File size: 36,512 Bytes
52da96f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
import torch
import torch.distributed as dist
import torchmetrics
import json
import math
import numpy as np
import os
import copy
import faiss
import time
import pandas as pd
import random
from tqdm import tqdm
from .protein_encoder import ProteinEncoder
from .structure_encoder import StructureEncoder
from .text_encoder import TextEncoder
from ..abstract_model import AbstractModel
from ..model_interface import register_model
from utils.mpr import MultipleProcessRunnerSimplifier
from torch.nn.functional import normalize, cross_entropy
from utils.constants import residue_level, sequence_level
from sklearn.metrics import roc_auc_score
def multilabel_cross_entropy(logits, labels):
"""
Compute cross entropy loss for multilabel classification。 See "https://arxiv.org/pdf/2208.02955.pdf"
Args:
logits: [num_samples, num_classes]
labels: [num_samples, num_classes]
"""
loss = 0
for pred, label in zip(logits, labels):
pos_logits = pred[label == 1]
neg_logits = pred[label == 0]
diff = neg_logits.unsqueeze(-1) - pos_logits
loss += torch.log(1 + torch.exp(diff).sum())
return loss / len(logits)
# pred = (1 - 2 * labels) * logits
# pred_neg = pred - labels * 1e12
# pred_pos = pred - (1 - labels) * 1e12
#
# zeros = torch.zeros_like(logits[..., :1], dtype=logits.dtype)
# pred_neg = torch.cat([pred_neg, zeros], dim=-1)
# pred_pos = torch.cat([pred_pos, zeros], dim=-1)
#
# neg_loss = torch.logsumexp(pred_neg, dim=-1)
# pos_loss = torch.logsumexp(pred_pos, dim=-1)
#
# return (neg_loss + pos_loss).mean()
@register_model
class ProTrekTrimodalModel(AbstractModel):
def __init__(self,
protein_config: str,
text_config: str,
structure_config: str = None,
repr_dim: int = 1024,
temperature: float = 0.07,
load_protein_pretrained: bool = True,
load_text_pretrained: bool = True,
use_mlm_loss: bool = False,
use_zlpr_loss: bool = False,
use_saprot: bool = False,
gradient_checkpointing: bool = False,
**kwargs):
"""
Args:
protein_config: Path to the config file for protein sequence encoder
text_config: Path to the config file for text encoder
structure_config: Path to the config file for structure encoder
repr_dim: Output dimension of the protein and text representation
temperature: Temperature for softmax
load_protein_pretrained: Whether to load pretrained weights for protein encoder
load_text_pretrained: Whether to load pretrained weights for text encoder
use_mlm_loss: Whether to use masked language modeling loss
use_zlpr_loss: Whether to use zlpr loss. See "https://arxiv.org/pdf/2208.02955.pdf"
use_saprot: Whether to use SaProt as protein encoder
gradient_checkpointing: Whether to use gradient checkpointing for protein encoder
"""
self.protein_config = protein_config
self.structure_config = structure_config
self.text_config = text_config
self.repr_dim = repr_dim
self.temperature = temperature
self.load_protein_pretrained = load_protein_pretrained
self.load_text_pretrained = load_text_pretrained
self.use_mlm_loss = use_mlm_loss
self.use_zlpr_loss = use_zlpr_loss
self.use_saprot = use_saprot
self.gradient_checkpointing = gradient_checkpointing
super().__init__(**kwargs)
def initialize_metrics(self, stage: str) -> dict:
return_dict = {
f"{stage}_protein_text_acc": torchmetrics.Accuracy(),
f"{stage}_text_protein_acc": torchmetrics.Accuracy(),
}
if self.use_mlm_loss:
return_dict[f"{stage}_protein_mask_acc"] = torchmetrics.Accuracy(ignore_index=-1)
if self.structure_config is not None:
return_dict[f"{stage}_structure_mask_acc"] = torchmetrics.Accuracy(ignore_index=-1)
if self.structure_config is not None:
return_dict[f"{stage}_structure_protein_acc"] = torchmetrics.Accuracy()
return_dict[f"{stage}_structure_text_acc"] = torchmetrics.Accuracy()
return_dict[f"{stage}_text_structure_acc"] = torchmetrics.Accuracy()
return_dict[f"{stage}_protein_structure_acc"] = torchmetrics.Accuracy()
return return_dict
def initialize_model(self):
