Spaces:
Sleeping
Sleeping
Dmytro Vodianytskyi
commited on
Commit
·
82c52c7
1
Parent(s):
5aa1ec5
Add application file
Browse files- app.py +60 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import T5Tokenizer, MT5ForConditionalGeneration
|
4 |
+
|
5 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
6 |
+
TOKENIZER = T5Tokenizer.from_pretrained('google/mt5-small')
|
7 |
+
MODEL = MT5ForConditionalGeneration.from_pretrained("werent4/mt5TranslatorLT")
|
8 |
+
MODEL.to(DEVICE)
|
9 |
+
|
10 |
+
def translate(text, mode, max_length, num_beams):
|
11 |
+
text = f"translate English to Lithuanian: {text}" if mode == "En2Lt" else f"translate Lithuanian to English: {text}"
|
12 |
+
encoded_input = TOKENIZER(text, return_tensors="pt", padding=True, truncation=True, max_length=max_length).to(DEVICE)
|
13 |
+
with torch.no_grad():
|
14 |
+
output_tokens = MODEL.generate(
|
15 |
+
**encoded_input,
|
16 |
+
max_length=max_length,
|
17 |
+
num_beams=num_beams,
|
18 |
+
no_repeat_ngram_size=2,
|
19 |
+
early_stopping=True
|
20 |
+
)
|
21 |
+
|
22 |
+
return TOKENIZER.decode(output_tokens[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
|
25 |
+
with gr.Blocks() as interface:
|
26 |
+
gr.Markdown("<h1>Lt🔄En: Lithuanian to English and vice versa")
|
27 |
+
with gr.Row():
|
28 |
+
max_length = gr.Slider(1, 512, value=128, label="Max length", interactive=True)
|
29 |
+
num_beams = gr.Slider(1, 16, value=5, step=False, label="Num beams", interactive=True)
|
30 |
+
with gr.Row():
|
31 |
+
input_text = gr.Textbox(label="Text input", placeholder="Enter your text here")
|
32 |
+
with gr.Column():
|
33 |
+
mode = gr.Dropdown(label="Mode", choices=["En2Lt", "Lt2En"])
|
34 |
+
translate_button = gr.Button("Translate")
|
35 |
+
output_text = gr.Textbox(label="Translated text")
|
36 |
+
with gr.Accordion("How to run the model locally:", open=False):
|
37 |
+
gr.Code("""import torch
|
38 |
+
from transformers import T5Tokenizer, MT5ForConditionalGeneration
|
39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
tokenizer = T5Tokenizer.from_pretrained('google/mt5-small')
|
41 |
+
model = MT5ForConditionalGeneration.from_pretrained("werent4/mt5TranslatorLT")
|
42 |
+
model.to(device)
|
43 |
+
def translate(text, model, tokenizer, device):
|
44 |
+
input_text = f"translate English to Lithuanian: {text}"
|
45 |
+
encoded_input = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
46 |
+
with torch.no_grad():
|
47 |
+
output_tokens = model.generate(
|
48 |
+
**encoded_input,
|
49 |
+
max_length=128,
|
50 |
+
num_beams=5,
|
51 |
+
no_repeat_ngram_size=2,
|
52 |
+
early_stopping=True
|
53 |
+
)
|
54 |
+
translated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
55 |
+
return translated_text
|
56 |
+
text = "I live in Kaunas"
|
57 |
+
translate(text, model, tokenizer, device)
|
58 |
+
""", language='python')
|
59 |
+
translate_button.click(fn=translate, inputs=[input_text, mode, max_length, num_beams], outputs=[output_text])
|
60 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
sentencepiece
|