Spaces:
Running
Running
File size: 20,769 Bytes
43b66f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
def render_dataset_visualization(dataset, dataset_type):
"""
Renders visualizations for the dataset.
Args:
dataset: The dataset to visualize (pandas DataFrame)
dataset_type: The type of dataset (csv, json, etc.)
"""
if dataset is None:
st.warning("No dataset to visualize.")
return
st.markdown("<h3>Dataset Visualization</h3>", unsafe_allow_html=True)
# Get column types
numeric_cols = dataset.select_dtypes(include=[np.number]).columns.tolist()
categorical_cols = dataset.select_dtypes(include=['object', 'category']).columns.tolist()
date_cols = [col for col in dataset.columns if dataset[col].dtype == 'datetime64[ns]']
# Add visualization options based on column types
viz_type = st.selectbox(
"Select visualization type",
["Distribution", "Correlation", "Categories", "Time Series", "Custom"],
help="Choose the type of visualization to create"
)
if viz_type == "Distribution":
if numeric_cols:
# Select columns for distribution visualization
selected_cols = st.multiselect(
"Select columns to visualize",
numeric_cols,
default=numeric_cols[:min(3, len(numeric_cols))]
)
if not selected_cols:
st.warning("Please select at least one column to visualize.")
return
# Distribution plots
if len(selected_cols) == 1:
# Single column histogram with density curve
col = selected_cols[0]
fig = px.histogram(
dataset,
x=col,
histnorm='probability density',
title=f"Distribution of {col}",
color_discrete_sequence=["#FFD21E"],
template="simple_white"
)
fig.add_traces(
go.Scatter(
x=dataset[col].sort_values(),
y=dataset[col].sort_values().reset_index(drop=True).rolling(
window=int(len(dataset[col])/10) if len(dataset[col]) > 10 else len(dataset[col]),
min_periods=1,
center=True
).mean(),
mode='lines',
line=dict(color="#2563EB", width=3),
name='Smoothed'
)
)
st.plotly_chart(fig, use_container_width=True)
else:
# Multiple histograms in a grid
num_cols = min(len(selected_cols), 2)
num_rows = (len(selected_cols) + num_cols - 1) // num_cols
fig = make_subplots(
rows=num_rows,
cols=num_cols,
subplot_titles=[f"Distribution of {col}" for col in selected_cols]
)
for i, col in enumerate(selected_cols):
row = i // num_cols + 1
col_pos = i % num_cols + 1
# Add histogram
fig.add_trace(
go.Histogram(
x=dataset[col],
name=col,
marker_color="#FFD21E"
),
row=row, col=col_pos
)
fig.update_layout(
title="Distribution of Selected Features",
showlegend=False,
template="simple_white",
height=300 * num_rows
)
st.plotly_chart(fig, use_container_width=True)
# Show distribution statistics
st.markdown("### Distribution Statistics")
stats_df = dataset[selected_cols].describe().T
st.dataframe(stats_df, use_container_width=True)
else:
st.warning("No numeric columns found for distribution visualization.")
elif viz_type == "Correlation":
if len(numeric_cols) >= 2:
# Correlation matrix
st.markdown("### Correlation Matrix")
# Select columns for correlation
selected_cols = st.multiselect(
"Select columns for correlation analysis",
numeric_cols,
default=numeric_cols[:min(5, len(numeric_cols))]
)
if len(selected_cols) < 2:
st.warning("Please select at least two columns for correlation analysis.")
return
# Compute correlation
corr = dataset[selected_cols].corr()
# Heatmap
fig = px.imshow(
corr,
color_continuous_scale="RdBu_r",
title="Correlation Matrix",
template="simple_white",
text_auto=True
)
st.plotly_chart(fig, use_container_width=True)
# Scatter plot matrix for selected columns
if len(selected_cols) > 2 and len(selected_cols) <= 5: # Limit to 5 columns for readability
st.markdown("### Scatter Plot Matrix")
fig = px.scatter_matrix(
dataset,
dimensions=selected_cols,
color_discrete_sequence=["#2563EB"],
title="Scatter Plot Matrix",
template="simple_white"
)
fig.update_traces(diagonal_visible=False)
st.plotly_chart(fig, use_container_width=True)
# Correlation pairs as bar chart
st.markdown("### Top Correlation Pairs")
# Get correlation pairs
corr_pairs = []
for i in range(len(corr.columns)):
for j in range(i+1, len(corr.columns)):
corr_pairs.append({
'Feature 1': corr.columns[i],
'Feature 2': corr.columns[j],
'Correlation': corr.iloc[i, j]
})
# Sort by absolute correlation
corr_pairs = sorted(corr_pairs, key=lambda x: abs(x['Correlation']), reverse=True)
# Create bar chart
if corr_pairs:
# Convert to DataFrame
corr_df = pd.DataFrame(corr_pairs)
pair_labels = [f"{row['Feature 1']} & {row['Feature 2']}" for _, row in corr_df.iterrows()]
# Bar chart
fig = px.bar(
x=pair_labels,
y=[abs(c) for c in corr_df['Correlation']],
color=corr_df['Correlation'],
color_continuous_scale="RdBu_r",
labels={'x': 'Feature Pairs', 'y': 'Absolute Correlation'},
title="Top Feature Correlations"
)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("Need at least two numeric columns for correlation analysis.")
