamlit UI for Collaborative Agent Example ---
st.subheader("Collaborative Agent Example")
selected_agents_example = st.multiselect("Select AI agents for collaboration", list(agents.keys()), key="agent_select_example")
project_name_example = st.text_input("Enter project name (for example purposes):")
task_example = st.text_input("Enter a task for the agents to collaborate on:")
if st.button("Run Collaborative Task"):
collaborative_agent_example(selected_agents_example, project_name_example, task_example)
|