# Initialize encoders
self.protein_encoder = ProteinEncoder(self.protein_config,
self.repr_dim,
self.load_protein_pretrained,
self.gradient_checkpointing)
self.text_encoder = TextEncoder(self.text_config,
self.repr_dim,
self.load_text_pretrained,
self.gradient_checkpointing)
# Learnable temperature
self.temperature = torch.nn.Parameter(torch.tensor(self.temperature))
# self.model is used for saving and loading
self.model = torch.nn.ParameterList([self.temperature,
self.protein_encoder,
self.text_encoder])
# If the structure encoder is specified
if self.structure_config is not None:
self.structure_encoder = StructureEncoder(self.structure_config, self.repr_dim)
self.model.append(self.structure_encoder)
def get_text_repr(self, texts: list, batch_size: int = 64, verbose: bool = False) -> torch.Tensor:
return self.text_encoder.get_repr(texts, batch_size, verbose)
def get_structure_repr(self, proteins: list, batch_size: int = 64, verbose: bool = False) -> torch.Tensor:
return self.structure_encoder.get_repr(proteins, batch_size, verbose)
def get_protein_repr(self, proteins: list, batch_size: int = 64, verbose: bool = False) -> torch.Tensor:
return self.protein_encoder.get_repr(proteins, batch_size, verbose)
def forward(self, protein_inputs: dict, text_inputs: dict, structure_inputs: dict = None):
"""
Args:
protein_inputs: A dictionary for protein encoder
structure_inputs: A dictionary for structure encoder
text_inputs : A dictionary for text encoder
"""
protein_repr, protein_mask_logits = self.protein_encoder(protein_inputs, self.use_mlm_loss)
text_repr = self.text_encoder(text_inputs)
outputs = [text_repr, protein_repr, protein_mask_logits]
if self.structure_config is not None:
structure_repr, structure_mask_logits = self.structure_encoder(structure_inputs, self.use_mlm_loss)
outputs += [structure_repr, structure_mask_logits]
return outputs
def loss_func(self, stage: str, outputs, labels):
if self.structure_config is not None:
text_repr, protein_repr, protein_mask_logits, structure_repr, structure_mask_logits = outputs
else:
text_repr, protein_repr, protein_mask_logits = outputs
device = text_repr.device
text_repr = normalize(text_repr, dim=-1)
protein_repr = normalize(protein_repr, dim=-1)
# Gather representations from all GPUs
all_protein_repr = self.all_gather(protein_repr).view(-1, protein_repr.shape[-1]).detach()
all_text_repr = self.all_gather(text_repr).view(-1, text_repr.shape[-1]).detach()
if self.structure_config is not None:
structure_repr = normalize(structure_repr, dim=-1)
all_structure_repr = self.all_gather(structure_repr).view(-1, structure_repr.shape[-1]).detach()
# text_idx = labels["text_idx"]
# text_candidates = labels["text_candidates"]
#
# # Gather all text ids
# text_inds = self.all_gather(text_idx).flatten()
# # Create text classification labels
# text_labels = torch.zeros(len(text_candidates), len(text_inds), dtype=int).to(device)
# for i, candidate in enumerate(text_candidates):
# for j, idx in enumerate(text_inds):
# if idx.item() in candidate:
# text_labels[i, j] = 1
#
# # Gather text labels from all GPUs
# text_labels = self.all_gather(text_labels).view(-1, text_labels.shape[-1])
#
# # Protein classification labels are the transpose of text labels
# protein_labels = text_labels.T
# Batch size
rank = dist.get_rank()
bs = text_repr.shape[0]
# Get current labels
# protein_labels = protein_labels[rank * bs: rank * bs + bs]
# text_labels = text_labels[rank * bs: rank * bs + bs]
# Create classification labels between structure and sequence
bs_labels = torch.linspace(rank * bs, rank * bs + bs - 1, bs, dtype=int).to(device)
if self.structure_config is not None:
pairs = {
"protein": ["structure", "text"],
"structure": ["protein", "text"],
"text": ["protein", "structure"]
}
else:
pairs = {
"protein": ["text"],
"text": ["protein"]
}
loss_list = []
for k, values in pairs.items():
for v in values:
