File size: 5,392 Bytes
40f772a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import gradio as gr
from pipeline_controlnet_sd_xl_raw import StableDiffusionXLControlNetRAWPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler
from torchvision import transforms
from PIL import Image
import traceback

# ========== 1. Load Models ==========
# base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
# controlnet_path = "/mnt/wencheng/RAWPami/diffusers/examples/controlnet/controlnet-model"

# controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
# pipe = StableDiffusionXLControlNetRAWPipeline.from_pretrained(
#     base_model_path,
#     controlnet=controlnet,
#     torch_dtype=torch.float16
# )
pipe = StableDiffusionXLControlNetRAWPipeline.from_pretrained(
  "wencheng256/DiffusionRAW",
    torch_dtype=torch.float16
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()

# ========== 2. Utility function: tensor -> PIL ==========
def tensor_to_pil(img_tensor: torch.Tensor) -> Image.Image:
    if img_tensor.is_cuda:
        img_tensor = img_tensor.cpu()
    if img_tensor.dtype != torch.float32:
        img_tensor = img_tensor.float()
    img_tensor = img_tensor.clamp(0, 1)
    return transforms.ToPILImage()(img_tensor)

# ========== 3. Load a .pth file ==========
def load_pth_data(pth_path):
    data = torch.load(pth_path)
    rgb_tensor = data["rgb"]
    raw_tensor = data["raw"]
    mask_tensor = data["mask"]
    cond_tensor = data["condition"]

    # Assuming each key can contain multiple images; using the first index only
    raw_image_pil = tensor_to_pil(raw_tensor[0][:, :448])
    rgb_tensor = tensor_to_pil(torch.flip(rgb_tensor[0], dims=[0])[:, :448])
    mask_image_pil = tensor_to_pil(1 - mask_tensor[0])

    return rgb_tensor, raw_image_pil, mask_image_pil, raw_tensor, mask_tensor, cond_tensor

# ========== 4. Inference function ==========
def infer_fn(prompt, mask_edited, raw_tensor_state, mask_tensor_state, cond_tensor_state):
    """
    mask_edited: using tool='sketch' returns a dict containing {'image': PIL, 'mask': PIL}.
    """
    try:
        if isinstance(mask_edited, dict):
            # Usually we only need the drawn mask
            mask_edited = mask_edited["mask"]

        mask_edited_tensor = transforms.ToTensor()(mask_edited)
        # Keep only one channel as grayscale mask
        mask_edited_tensor = mask_edited_tensor[:1]
        mask_edited_tensor = mask_edited_tensor.unsqueeze(0).half()

        raw_t = raw_tensor_state.half()
        cond_t = cond_tensor_state.half()

        generator = torch.manual_seed(0)
        print("Mask shape:", mask_edited_tensor.shape)
        print("Raw shape:", raw_t.shape)
        print("Cond shape:", cond_t.shape)

        result = pipe(
            prompt=prompt,
            num_inference_steps=20,
            generator=generator,
            image=raw_t,
            mask_image=mask_edited_tensor,
            control_image=cond_t
        ).images[0]

        return tensor_to_pil(result)

    except Exception as e:
        traceback.print_exc()
        return "Error occurred during inference. Please check the terminal logs!"

def build_demo():
    with gr.Blocks() as demo:
        gr.Markdown("# DiffusionRAW ")

        # Provide a dropdown to select pth file
        pth_options = ["./data1.pth", "./data2.pth", "./data3.pth"]
        with gr.Row():
            pth_selector = gr.Dropdown(
                pth_options,
                value=pth_options[0],
                label="Select a PTH file"
            )
            load_button = gr.Button("Load")

        with gr.Row():
            # Display the raw image
            raw_display = gr.Image(
                label="Raw Image (Display Only)",
                interactive=False,
            )
            rgb_display = gr.Image(
                label="sRGB Image (Display Only)",
                interactive=False,
            )
            # Mask editor with sketch tool
            mask_editor = gr.Image(
                label="Mask (Sketch)",
                tool="sketch",
                type="pil",
                brush_color="#FFFFFF",
                interactive=True,
                width=512,
                height=512
            )

        # States to store tensors
        raw_tensor_state = gr.State()
        mask_tensor_state = gr.State()
        cond_tensor_state = gr.State()

        load_button.click(
            fn=load_pth_data,
            inputs=[pth_selector],
            outputs=[
                rgb_display,
                raw_display,
                mask_editor,
                raw_tensor_state,
                mask_tensor_state,
                cond_tensor_state
            ]
        )

        prompt_input = gr.Textbox(label="Prompt", value="An RAW Image.", lines=1)
        generate_button = gr.Button("Generate")
        output_image = gr.Image(label="Output", show_download_button=False)

        generate_button.click(
            fn=infer_fn,
            inputs=[
                prompt_input,
                mask_editor,
                raw_tensor_state,
                mask_tensor_state,
                cond_tensor_state
            ],
            outputs=[output_image]
        )

    return demo

if __name__ == "__main__":
    demo = build_demo()
    demo.launch(server_name="0.0.0.0", server_port=9112, debug=True)