import sys import os project_dir = os.getcwd() sys.path.append(project_dir) import json from tqdm import tqdm from goldfish_lv import GoldFish_LV,split_subtitles,time_to_seconds import argparse import json import torch import re from tqdm import tqdm from PIL import Image from index import MemoryIndex import torch import random import numpy as np import torch.backends.cudnn as cudnn import shutil def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def get_arguments(): parser = argparse.ArgumentParser(description="Inference parameters") parser.add_argument("--neighbours", type=int, default=-1) parser.add_argument("--name", type=str,default="ckpt_92",help="name of the experiment") parser.add_argument("--add_unknown", action='store_true') parser.add_argument("--use_chatgpt", action='store_true') parser.add_argument("--use_choices_for_info", action='store_true') parser.add_argument("--use_gt_information", action='store_true') parser.add_argument("--inference_text", action='store_true') parser.add_argument("--use_gt_information_with_distraction", action='store_true') parser.add_argument("--num_distraction", type=int, default=2) parser.add_argument("--add_confidance_score", action='store_true') parser.add_argument("--use_original_video", action='store_true') parser.add_argument("--use_video_embedding", action='store_true') parser.add_argument("--use_clips_for_info", action='store_true') parser.add_argument("--use_GT_video", action='store_true') parser.add_argument("--use_gt_summary", action='store_true') parser.add_argument("--index_subtitles", action='store_true') parser.add_argument("--index_subtitles_together", action='store_true') parser.add_argument("--ask_the_question_early", action='store_true') parser.add_argument("--clip_in_ask_early", action='store_true') parser.add_argument("--summary_with_subtitles_only", action='store_true') parser.add_argument("--use_coherent_description", action='store_true') parser.add_argument("--start", default=0, type=int) parser.add_argument("--end", default=100000, type=int) parser.add_argument("--exp_name", type=str,default="",help="name of eval folder") parser.add_argument("--vision_only", action='store_true') parser.add_argument("--model_summary_only", action='store_true') parser.add_argument("--subtitles_only", action='store_true') parser.add_argument("--info_only", action='store_true') parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml") parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth") parser.add_argument("--add_subtitles", action='store_true') parser.add_argument("--eval_opt", type=str, default='all') parser.add_argument("--max_new_tokens", type=int, default=300) parser.add_argument("--batch_size", type=int, default=8) parser.add_argument("--lora_r", type=int, default=64) parser.add_argument("--lora_alpha", type=int, default=16) parser.add_argument("--video_path", type=str, help="path to the video") parser.add_argument("--use_openai_embedding",type=str2bool, default=False) parser.add_argument("--annotation_path", type=str, help="path to the annotation file") parser.add_argument("--videos_path", type=str, help="path to the videos directory") parser.add_argument("--subtitle_path", type=str, help="path to the subtitles directory") parser.add_argument("--movienet_annotations_dir", type=str, help="path to the movienet annotations directory") parser.add_argument("--video_clips_saving_path", type=str, help="path to save the splitted small video clips") parser.add_argument("--save_path", type=str, help="path to save the results") parser.add_argument("--options", nargs="+") return parser.parse_args() def time_to_seconds(subrip_time): return subrip_time.hours * 3600 + subrip_time.minutes * 60 + subrip_time.seconds + subrip_time.milliseconds / 1000 def clean_text(subtitles_text): # Remove unwanted characters except for letters, digits, and single quotes subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text) # Replace multiple spaces with a single space subtitles_text = re.sub(r'\s+', ' ', subtitles_text) return subtitles_text.strip() class LlamaVidQAEval (GoldFish_LV): def __init__(self,args): super().