# Only calculate the similarity for the current batch
sim = torch.matmul(eval(f"{k}_repr"), eval(f"all_{v}_repr").T).div(self.temperature)
# if k == "text":
# if self.use_zlpr_loss:
# loss = multilabel_cross_entropy(sim, protein_labels)
# else:
# loss = cross_entropy(sim, bs_labels)
#
# pred = []
# for s, l in zip(sim, protein_labels):
# n_label = l.sum()
# topk = torch.topk(s, k=n_label).indices
# if l[topk].sum() == n_label:
# pred.append(1)
# else:
# pred.append(0)
#
# pred = torch.tensor(pred).to(device)
# label = torch.ones_like(pred)
# self.metrics[stage][f"{stage}_{k}_{v}_acc"].update(pred.detach(), label)
# # if v == "protein":
# # acc = self.metrics[stage][f"{stage}_{k}_{v}_acc"].compute()
# # print(f"{stage}_{k}_{v}_acc: {acc:.4f}")
#
# elif v == "text":
# if self.use_zlpr_loss:
# loss = multilabel_cross_entropy(sim, text_labels)
# else:
# loss = cross_entropy(sim, bs_labels)
#
# pred = []
# for s, l in zip(sim, text_labels):
# n_label = l.sum()
# topk = torch.topk(s, k=n_label).indices
# if l[topk].sum() == n_label:
# pred.append(1)
# else:
# pred.append(0)
#
# pred = torch.tensor(pred).to(device)
# label = torch.ones_like(pred)
# # if k == "protein":
# # acc = pred.sum() / len(pred)
# # print(f"{stage}_{k}_{v}_acc: {acc:.4f}")
# self.metrics[stage][f"{stage}_{k}_{v}_acc"].update(pred.detach(), label)
#
# else:
# loss = cross_entropy(sim, bs_labels)
# self.metrics[stage][f"{stage}_{k}_{v}_acc"].update(sim.detach(), bs_labels)
loss = cross_entropy(sim, bs_labels)
self.metrics[stage][f"{stage}_{k}_{v}_acc"].update(sim.detach(), bs_labels)
loss_list.append(loss)
# Masked language modeling loss
if self.use_mlm_loss:
k_label = [("protein", labels["seq_labels"])]
if self.structure_config is not None:
k_label.append(("structure", labels["struc_labels"]))
for k, label in k_label:
logits = eval(f"{k}_mask_logits")
# merge the first and second dimension of logits
logits = logits.view(-1, logits.shape[-1])
label = label.flatten().to(device)
mlm_loss = cross_entropy(logits, label, ignore_index=-1)
loss_list.append(mlm_loss)
self.metrics[stage][f"{stage}_{k}_mask_acc"].update(logits.detach(), label)
loss = sum(loss_list) / len(loss_list)
if stage == "train":
log_dict = self.get_log_dict("train")
log_dict["train_loss"] = loss
self.log_info(log_dict)
# Reset train metrics
self.reset_metrics("train")
return loss
def padded_gather(self, tensor: torch.Tensor):
"""
Gather tensors from all GPUs, allowing different shapes at the batch dimension.
"""
# Get the size of the tensor
size = tensor.shape[0]
all_sizes = self.all_gather(torch.tensor(size, device=tensor.device))
max_size = max(all_sizes)
# Pad the tensor
if size != max_size:
tmp = torch.zeros(max_size, tensor.shape[-1], dtype=tensor.dtype, device=tensor.device)
tmp[:size] = tensor
tensor = tmp
padded_tensor = self.all_gather(tensor).view(-1, tensor.shape[-1])
tensor = padded_tensor[:sum(all_sizes)]
return tensor
def _get_protein_indices(self):
world_size = dist.get_world_size()
rank = dist.get_rank()
if self.use_saprot:
proteins = []
for sub_dict in self.uniprot2label.values():
aa_seq = sub_dict["seq"]
foldseek_seq = sub_dict["foldseek"]
assert len(aa_seq) == len(foldseek_seq)
seq = "".join([a + b for a, b in zip(aa_seq, foldseek_seq)])
proteins.append(seq)
else:
proteins = [sub_dict["seq"] for sub_dict in self.uniprot2label.values()]
span = math.ceil(len(proteins) / world_size)
sub_proteins = proteins[rank * span: (rank + 1) * span]
# Display the progress bar on the rank 0 process
verbose = self.trainer.local_rank == 0
# Get protein representations
sub_protein_repr = self.protein_encoder.get_repr(sub_proteins, batch_size=1, verbose=verbose)
protein_repr = self.padded_gather(sub_protein_repr)
# Construct faiss index
d = protein_repr.shape[-1]
protein_indices = faiss.IndexFlatIP(d)
protein_indices.add(protein_repr.cpu().numpy())
return protein_indices
def _get_structure_indices(self):
world_size = dist.get_world_size()
rank = dist.get_rank()
proteins = [sub_dict["foldseek"] for sub_dict in self.uniprot2label.values()]
