Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import torch | |
import base64 | |
import requests | |
import random | |
import os | |
from io import BytesIO | |
from region_control import MultiDiffusion, get_views, preprocess_mask, seed_everything | |
from sketch_helper import get_high_freq_colors, color_quantization, create_binary_matrix | |
MAX_COLORS = 12 | |
sd = MultiDiffusion("cuda", "2.1") | |
is_shared_ui = True if "weizmannscience/multidiffusion-region-based" in os.environ['SPACE_ID'] else False | |
is_gpu_associated = True if torch.cuda.is_available() else False | |
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>" | |
load_js = """ | |
async () => { | |
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js" | |
fetch(url) | |
.then(res => res.text()) | |
.then(text => { | |
const script = document.createElement('script'); | |
script.type = "module" | |
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); | |
document.head.appendChild(script); | |
}); | |
} | |
""" | |
get_js_colors = """ | |
async (canvasData) => { | |
const canvasEl = document.getElementById("canvas-root"); | |
return [canvasEl._data] | |
} | |
""" | |
set_canvas_size =""" | |
async (aspect) => { | |
if(aspect ==='square'){ | |
_updateCanvas(512,512) | |
} | |
if(aspect ==='horizontal'){ | |
_updateCanvas(768,512) | |
} | |
if(aspect ==='vertical'){ | |
_updateCanvas(512,768) | |
} | |
} | |
""" | |
def process_sketch(canvas_data, binary_matrixes): | |
binary_matrixes.clear() | |
base64_img = canvas_data['image'] | |
image_data = base64.b64decode(base64_img.split(',')[1]) | |
image = Image.open(BytesIO(image_data)).convert("RGB") | |
im2arr = np.array(image) | |
colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']] | |
colors_fixed = [] | |
for color in colors: | |
r, g, b = color | |
if any(c != 255 for c in (r, g, b)): | |
binary_matrix = create_binary_matrix(im2arr, (r,g,b)) | |
binary_matrixes.append(binary_matrix) | |
colors_fixed.append(gr.update(value=f'<div style="display:flex;align-items: center;justify-content: center"><img width="20%" style="margin-right: 1em" src="file/{binary_matrix}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b})"></div></div>')) | |
visibilities = [] | |
colors = [] | |
for n in range(MAX_COLORS): | |
visibilities.append(gr.update(visible=False)) | |
colors.append(gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>')) | |
for n in range(len(colors_fixed)): | |
visibilities[n] = gr.update(visible=True) | |
colors[n] = colors_fixed[n] | |
return [gr.update(visible=True), binary_matrixes, *visibilities, *colors] | |
def process_generation(model, binary_matrixes, boostrapping, aspect, steps, seed, master_prompt, negative_prompt, *prompts): | |
global sd | |
if(model != "stabilityai/stable-diffusion-2-1-base"): | |
sd = MultiDiffusion("cuda", model) | |
if(seed == -1): | |
seed = random.randint(1, 2147483647) | |
seed_everything(seed) | |
dimensions = {"square": (512, 512), "horizontal": (768, 512), "vertical": (512, 768)} | |
width, height = dimensions.get(aspect, dimensions["square"]) | |
clipped_prompts = prompts[:len(binary_matrixes)] | |
prompts = [master_prompt] + list(clipped_prompts) | |
neg_prompts = [negative_prompt] * len(prompts) | |
fg_masks = torch.cat([preprocess_mask(mask_path, height // 8, width // 8, "cuda") for mask_path in binary_matrixes]) | |
bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True) | |
bg_mask[bg_mask < 0] = 0 | |
masks = torch.cat([bg_mask, fg_masks]) | |
print(masks.size()) | |
image = sd.generate(masks, prompts, neg_prompts, height, width, steps, bootstrapping=boostrapping) | |
return(image) | |
css = ''' | |
#color-bg{display:flex;justify-content: center;align-items: center;} | |
.color-bg-item{width: 100%; height: 32px} | |
#main_button{width:100%} | |
<style> | |
''' | |
with gr.Blocks(css=css) as demo: | |
binary_matrixes = gr.State([]) | |
gr.Markdown('''## Control your Stable Diffusion generation with Sketches (_beta_) | |
A beta version demo of [MultiDiffusion](https://arxiv.org/abs/2302.08113) region-based generation using Stable Diffusion 2.1 model. To get started, draw your masks and type your prompts. More details in the [project page](https://multidiffusion.github.io). | |
''') | |
if(is_shared_ui): | |
gr.HTML(f''' | |
<div style="margin-top:-20px">To skip the queue or try the technique with custom models, you may duplicate the space and associate an A10 GPU to it <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></div> | |
''') | |
elif(not is_gpu_associated): | |
gr.HTML(f''' | |
<div>You have succesfully duplicated the Space 🎉, but it is running on CPU - which may break this application. Go to the <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">settings</a> page to associate a GPU to it</div> | |
''') | |
with gr.Row(): | |
with gr.Box(elem_id="main-image"): | |
canvas_data = gr.JSON(value={}, visible=False) | |
model = gr.Textbox(label="The id of any Hugging Face model in the diffusers format", value="stabilityai/stable-diffusion-2-1-base", visible=False if is_shared_ui else True) | |
canvas = gr.HTML(canvas_html) | |
aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio", visible=False if is_shared_ui else True) | |
button_run = gr.Button("I've finished my sketch",elem_id="main_button", interactive=True) | |
prompts = [] | |
colors = [] | |
color_row = [None] * MAX_COLORS | |
with gr.Column(visible=False) as post_sketch: | |
general_prompt = gr.Textbox(label="General Prompt") | |
for n in range(MAX_COLORS): | |
with gr.Row(visible=False) as color_row[n]: | |
with gr.Box(elem_id="color-bg"): | |
colors.append(gr.HTML('<div class="color-bg-item" style="background-color: black"></div>')) | |
prompts.append(gr.Textbox(label="Prompt for this mask")) | |
with gr.Accordion("Advanced options", open=False): | |
negative_prompt = gr.Textbox(label="Global negative prompt for all prompts", value="low quality") | |
boostrapping = gr.Slider(label="Bootstrapping", minimum=1, maximum=100, value=10, step=1) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1) | |
final_run_btn = gr.Button("Generate!") | |
out_image = gr.Image(label="Result", ).style(width=512,height=512) | |
gr.Markdown(''' | |
![Examples](https://multidiffusion.github.io/pics/tight.jpg) | |
''') | |
#css_height = gr.HTML("<style>#main-image{width: 512px} .fixed-height{height: 512px !important}</style>") | |
aspect.change(None, inputs=[aspect], outputs=None, _js = set_canvas_size) | |
button_run.click(process_sketch, inputs=[canvas_data, binary_matrixes], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors, queue=False) | |
final_run_btn.click(process_generation, inputs=[model, binary_matrixes, boostrapping, aspect, steps, seed, general_prompt, negative_prompt, *prompts], outputs=out_image) | |
demo.load(None, None, None, _js=load_js) | |
demo.launch(debug=True) |