wjf5203
commited on
Commit
·
8468984
1
Parent(s):
b55dd40
add video func support
Browse files- GLEE/glee/models/glee_model.py +119 -3
GLEE/glee/models/glee_model.py
CHANGED
|
@@ -170,8 +170,6 @@ class GLEE_Model(nn.Module):
|
|
| 170 |
features = self.backbone(images.tensor)
|
| 171 |
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
if 'spatial' in prompts:
|
| 176 |
## setp 1,2,3
|
| 177 |
key_images = [ images ] #bz*[1,3,H,W]
|
|
@@ -240,12 +238,130 @@ class GLEE_Model(nn.Module):
|
|
| 240 |
extra['visual_prompt_tokens'] = src_spatial_queries #[len,bz,C]
|
| 241 |
extra['visual_prompt_nonzero_mask'] = src_spatial_maskings # [bz,len]
|
| 242 |
|
| 243 |
-
|
| 244 |
outputs = self.predictor(multi_scale_features, mask_features, extra=extra, task=task, masks=None, targets=targets)
|
| 245 |
return outputs
|
| 246 |
|
| 247 |
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
|
| 251 |
|
|
|
|
| 170 |
features = self.backbone(images.tensor)
|
| 171 |
|
| 172 |
|
|
|
|
|
|
|
| 173 |
if 'spatial' in prompts:
|
| 174 |
## setp 1,2,3
|
| 175 |
key_images = [ images ] #bz*[1,3,H,W]
|
|
|
|
| 238 |
extra['visual_prompt_tokens'] = src_spatial_queries #[len,bz,C]
|
| 239 |
extra['visual_prompt_nonzero_mask'] = src_spatial_maskings # [bz,len]
|
| 240 |
|
|
|
|
| 241 |
outputs = self.predictor(multi_scale_features, mask_features, extra=extra, task=task, masks=None, targets=targets)
|
| 242 |
return outputs
|
| 243 |
|
| 244 |
|
| 245 |
|
| 246 |
+
|
| 247 |
+
def vos_step1(self, previous_image, prompts, task, targets=None, batch_name_list=None, is_train = False):
|
| 248 |
+
extra = {}
|
| 249 |
+
if isinstance(previous_image,torch.Tensor):
|
| 250 |
+
features = self.backbone(previous_image)
|
| 251 |
+
else:
|
| 252 |
+
features = self.backbone(previous_image.tensor)
|
| 253 |
+
# bz = len(images)//2
|
| 254 |
+
|
| 255 |
+
## setp 1,2,3
|
| 256 |
+
key_images = [previous_image] #bz*[1,3,H,W]
|
| 257 |
+
key_promptmasks = [m.unsqueeze(0) for m in prompts['spatial']] #bz*[1,1,H,W]
|
| 258 |
+
ref_feats, ref_masks = self.get_template(key_images, key_promptmasks)
|
| 259 |
+
|
| 260 |
+
early_fusion = {"hidden":ref_feats,"masks":ref_masks}
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
mask_features, _, multi_scale_features, zero_loss = self.pixel_decoder.forward_features(features, masks=None, early_fusion = early_fusion)
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
prompt_multi_scale_features = multi_scale_features+[mask_features]
|
| 268 |
+
|
| 269 |
+
if 'spatial' in prompts:
|
| 270 |
+
pos_masks = prompts['spatial']
|
| 271 |
+
# neg_masks = [~p for p in prompts['spatial']]
|
| 272 |
+
neg_masks = [p&False for p in prompts['spatial']]
|
| 273 |
+
|
| 274 |
+
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks})
|
| 275 |
+
# import pdb;pdb.set_trace()
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
_,h,w = extra['spatial_query_pos_mask'][0].shape
|
| 279 |
+
divisor = torch.tensor([h,w], device=mask_features.device)[None,]
|
| 280 |
+
# Get mean pos spatial query
|
| 281 |
+
non_zero_pos_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_pos_mask']]
|
| 282 |
+
# [:,1:]第一个维度是指示属于那个batch,原本这里的mshape是【num_inst,H,W】,得到的nonzero 是【num_point,3】,[:,1:]是xy坐标,
|
| 283 |
+
# #这里舍弃第一个维度是表示每张图片上prompt覆盖的物体的point混在一起采样,没有instance之间的区分. 因此每个图片都得到一个[512,2]的point set,是采样过后的正样本
|
| 284 |
+
non_zero_pos_point = nn.utils.rnn.pad_sequence(non_zero_pos_point, padding_value=-1).permute(1,0,2) # 把list中的结果通过padding concat到一起,得到的是[bz,512,2]
|
| 285 |
+
|
| 286 |
+
non_zero_pos_mask = (non_zero_pos_point.sum(dim=-1) < 0) # 把xy坐标相加小于0的找出来
|
| 287 |
+
spatial_query_pos = point_sample(mask_features, non_zero_pos_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True) #[(N, C, P)
|
| 288 |
+
spatial_query_pos = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_pos.transpose(1,2), ~non_zero_pos_mask)]).transpose(0,1).nan_to_num() # [1,bz,C]
|
| 289 |
+
# import pdb;pdb.set_trace()
|
| 290 |
+
# Get mean neg spatial query
|
| 291 |
+
non_zero_neg_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_neg_mask']]
|
| 292 |
+
non_zero_neg_point = nn.utils.rnn.pad_sequence(non_zero_neg_point, padding_value=-1).permute(1,0,2)
|
| 293 |
+
non_zero_neg_mask = (non_zero_neg_point.sum(dim=-1) < 0)
|
| 294 |
+
