Spaces:
Runtime error
Runtime error
File size: 6,409 Bytes
3f871dd 303fc54 3f871dd 303fc54 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd d83d3e2 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd d83d3e2 3f871dd 8e51149 3f871dd 8e51149 3f871dd 303fc54 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 3f871dd 8e51149 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
import torch
import speech_recognition as sr
from groq import Groq
import os
import tempfile
from gtts import gTTS
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set device (CPU only for Hugging Face Spaces free tier)
device = torch.device("cpu")
logger.info(f"Using device: {device}")
# Groq API client with API key from Hugging Face Secrets
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY environment variable not set")
raise ValueError("GROQ_API_KEY environment variable not set")
try:
client = Groq(api_key=GROQ_API_KEY)
logger.info("Grok client initialized successfully")
except Exception as e:
logger.error(f"Error initializing Groq client: {str(e)}")
raise
# Functions
def predict_text_emotion(text):
prompt = f"The user has entered text '{text}' classify user's emotion as happy or sad or anxious or angry. Respond in only one word."
try:
completion = client.chat.completions.create(
model="llama3-70b-8192",
messages=[{"role": "user", "content": prompt}],
temperature=1,
max_tokens=64,
top_p=1,
stream=False,
)
return completion.choices[0].message.content.strip().lower()
except Exception as e:
logger.error(f"Error with Groq API (text emotion): {str(e)}")
return "neutral"
def transcribe_audio(audio_path):
r = sr.Recognizer()
try:
with sr.AudioFile(audio_path) as source:
audio_text = r.listen(source)
text = r.recognize_google(audio_text)
return text
except sr.UnknownValueError:
return "I didn’t catch that—could you try again?"
except sr.RequestError as e:
logger.error(f"Speech recognition error: {str(e)}")
return "Speech recognition unavailable—try typing instead."
except Exception as e:
logger.error(f"Unexpected error in audio transcription: {str(e)}")
return "Error processing audio."
def generate_response(user_input, emotion):
prompt = f"The user is feeling {emotion}. They said: '{user_input}'. Respond in a friendly caring manner with the user so the user feels being loved."
try:
completion = client.chat.completions.create(
model="llama3-70b-8192",
messages=[{"role": "user", "content": prompt}],
temperature=1,
max_tokens=64,
top_p=1,
stream=False,
)
return completion.choices[0].message.content
except Exception as e:
logger.error(f"Error with Groq API (response generation): {str(e)}")
return "I'm here for you, but something went wrong. How can I help?"
def text_to_speech(text):
try:
tts = gTTS(text=text, lang='en', slow=False)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
tts.save(temp_audio.name)
return temp_audio.name
except Exception as e:
logger.error(f"Error generating speech: {str(e)}")
return None
# Chat function for Gradio with voice output
def chat_function(input_type, text_input, audio_input, chat_history):
if input_type == "text" and text_input:
user_input = text_input
elif input_type == "voice" and audio_input:
user_input = transcribe_audio(audio_input)
else:
return chat_history, "Please provide text or voice input.", gr.update(value=text_input), None
emotion = predict_text_emotion(user_input)
response = generate_response(user_input, emotion)
chat_history = chat_history or []
chat_history.append({"role": "user", "content": user_input})
chat_history.append({"role": "assistant", "content": response})
audio_output = text_to_speech(response)
return chat_history, f"Detected Emotion: {emotion}", "", audio_output
# Custom CSS for styling
css = """
.chatbot .message-user {
background-color: #e3f2fd;
border-radius: 10px;
padding: 10px;
margin: 5px 0;
}
.chatbot .message-assistant {
background-color: #c8e6c9;
border-radius: 10px;
padding: 10px;
margin: 5px 0;
}
.input-container {
padding: 10px;
background-color: #f9f9f9;
border-radius: 10px;
margin-top: 10px;
}
"""
# Build the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
gr.Markdown(
"""
# Multimodal Mental Health AI Agent
Chat with our empathetic AI designed to support you by understanding your emotions through text and voice.
"""
)
with gr.Row():
with gr.Column(scale=1):
emotion_display = gr.Textbox(label="Emotion", interactive=False, placeholder="Detected emotion will appear here")
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Conversation History", height=500, type="messages", elem_classes="chatbot")
with gr.Row(elem_classes="input-container"):
input_type = gr.Radio(["text", "voice"], label="Input Method", value="text")
text_input = gr.Textbox(label="Type Your Message", placeholder="How are you feeling today?", visible=True)
audio_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Your Message", visible=False)
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear Chat", variant="secondary")
audio_output = gr.Audio(label="Assistant Response", type="filepath", interactive=False, autoplay=True)
# Dynamic visibility based on input type
def update_visibility(input_type):
return gr.update(visible=input_type == "text"), gr.update(visible=input_type == "voice")
input_type.change(fn=update_visibility, inputs=input_type, outputs=[text_input, audio_input])
# Submit action with voice output
submit_btn.click(
fn=chat_function,
inputs=[input_type, text_input, audio_input, chatbot],
outputs=[chatbot, emotion_display, text_input, audio_output]
)
# Clear chat and audio
clear_btn.click(
lambda: ([], "", "", None),
inputs=None,
outputs=[chatbot, emotion_display, text_input, audio_output]
)
# Launch the app (commented out for Hugging Face Spaces)
# if __name__ == "__main__":
# app.launch(server_name="0.0.0.0", server_port=7860) |