span = math.ceil(len(proteins) / world_size)
sub_proteins = proteins[rank * span: (rank + 1) * span]
# Display the progress bar on the rank 0 process
verbose = self.trainer.local_rank == 0
# Get protein representations
sub_protein_repr = self.structure_encoder.get_repr(sub_proteins, batch_size=1, verbose=verbose)
protein_repr = self.padded_gather(sub_protein_repr)
# Construct faiss index
d = protein_repr.shape[-1]
structure_indices = faiss.IndexFlatIP(d)
structure_indices.add(protein_repr.cpu().numpy())
return structure_indices
def _get_text_indices(self):
world_size = dist.get_world_size()
rank = dist.get_rank()
# Display the progress bar on the rank 0 process
verbose = self.trainer.local_rank == 0
if verbose:
iterator = tqdm(self.label2text.keys(), desc="Get text representations")
else:
iterator = self.label2text.keys()
text_embeddings = {}
for subsection in iterator:
if subsection == "Total":
continue
texts = []
for text_list in self.label2text[subsection].values():
# Only use the first text for efficiency
texts.append(text_list[0:1])
span = math.ceil(len(texts) / world_size)
texts = texts[rank * span: (rank + 1) * span]
embeddings = []
for text_list in texts:
text_repr = self.text_encoder.get_repr(text_list)
mean_repr = text_repr.mean(dim=0, keepdim=True)
norm_repr = torch.nn.functional.normalize(mean_repr, dim=-1)
embeddings.append(norm_repr)
if len(embeddings) > 0:
embeddings = torch.cat(embeddings, dim=0)
else:
embeddings = torch.zeros(0, self.repr_dim, dtype=self.dtype, device=self.device)
text_repr = self.padded_gather(embeddings)
text_embeddings[subsection] = text_repr
# Aggregate text embeddings for global retrieval
total_embeddings = []
for idx in self.label2text["Total"].values():
subsection, i = idx.split("|")
total_embeddings.append(text_embeddings[subsection][int(i)])
text_embeddings["Total"] = torch.stack(total_embeddings)
# Construct faiss index
text_indices = {}
for subsection, text_repr in text_embeddings.items():
d = text_repr.shape[-1]
text_indices[subsection] = faiss.IndexFlatIP(d)
text_indices[subsection].add(text_repr.cpu().numpy())
return text_indices
def _protein2text(self, modality: str, protein_indices, text_indices: dict):
def do(process_id, idx, row, writer):
subsection, uniprot_id, prob_idx, label = row
# Retrieve ranking results
p_embedding = protein_indices.reconstruct(prob_idx).reshape(1, -1)
text_inds = text_indices[subsection]
sim_scores, rank_inds = text_inds.search(p_embedding, text_inds.ntotal)
sim_scores, rank_inds = sim_scores[0], rank_inds[0]
# Calculate Average Precision(AP)
ranks = []
label = set(label)
for i, rk in enumerate(rank_inds):
# Find the rank of this label in all labels
if rk in label:
ranks.append(i + 1)
ranks = np.array(ranks)
ap = np.mean([(i + 1) / rank for i, rank in enumerate(ranks)])
# Calculate Mean Reciprocal Rank(MRR)
best_rank = ranks[0]
mrr = 1 / best_rank
# Calculate the AUC
true_labels = np.zeros_like(sim_scores)
true_labels[ranks - 1] = 1
if true_labels.sum() == 0 or true_labels.sum() == true_labels.shape[0]:
auc = 0
else:
auc = roc_auc_score(true_labels, sim_scores)
output = json.dumps([ap, mrr, auc])
writer.write(output + "\n")
inputs = []
swissprot_subsections = set()
for subsection in text_indices.keys():
for i, (uniprot_id, labels) in enumerate(self.uniprot2label.items()):
if uniprot_id in self.swissprot_ids:
if subsection in labels:
swissprot_subsections.add(subsection)
label = labels[subsection]
inputs.append((subsection, uniprot_id, i, label))
# Randomly shuffle the inputs
random.seed(20000812)
random.shuffle(inputs)
# Split inputs into chunks for parallel processing
world_size = dist.get_world_size()
rank = dist.get_rank()
span = math.ceil(len(inputs) / world_size)
sub_inputs = inputs[rank * span: (rank + 1) * span]
# Display the progress bar on the rank 0 process
verbose = self.trainer.local_rank == 0
if verbose:
print("Evaluating on each subsection...")