spatial_query_neg = point_sample(mask_features, non_zero_neg_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True)
|
| 295 |
+
spatial_query_neg = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_neg.transpose(1,2), ~non_zero_neg_mask)]).transpose(0,1).nan_to_num()
|
| 296 |
+
|
| 297 |
+
# Get layerwise spatial query
|
| 298 |
+
src_spatial_queries = []
|
| 299 |
+
src_spatial_maskings = []
|
| 300 |
+
for i in range(len(prompt_multi_scale_features)):
|
| 301 |
+
bs,dc,h,w = prompt_multi_scale_features[i].shape
|
| 302 |
+
# src_mask_features = multi_scale_features[i].view(h,w,bs,dc)
|
| 303 |
+
src_mask_features = prompt_multi_scale_features[i].permute(2,3,0,1)
|
| 304 |
+
# import pdb;pdb.set_trace()
|
| 305 |
+
src_mask_features = src_mask_features @ self.mask_sptial_embed[i]
|
| 306 |
+
|
| 307 |
+
non_zero_query_point_pos = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_pos_mask']]
|
| 308 |
+
non_zero_query_point_neg = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_neg_mask']]
|
| 309 |
+
non_zero_query_point = [torch.cat([x,y], dim=0) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)]
|
| 310 |
+
pos_neg_indicator = [torch.cat([torch.ones(x.shape[0], device=x.device), -torch.ones(y.shape[0], device=y.device)]) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)]
|
| 311 |
+
pos_neg_indicator = nn.utils.rnn.pad_sequence(pos_neg_indicator, padding_value=0)
|
| 312 |
+
# import pdb;pdb.set_trace()
|
| 313 |
+
non_zero_query_point = nn.utils.rnn.pad_sequence(non_zero_query_point, padding_value=-1).permute(1,0,2)
|
| 314 |
+
non_zero_query_mask = (non_zero_query_point.sum(dim=-1) < 0)
|
| 315 |
+
non_zero_query_point[non_zero_query_mask] = 0
|
| 316 |
+
# import pdb;pdb.set_trace()
|
| 317 |
+
spatial_tokens = point_sample(src_mask_features.permute(2,3,0,1), non_zero_query_point.flip(dims=(2,)).type(src_mask_features.dtype), align_corners=True).permute(2,0,1)
|
| 318 |
+
spatial_tokens[pos_neg_indicator==1] += self.pn_indicator.weight[0:1]
|
| 319 |
+
spatial_tokens[pos_neg_indicator==-1] += self.pn_indicator.weight[1:2]
|
| 320 |
+
|
| 321 |
+
src_spatial_queries += [spatial_tokens]
|
| 322 |
+
src_spatial_maskings += [non_zero_query_mask]
|
| 323 |
+
|
| 324 |
+
extra['visual_prompt_tokens'] = src_spatial_queries #[len,bz,C]
|
| 325 |
+
extra['visual_prompt_nonzero_mask'] = src_spatial_maskings # [bz,len]
|
| 326 |
+
|
| 327 |
+
return early_fusion, extra
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def vos_step2(self, images, task, language_dict_features, last_extra, targets=None, batch_name_list=None, is_train = False):
|
| 332 |
+
extra = last_extra
|
| 333 |
+
dist_loss = None
|
| 334 |
+
if True:
|
| 335 |
+
if task not in ['grounding','rvos']:
|
| 336 |
+
assert batch_name_list
|
| 337 |
+
calsses_name_list = batch_name_list
|
| 338 |
+
tokenized = self.tokenizer.batch_encode_plus(calsses_name_list,
|
| 339 |
+
max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, # 256
|
| 340 |
+
padding='max_length' if self.cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX else "longest", # max_length
|
| 341 |
+
return_special_tokens_mask=True,
|
| 342 |
+
return_tensors='pt',
|
| 343 |
+
truncation=True).to("cuda")
|
| 344 |
+
|
| 345 |
+
texts = (tokenized['input_ids'], tokenized['attention_mask'])
|
| 346 |
+
token_x = self.text_encoder(*texts)['last_hidden_state']
|
| 347 |
+
token_x = token_x @ self.lang_projection
|
| 348 |
+
lang_feat_pool = agg_lang_feat(token_x, tokenized['attention_mask'], pool_type="average") # (bs, 768)
|
| 349 |
+
extra['class_embeddings'] = lang_feat_pool
|
| 350 |
+
|
| 351 |
+
if isinstance(images,torch.Tensor):
|
| 352 |
+
features = self.backbone(images)
|
| 353 |
+
else:
|
| 354 |
+
features = self.backbone(images.tensor)
|
| 355 |
+
# bz = len(images)//2
|
| 356 |
+
# import pdb;pdb.set_trace()
|
| 357 |
+
mask_features, _, multi_scale_features, zero_loss = self.pixel_decoder.forward_features(features, masks=None, early_fusion = language_dict_features)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
outputs = self.predictor(multi_scale_features, mask_features, extra=extra, task=task, masks=None, targets=targets)
|
| 361 |
+
return outputs
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
|
| 365 |
|
| 366 |
|
| 367 |
|