elif viz_type == "Categories":
if categorical_cols:
# Select categorical column
selected_cat = st.selectbox("Select categorical column", categorical_cols)
# Category counts
value_counts = dataset[selected_cat].value_counts()
# Limit to top N categories if there are too many
if len(value_counts) > 20:
st.info(f"Showing top 20 categories out of {len(value_counts)}")
value_counts = value_counts.head(20)
# Bar chart
fig = px.bar(
x=value_counts.index,
y=value_counts.values,
title=f"Category Counts for {selected_cat}",
labels={'x': selected_cat, 'y': 'Count'},
color_discrete_sequence=["#FFD21E"]
)
st.plotly_chart(fig, use_container_width=True)
# If there are numeric columns, show relationship with categorical
if numeric_cols:
st.markdown(f"### {selected_cat} vs Numeric Features")
selected_num = st.selectbox("Select numeric column", numeric_cols)
# Box plot
fig = px.box(
dataset,
x=selected_cat,
y=selected_num,
title=f"{selected_cat} vs {selected_num}",
color_discrete_sequence=["#2563EB"],
template="simple_white"
)
st.plotly_chart(fig, use_container_width=True)
# Statistics by category
st.markdown(f"### Statistics of {selected_num} by {selected_cat}")
stats_by_cat = dataset.groupby(selected_cat)[selected_num].describe()
st.dataframe(stats_by_cat, use_container_width=True)
else:
st.warning("No categorical columns found for category visualization.")
elif viz_type == "Time Series":
# Check if there are potential date columns
potential_date_cols = date_cols.copy()
# Also check for object columns that might be dates
for col in categorical_cols:
# Sample the column to check if it contains date-like strings
sample = dataset[col].dropna().head(5).tolist()
if sample and all('/' in str(x) or '-' in str(x) for x in sample):
potential_date_cols.append(col)
if potential_date_cols:
date_col = st.selectbox("Select date column", potential_date_cols)
# Convert to datetime if it's not already
if dataset[date_col].dtype != 'datetime64[ns]':
try:
temp_df = dataset.copy()
temp_df[date_col] = pd.to_datetime(temp_df[date_col])
except:
st.error(f"Could not convert {date_col} to datetime.")
return
else:
temp_df = dataset.copy()
# Select numeric column for time series
if numeric_cols:
value_col = st.selectbox("Select value column", numeric_cols)
# Aggregate by time period
time_period = st.selectbox(
"Aggregate by",
["Day", "Week", "Month", "Quarter", "Year"]
)
# Set up time grouping
if time_period == "Day":
temp_df['period'] = temp_df[date_col].dt.date
elif time_period == "Week":
temp_df['period'] = temp_df[date_col].dt.to_period('W').dt.start_time
elif time_period == "Month":
temp_df['period'] = temp_df[date_col].dt.to_period('M').dt.start_time
elif time_period == "Quarter":
temp_df['period'] = temp_df[date_col].dt.to_period('Q').dt.start_time
else: # Year
temp_df['period'] = temp_df[date_col].dt.year
# Aggregate data
agg_method = st.selectbox("Aggregation method", ["Mean", "Sum", "Min", "Max", "Count"])
agg_map = {
"Mean": "mean",
"Sum": "sum",
"Min": "min",
"Max": "max",
"Count": "count"
}
time_series = temp_df.groupby('period')[value_col].agg(agg_map[agg_method]).reset_index()
# Line chart
fig = px.line(
time_series,
x='period',
y=value_col,
title=f"{agg_method} of {value_col} by {time_period}",
markers=True,
color_discrete_sequence=["#2563EB"],
template="simple_white"
)
fig.update_layout(
xaxis_title=time_period,
yaxis_title=f"{agg_method} of {value_col}"
)
st.plotly_chart(fig, use_container_width=True)
# Show trendline option
if st.checkbox("Show trendline"):
fig = px.scatter(
time_series,
x='period',
y=value_col,
trendline="ols",
title=f"{agg_method} of {value_col} by {time_period} with Trendline",
color_discrete_sequence=["#2563EB"],
template="simple_white"
)
fig.update_layout(
xaxis_title=time_period,
yaxis_title=f"{agg_method} of {value_col}"
)
st.plotly_chart(fig, use_container_width=True)
# Table view of time series data
st.dataframe(time_series, use_container_width=True)
else:
st.warning("No numeric columns found for time series values.")
else:
st.warning("No date columns found for time series visualization.")