tmp_path = f"/sujin/PycharmProjects/Pretraining/{time.time()}_{rank}.tsv"
mpr = MultipleProcessRunnerSimplifier(sub_inputs, do, save_path=tmp_path, n_process=8, verbose=verbose,
return_results=True)
outputs = mpr.run()
os.remove(tmp_path)
# Aggregate results
tensor_outputs = []
for output in outputs:
ap, mrr, auc = json.loads(output)
tensor_outputs.append([float(ap), float(mrr), float(auc)])
tensor_outputs = torch.tensor(tensor_outputs, dtype=torch.float32, device=self.device)
tensor_outputs = self.padded_gather(tensor_outputs)
# Record results
avg_results = {}
for subsection in swissprot_subsections:
avg_results[subsection] = {"map": [],
"mrr": [],
"auc": []}
for input, output in zip(inputs, tensor_outputs):
ap, mrr, auc = output
subsection, _, _, _ = input
avg_results[subsection]["map"].append(ap.cpu().item())
avg_results[subsection]["mrr"].append(mrr.cpu().item())
avg_results[subsection]["auc"].append(auc.cpu().item())
results = {
f"{modality}2Text_Total_mrr": np.mean(avg_results["Total"]["mrr"]),
f"{modality}2Text_Total_map": np.mean(avg_results["Total"]["map"]),
f"{modality}2Text_Total_auc": np.mean(avg_results["Total"]["auc"]),
}
# Average the precision and recall for each level
for level, labels in [("residue-level", residue_level),
("sequence-level", sequence_level),
("all", residue_level | sequence_level)]:
mrrs = []
maps = []
aucs = []
for subsection in labels:
if subsection in avg_results:
mrrs.append(np.mean(avg_results[subsection]["mrr"]))
maps.append(np.mean(avg_results[subsection]["map"]))
aucs.append(np.mean(avg_results[subsection]["auc"]))
results[f"{modality}2Text_{level}_mrr"] = np.mean(mrrs)
results[f"{modality}2Text_{level}_map"] = np.mean(maps)
results[f"{modality}2Text_{level}_auc"] = np.mean(aucs)
return results
def _text2protein(self, modality: str, protein_indices, text_indices: dict):
def do(process_id, idx, row, writer):
subsection, text_id, label = row
# Retrieve ranking results
t_embedding = text_indices[subsection].reconstruct(text_id).reshape(1, -1)
sim_scores, rank_inds = protein_indices.search(t_embedding, protein_indices.ntotal)
sim_scores, rank_inds = sim_scores[0], rank_inds[0]
# Calculate Average Precision(AP)
ranks = []
label = set(label)
for i, rk in enumerate(rank_inds):
# Find the rank of this label in all labels
if rk in label:
ranks.append(i + 1)
ranks = np.array(ranks)
ap = np.mean([(i + 1) / rank for i, rank in enumerate(ranks)])
# Calculate Mean Reciprocal Rank(MRR)
best_rank = ranks[0]
mrr = 1 / best_rank
# Calculate the AUC
true_labels = np.zeros_like(sim_scores)
true_labels[ranks - 1] = 1
if true_labels.sum() == 0 or true_labels.sum() == true_labels.shape[0]:
auc = 0
else:
auc = roc_auc_score(true_labels, sim_scores)
output = json.dumps([ap, mrr, auc])
writer.write(output + "\n")
text2label = {}
swissprot_subsections = set()
for i, (uniprot_id, subsections) in enumerate(self.uniprot2label.items()):
# Only evaluate the texts in Swiss-Prot
if uniprot_id not in self.swissprot_ids:
continue
for subsection, text_ids in subsections.items():
if subsection == "seq" or subsection == "foldseek":
continue
swissprot_subsections.add(subsection)
if subsection not in text2label:
text2label[subsection] = {}
for text_id in text_ids:
text2label[subsection][text_id] = text2label[subsection].get(text_id, []) + [i]
inputs = []
for subsection in swissprot_subsections:
for i, (text_id, label) in enumerate(text2label[subsection].items()):
inputs.append((subsection, text_id, label))
# Randomly shuffle the inputs
random.seed(20000812)
random.shuffle(inputs)
# Split inputs into chunks for parallel processing
world_size = dist.get_world_size()
rank = dist.get_rank()
span = math.ceil(len(inputs) / world_size)
sub_inputs = inputs[rank * span: (rank + 1) * span]
# Display the progress bar on the rank 0 process
verbose = self.trainer.local_rank == 0
if verbose:
print("Evaluating on each text...")