__init__(args) self.save_json_path = "new_workspace/clips_summary/movienet" if args.use_openai_embedding: self.save_pkls_path = "new_workspace/open_ai_embedding/movienet" else: self.save_pkls_path = "new_workspace/embedding/movienet" os.makedirs(self.save_json_path, exist_ok=True) annotation_path=args.annotation_path with open(annotation_path, 'r') as f: self.movies_dict = json.load(f) self.max_sub_len=400 self.max_num_images=45 def _get_movie_data(self,videoname): video_images_path =f"{args.videos_path}/{videoname}" movie_clips_path =f"{args.video_clips_saving_path}/{videoname}" subtitle_path = f"{args.subtitle_path}/{videoname}.srt" annotation_file=f"{args.movienet_annotations_dir}/{videoname}.json" # load the annotation file with open(annotation_file, 'r') as f: movie_annotation = json.load(f) return video_images_path,subtitle_path,movie_annotation,movie_clips_path def _store_subtitles_paragraphs(self,subtitle_path,important_data,number_of_paragraphs): paragraphs=[] movie_name=subtitle_path.split('/')[-1].split('.')[0] # if there is no story, split the subtitles into paragraphs paragraphs = split_subtitles(subtitle_path, number_of_paragraphs) for i,paragraph in enumerate(paragraphs): paragraph=clean_text(paragraph) important_data.update({f"subtitle_{i}__{movie_name}_clip_{str(i).zfill(2)}": paragraph}) return important_data def _get_shots_subtitles(self,movie_annotation): shots_subtitles={} if movie_annotation['story'] is not None: for section in movie_annotation['story']: for shot in section['subtitle']: shot_number=shot['shot'] shot_subtitle=' '.join(shot['sentences']) shots_subtitles[shot_number]=clean_text(shot_subtitle) return shots_subtitles def prepare_input_images(self,clip_path,shots_subtitles,use_subtitles): total_frames=len(os.listdir(clip_path)) movie_name=clip_path.split('/')[-2] clip_name=clip_path.split('/')[-1] sampling_interval=int(total_frames//self.max_num_images) if sampling_interval==0: sampling_interval=1 use_subtitles_save_name="subtitles" if use_subtitles else "no_subtitles" video_frames_path = os.path.join(clip_path) total_num_frames=len(os.listdir(video_frames_path)) sampling_interval = round(total_num_frames / self.max_num_images) if sampling_interval == 0: sampling_interval = 1 number_of_words=0 video_images_list=sorted(os.listdir(video_frames_path)) images = [] img_placeholder = "" for i,frame in enumerate(video_images_list): if i % sampling_interval == 0: frame = Image.open(os.path.join(video_frames_path,frame)).convert("RGB") frame = self.vis_processor(frame) images.append(frame) img_placeholder += '' shot_num=video_images_list[i].split('_')[1] if shots_subtitles.get(shot_num) is not None: sub=clean_text(shots_subtitles[shot_num]) number_of_words+=len(sub.split(' ')) if number_of_words<= self.max_sub_len and use_subtitles: img_placeholder+=f'{sub}' if len(images) >= self.max_num_images: break if len(images) ==0: print("Video not found",video_frames_path) if 0 0 else "" if previous_caption != "": img_placeholder = previous_caption+" " else: img_placeholder = "" number_of_words=0 max_num_words=400 max_num_images=45 clip_number_str=str(clip_number).zfill(2) clip_path=os.path.join(movie_clips_path,f"{movie_name}_clip_{clip_number_str}") os.makedirs(clip_path, exist_ok=True) conversation="" for j in range(i,i+135,3): if j >= len(video_images_list): break image_path = os.path.join(video_images_path, video_images_list[j]) # copy the images to clip folder # if the image is already copied, skip it if not os.path.exists(os.path.join(clip_path,video_images_list[j])): shutil.copy(image_path,clip_path) img=Image.open(image_path) images.append(self.vis_processor(img)) img_placeholder += '' shot_num=int(video_images_list[j].split('_')[1]) if use_subtitles: if shots_subtitles.get(shot_num) is not None: sub=clean_text(shots_subtitles[shot_num]) number_of_words+=len(sub.split(' ')) if number_of_words<= max_num_words and use_subtitles: img_placeholder+=f'{sub}' conversation+=sub+" " if len(images) >= max_num_images: break if len(images) ==0: print("Video not found",video_images_path) continue if 0 0: batch_images = torch.stack(batch_images) batch_pred=self.run_images(batch_images,batch_instructions) for k,pred in enumerate(batch_pred): max_caption_index += 1 videos_summaries.append(pred) if args.use_coherent_description: preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[k]}" else: preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = pred if conversations[k]!