elif viz_type == "Custom":
st.markdown("### Custom Visualization")
st.info("Create a custom plot by selecting axes and plot type")
# Select plot type
plot_type = st.selectbox(
"Select plot type",
["Scatter", "Line", "Bar", "Box", "Violin", "Histogram", "Pie", "3D Scatter"]
)
# Depending on the plot type, get required axes
if plot_type in ["Scatter", "Line", "Bar", "3D Scatter"]:
# For scatter/line/bar, we need x and y
x_col = st.selectbox("X-axis", dataset.columns.tolist())
y_col = st.selectbox("Y-axis", numeric_cols if numeric_cols else dataset.columns.tolist())
# For 3D scatter, we need a z-axis
if plot_type == "3D Scatter":
z_col = st.selectbox("Z-axis", numeric_cols if numeric_cols else dataset.columns.tolist())
# Optional color dimension
use_color = st.checkbox("Add color dimension")
color_col = None
if use_color:
color_col = st.selectbox("Color by", dataset.columns.tolist())
# Create plot
if plot_type == "Scatter":
fig = px.scatter(
dataset,
x=x_col,
y=y_col,
color=color_col,
title=f"{y_col} vs {x_col}",
template="simple_white"
)
elif plot_type == "Line":
fig = px.line(
dataset.sort_values(x_col),
x=x_col,
y=y_col,
color=color_col,
title=f"{y_col} vs {x_col}",
template="simple_white"
)
elif plot_type == "Bar":
fig = px.bar(
dataset,
x=x_col,
y=y_col,
color=color_col,
title=f"{y_col} by {x_col}",
template="simple_white"
)
elif plot_type == "3D Scatter":
fig = px.scatter_3d(
dataset,
x=x_col,
y=y_col,
z=z_col,
color=color_col,
title=f"3D Scatter: {x_col}, {y_col}, {z_col}",
template="simple_white"
)
st.plotly_chart(fig, use_container_width=True)
elif plot_type in ["Box", "Violin"]:
# For box/violin, we need x (categorical) and y (numeric)
x_col = st.selectbox("X-axis (categories)", categorical_cols if categorical_cols else dataset.columns.tolist())
y_col = st.selectbox("Y-axis (values)", numeric_cols if numeric_cols else dataset.columns.tolist())
# Optional color dimension
use_color = st.checkbox("Add color dimension")
color_col = None
if use_color:
color_col = st.selectbox("Color by", dataset.columns.tolist())
# Create plot
if plot_type == "Box":
fig = px.box(
dataset,
x=x_col,
y=y_col,
color=color_col,
title=f"Box Plot: {y_col} by {x_col}",
template="simple_white"
)
else: # Violin
fig = px.violin(
dataset,
x=x_col,
y=y_col,
color=color_col,
title=f"Violin Plot: {y_col} by {x_col}",
template="simple_white"
)
st.plotly_chart(fig, use_container_width=True)
elif plot_type == "Histogram":
# For histogram, we need just one column
value_col = st.selectbox("Value column", dataset.columns.tolist())
# Bins option
n_bins = st.slider("Number of bins", 5, 100, 20)
# Optional color dimension
use_color = st.checkbox("Add color dimension")
color_col = None
if use_color:
color_col = st.selectbox("Color by", dataset.columns.tolist())
# Create plot
fig = px.histogram(
dataset,
x=value_col,
color=color_col,
nbins=n_bins,
title=f"Histogram of {value_col}",
template="simple_white"
)
st.plotly_chart(fig, use_container_width=True)
elif plot_type == "Pie":
# For pie, we need a categorical column
cat_col = st.selectbox("Category column", categorical_cols if categorical_cols else dataset.columns.tolist())
# Optional value column
use_values = st.checkbox("Use custom values")
value_col = None
if use_values and numeric_cols:
value_col = st.selectbox("Value column", numeric_cols)
# Limit to top N categories if there are too many
top_n = st.slider("Limit to top N categories", 0, 20, 10,
help="Set to 0 to show all categories. Recommended to limit to top 10-15 categories for readability.")
# Process data for pie chart
if top_n > 0:
if use_values and value_col:
pie_data = dataset.groupby(cat_col)[value_col].sum().reset_index()
pie_data = pie_data.sort_values(value_col, ascending=False).head(top_n)
else:
value_counts = dataset[cat_col].value_counts().reset_index()
value_counts.columns = [cat_col, 'count']
pie_data = value_counts.head(top_n)
value_col = 'count'
else:
if use_values and value_col:
pie_data = dataset.groupby(cat_col)[value_col].sum().reset_index()
else:
value_counts = dataset[cat_col].value_counts().reset_index()
value_counts.columns = [cat_col, 'count']
pie_data = value_counts
value_col = 'count'
# Create plot
fig = px.pie(
pie_data,
names=cat_col,
values=value_col,
title=f"Pie Chart of {cat_col}",
template="simple_white"
)
st.plotly_chart(fig, use_container_width=True)
|