# Add time stamp to the temporary file name to avoid conflicts
tmp_path = f"/sujin/PycharmProjects/Pretraining/{time.time()}_{rank}.tsv"
mpr = MultipleProcessRunnerSimplifier(sub_inputs, do, save_path=tmp_path, n_process=8, verbose=verbose,
return_results=True)
outputs = mpr.run()
os.remove(tmp_path)
# Aggregate results
tensor_outputs = []
for output in outputs:
ap, mrr, auc = json.loads(output)
tensor_outputs.append([float(ap), float(mrr), float(auc)])
tensor_outputs = torch.tensor(tensor_outputs, dtype=torch.float32, device=self.device)
tensor_outputs = self.padded_gather(tensor_outputs)
# Record results
avg_results = {}
for subsection in swissprot_subsections:
avg_results[subsection] = {"map": [],
"mrr": [],
"auc": []}
for input, output in zip(inputs, tensor_outputs):
ap, mrr, auc = output
subsection, _, _ = input
avg_results[subsection]["map"].append(ap.cpu().item())
avg_results[subsection]["mrr"].append(mrr.cpu().item())
avg_results[subsection]["auc"].append(auc.cpu().item())
results = {
f"Text2{modality}_Total_mrr": np.mean(avg_results["Total"]["mrr"]),
f"Text2{modality}_Total_map": np.mean(avg_results["Total"]["map"]),
f"Text2{modality}_Total_auc": np.mean(avg_results["Total"]["auc"]),
}
# Average the precision and recall for each level
for level, labels in [("residue-level", residue_level),
("sequence-level", sequence_level),
("all", residue_level | sequence_level)]:
mrrs = []
maps = []
aucs = []
for subsection in labels:
if subsection in avg_results:
mrrs.append(np.mean(avg_results[subsection]["mrr"]))
maps.append(np.mean(avg_results[subsection]["map"]))
aucs.append(np.mean(avg_results[subsection]["auc"]))
results[f"Text2{modality}_{level}_mrr"] = np.mean(mrrs)
results[f"Text2{modality}_{level}_map"] = np.mean(maps)
results[f"Text2{modality}_{level}_auc"] = np.mean(aucs)
return results
def retrieval_eval(self) -> dict:
# Get protein representations
protein_indices = self._get_protein_indices()
# Get structure representations
# if self.structure_config is not None:
# structure_embeddings = self._get_structure_embeddings()
# Get text representations
text_indices = self._get_text_indices()
# Retrieve texts for each protein
results = {}
results.update(self._protein2text("Sequence", protein_indices, text_indices))
# if self.structure_config is not None:
# results.update(self._protein2text("Structure", structure_embeddings, text_embeddings))
# results.update(self._text2protein("Structure", structure_embeddings, text_embeddings))
# Retrieve proteins for each text
results.update(self._text2protein("Sequence", protein_indices, text_indices))
return results
def _apply_bert_mask(self, tokens, tokenizer, mask_ratio):
while True:
masked_tokens = copy.copy(tokens)
labels = torch.full((len(tokens) + 2,), -1, dtype=torch.long)
vocab = [k for k in tokenizer.get_vocab().keys()]
for i in range(len(tokens)):
token = tokens[i]
prob = random.random()
if prob < mask_ratio:
prob /= mask_ratio
labels[i + 1] = tokenizer.convert_tokens_to_ids(token)
if prob < 0.8:
# 80% random change to mask token
if self.use_saprot:
token = "#" + token[-1]
else:
token = tokenizer.mask_token
elif prob < 0.9:
# 10% chance to change to random token
token = random.choice(vocab)
else:
# 10% chance to keep current token
pass
masked_tokens[i] = token
# Check if there is at least one masked token
if (labels != -1).any():
return masked_tokens, labels
def mlm_eval(self) -> float:
world_size = dist.get_world_size()
rank = dist.get_rank()
if self.use_saprot:
proteins = []
for sub_dict in self.uniprot2label.values():
aa_seq = sub_dict["seq"]
foldseek_seq = sub_dict["foldseek"]
assert len(aa_seq) == len(foldseek_seq)
seq = "".join([a + b for a, b in zip(aa_seq, foldseek_seq)])
proteins.append(seq)
else:
proteins = [sub_dict["seq"] for sub_dict in self.uniprot2label.values()]
span = math.ceil(len(proteins) / world_size)
sub_proteins = proteins[rank * span: (rank + 1) * span]
# Display the progress bar on the rank 0 process
if self.trainer.local_rank == 0:
iterator = tqdm(sub_proteins, desc="Computing mlm...")