="" and use_subtitles: preds[f'subtitle_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = conversations[k] batch_images=[] batch_instructions=[] return preds def movie_inference(self,videoname,use_subtitles): embedding_path=os.path.join(self.save_pkls_path,f"{videoname}.pkl") if args.index_subtitles_together: file_path=os.path.join(self.save_json_path,f"{videoname}.json") embedding_path=os.path.join(self.save_pkls_path,f"{videoname}.pkl") else: file_path=os.path.join(self.save_json_path,f"no_subtiltles_{videoname}.json") embedding_path=os.path.join(self.save_pkls_path,f"no_subtiltles_{videoname}.pkl") if args.subtitles_only: file_path=os.path.join(self.save_json_path,f"subtiltles_only_{videoname}.json") embedding_path=os.path.join(self.save_pkls_path,f"subtiltles_only_{videoname}.pkl") if os.path.exists(file_path): print("Already processed") return file_path,embedding_path important_data = {} video_images_path,subtitle_path,movie_annotation,movie_clips_path=self._get_movie_data(videoname) shots_subtitles={} if use_subtitles: if movie_annotation['story'] is not None: shots_subtitles=self._get_shots_subtitles(movie_annotation) if args.subtitles_only: number_of_paragraphs=20 important_data=self._store_subtitles_paragraphs(subtitle_path,important_data,number_of_paragraphs) else: preds=self._get_movie_summaries(video_images_path,use_subtitles,shots_subtitles,movie_clips_path) if len(shots_subtitles)==0 and use_subtitles: number_of_paragraphs=len(preds) important_data=self._store_subtitles_paragraphs(subtitle_path,important_data,number_of_paragraphs) important_data.update(preds) with open(file_path, 'w') as file: json.dump(important_data, file, indent=4) return file_path,embedding_path def answer_movie_questions_RAG(self,qa_list,information_RAG_path,embedding_path): QA_external_memory=MemoryIndex(args.neighbours, use_openai=args.use_openai_embedding) if os.path.exists(embedding_path): QA_external_memory.load_embeddings_from_pkl(embedding_path) else: QA_external_memory.load_documents_from_json(information_RAG_path,embedding_path) summarization_external_memory=MemoryIndex(-1, use_openai=args.use_openai_embedding) if os.path.exists(embedding_path): summarization_external_memory.load_embeddings_from_pkl(embedding_path) else: summarization_external_memory.load_documents_from_json(information_RAG_path,embedding_path) # get the most similar context from the external memory to this instruction general_related_context_keys_list=[] general_related_context_documents_list=[] summary_related_context_documents_list=[] summary_related_context_keys_list=[] total_batch_pred=[] related_text=[] qa_genearl_prompts=[] qa_summary_prompts=[] qa_general=[] qa_summary=[] for qa in qa_list: if qa['q_type']=='summary': related_context_documents,related_context_keys = summarization_external_memory.search_by_similarity(qa['Q']) summary_related_context_documents_list.append(related_context_documents) summary_related_context_keys_list.append(related_context_keys) prompt=self.prepare_prompt(qa) qa_summary_prompts.append(prompt) qa_summary.append(qa) else: related_context_documents,related_context_keys = QA_external_memory.search_by_similarity(qa['Q']) general_related_context_keys_list.append(related_context_keys) general_related_context_documents_list.append(related_context_documents) prompt=self.prepare_prompt(qa) qa_genearl_prompts.append(prompt) qa_general.append(qa) # if I have summary questions answer first, without the need to use clips for information if len(qa_summary_prompts)>0: # Here the retrieved clips are all movie clips context_information_list=[] for related_context_keys in summary_related_context_keys_list: most_related_clips=self.get_most_related_clips(related_context_keys) context_information="" for clip_name in most_related_clips: clip_conversation="" general_sum="" for key in related_context_keys: if clip_name in key and 'caption' in key: general_sum="Clip Summary: "+summarization_external_memory.documents[key] if clip_name in key and 'subtitle' in key: clip_conversation="Clip Subtitles: "+summarization_external_memory.documents[key] if args.use_coherent_description: context_information+=f"{general_sum}\n" else: if args.model_summary_only: context_information+=f"{general_sum}\n" elif args.subtitles_only: context_information+=f"{clip_conversation}\n" else: context_information+=f"{general_sum},{clip_conversation}\n" context_information_list.append(context_information) if args.use_chatgpt : batch_pred=self.inference_RAG_chatGPT(qa_summary_prompts,context_information_list) else: batch_pred=self.inference_RAG(qa_summary_prompts,context_information_list) total_batch_pred.extend(batch_pred) related_text.extend(context_information_list) if args.use_clips_for_info: batch_pred,general_related_context_keys_list=self.use_clips_for_info(qa_general,general_related_context_keys_list,QA_external_memory) total_batch_pred.extend(batch_pred) related_text.extend(general_related_context_keys_list) else: related_context_documents_text_list=[] for related_context_documents,related_context_keys in zip(general_related_context_documents_list,general_related_context_keys_list): related_information="" most_related_clips=self.get_most_related_clips(related_context_keys) for clip_name in most_related_clips: clip_conversation="" general_sum="" for key in QA_external_memory.documents.keys(): if clip_name in key and 'caption' in key: general_sum="Clip Summary: "+QA_external_memory.documents[key] if clip_name in key and 'subtitle' in key: clip_conversation="Clip Subtitles: "+QA_external_memory.documents[key] if args.use_coherent_description: related_information+=f"{general_sum}\n" else: if args.model_summary_only: related_information+=f"{general_sum}\n" elif args.subtitles_only: related_information+=f"{clip_conversation}\n" else: related_information+=f"{general_sum},{clip_conversation}\n" related_context_documents_text_list.append(related_information) if len (qa_genearl_prompts) >0 and args.use_chatgpt : batch_pred=self.inference_RAG_chatGPT(qa_genearl_prompts,related_context_documents_text_list) elif len (qa_genearl_prompts) >0: batch_pred=self.inference_RAG(qa_genearl_prompts,related_context_documents_text_list) total_batch_pred.extend(batch_pred) related_text.extend(related_context_documents_text_list) assert len(total_batch_pred)==len(related_text) return total_batch_pred, related_text def get_most_related_clips(self,related_context_keys): most_related_clips=[] for context_key in related_context_keys: if len(context_key.split('__'))>1: most_related_clips.append(context_key.split('__')[1]) if len(most_related_clips)==args.neighbours: break assert len(most_related_clips)!=0, f"No related clips found {related_context_keys}" return most_related_clips def clip_inference(self,clips_name,prompts): setup_seeds(seed) images_batch, instructions_batch = [], [] for clip_name, prompt in zip(clips_name, prompts): movie_name=clip_name.split('_')[0] video_images_path,subtitle_path,movie_annotation,movie_clips_path=self._get_movie_data(movie_name) clip_path=os.path.join(movie_clips_path,clip_name) if movie_annotation['story'] is not None: shots_subtitles=self._get_shots_subtitles(movie_annotation) else: shots_subtitles={} images,img_placeholder=self.prepare_input_images(clip_path,shots_subtitles,use_subtitles=not args.vision_only) instruction = img_placeholder + '\n' + prompt images_batch.append(images) instructions_batch.append(instruction) # run inference for the batch images_batch=torch.stack(images_batch) batch_pred=self.run_images(images_batch,instructions_batch) return batch_pred def prepare_prompt(self,qa): prompt=qa["Q"] return prompt def use_clips_for_info(self,qa_list,related_context_keys_list,external_memory): total_batch_pred=[] questions=[] related_information_list=[] related_context_keys_list_new=[] for qa,related_context_keys in zip(qa_list,related_context_keys_list): most_related_clips=self.get_most_related_clips(related_context_keys) question=qa['Q'] # prompt=self.prepare_prompt(qa) # prompt+=" and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n" prompt=f"From this video extract the related information to This question and provide an explaination for your answer and If you can't find related information, say 'I DON'T KNOW' as option 5 because maybe the questoin is not related to the video content.