else:
iterator = sub_proteins
total = torch.tensor([0], dtype=torch.long, device=self.device)
correct = torch.tensor([0], dtype=torch.long, device=self.device)
for seq in iterator:
tokens = self.protein_encoder.tokenizer.tokenize(seq)
masked_tokens, labels = self._apply_bert_mask(tokens, self.protein_encoder.tokenizer, 0.15)
seq = " ".join(masked_tokens)
inputs = self.protein_encoder.tokenizer(seq, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
_, logits = self.protein_encoder(inputs, get_mask_logits=True)
logits = logits.squeeze(0)
labels = labels.to(self.device)
selecor = labels != -1
preds = logits.argmax(dim=-1)[selecor]
labels = labels[selecor]
total += len(preds)
correct += (preds == labels).sum()
# Gather all results
total = self.padded_gather(total).sum()
correct = self.padded_gather(correct).sum()
acc = correct / total
return acc.cpu().item()
def _load_eval_data(self, stage):
# Load the data
lmdb_dir = eval(f"self.trainer.datamodule.{stage}_lmdb")
uniprot2label_path = os.path.join(lmdb_dir, "uniprot2label.json")
label2text_path = os.path.join(lmdb_dir, "label2text.json")
swissprot_id_path = os.path.join(lmdb_dir, "swissprot_ids.tsv")
self.uniprot2label = json.load(open(uniprot2label_path, "r"))
self.label2text = json.load(open(label2text_path, "r"))
self.swissprot_ids = set(pd.read_csv(swissprot_id_path, sep="\t", header=None).values.flatten().tolist())
self.k = 3
def on_test_start(self):
self._load_eval_data("test")
log_dict = self.retrieval_eval()
log_dict = {"test_" + k: v for k, v in log_dict.items()}
if self.use_mlm_loss:
log_dict["test_mask_acc"] = self.mlm_eval()
self.log_info(log_dict)
print(log_dict)
def on_validation_start(self):
# Clear the cache
torch.cuda.empty_cache()
self._load_eval_data("valid")
log_dict = self.retrieval_eval()
log_dict = {"valid_" + k: v for k, v in log_dict.items()}
if self.use_mlm_loss:
log_dict["valid_mask_acc"] = self.mlm_eval()
self.log_info(log_dict)
self.check_save_condition(self.step, mode="max")
def test_step(self, batch, batch_idx):
return
def validation_step(self, batch, batch_idx):
return
def on_train_epoch_end(self):
super().on_train_epoch_end()
# Re-sample the subset of the training data
if self.trainer.datamodule.train_dataset.fixed_dataset_num is not None:
self.trainer.datamodule.train_dataset.sample_subset()
# def test_epoch_end(self, outputs):
# log_dict = self.get_log_dict("test")
# log_dict["test_loss"] = torch.cat(self.all_gather(outputs), dim=-1).mean()
#
# print(log_dict)
# self.log_info(log_dict)
#
# self.reset_metrics("test")
#
# def validation_epoch_end(self, outputs):
# log_dict = self.get_log_dict("valid")
# log_dict["valid_loss"] = torch.cat(self.all_gather(outputs), dim=-1).mean()
#
# self.log_info(log_dict)
# self.reset_metrics("valid")
# self.check_save_condition(log_dict["valid_loss"], mode="min")
|