\n the question is :\n {question}\n your answer :" # all_info=self.clip_inference(most_related_clips,[prompt]*len(most_related_clips)) # make the most_related_clips has unique elements (if retrival from vision summary and conversations) most_related_clips=list(set(most_related_clips)) batch_inference=[] all_info=[] for related_clip in most_related_clips: batch_inference.append(related_clip) if len(batch_inference)0: all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference))) related_information="" for info,clip_name in zip(all_info,most_related_clips): clip_conversation="" general_sum="" for key in external_memory.documents.keys(): if clip_name in key and 'caption' in key: general_sum="Clip Summary: "+external_memory.documents[key] if clip_name in key and 'subtitle' in key: clip_conversation="Clip Subtitles: "+external_memory.documents[key] if args.use_coherent_description: related_information+=f"question_related_information: {info},{general_sum}\n" else: if args.model_summary_only: related_information+=f"{general_sum},question_related_information: {info}\n" elif args.info_only: related_information+=f"question_related_information: {info}\n" elif args.subtitles_only: related_information+=f"{clip_conversation},question_related_information: {info}\n" else: related_information+=f"{general_sum},{clip_conversation},question_related_information: {info}\n" # related_information+=f"question_related_information: {info},{clip_conversation}\n" questions.append(question) related_information_list.append(related_information) related_context_keys.append(related_information) related_context_keys_list_new.append(related_context_keys) if len(questions)< args.batch_size: continue setup_seeds(seed) if args.use_chatgpt : batch_pred=self.inference_RAG_chatGPT(questions, related_information_list) else: batch_pred=self.inference_RAG(questions, related_information_list) for pred in batch_pred: total_batch_pred.append(pred) questions=[] related_information_list=[] if len(questions)>0: setup_seeds(seed) if args.use_chatgpt : batch_pred=self.inference_RAG_chatGPT(questions, related_information_list) else: batch_pred=self.inference_RAG(questions, related_information_list) for pred in batch_pred: total_batch_pred.append(pred) return total_batch_pred,related_context_keys_list_new def define_save_name(self): save_name="subtitles" if args.index_subtitles_together else "no_subtitles" save_name+="_clips_for_info" if args.use_clips_for_info else "" save_name+="_chatgpt" if args.use_chatgpt else "" save_name+="_vision_only" if args.vision_only else "" save_name+="_model_summary_only" if args.model_summary_only else "" save_name+="_subtitles_only" if args.subtitles_only else "" save_name+="_info_only" if args.info_only else "" print("save_name",save_name) return save_name def eval_llama_vid(self): ## LLAMa vid QA evaluation full_questions_result=[] movie_number=0 start=args.start end=args.end save_name=self.define_save_name() for movie in tqdm(self.movies_dict.keys()): if args.start <=movie_number < args.end: save_dir=f"new_workspace/results/llama_vid/{args.exp_name}/{save_name}_{args.neighbours}_neighbours" if os.path.exists( f"{save_dir}/{movie}.json" ): print(f"Movie {movie} already processed") with open(f"{save_dir}/{movie}.json", 'r') as f: pred_json = json.load(f) full_questions_result.extend(pred_json) continue use_subtitles_while_generating_summary=not args.vision_only information_RAG_path,embedding_path=self.movie_inference(movie,use_subtitles_while_generating_summary) external_memory=MemoryIndex(args.neighbours, use_openai=args.use_openai_embedding) if os.path.exists(embedding_path): external_memory.load_embeddings_from_pkl(embedding_path) else: external_memory.load_documents_from_json(information_RAG_path,emdedding_path=embedding_path) save_dir=f"new_workspace/results/llama_vid/{args.exp_name}/{save_name}_{args.neighbours}_neighbours" os.makedirs(save_dir, exist_ok=True) pred_json=[] batch_questions=[] for qa in tqdm(self.movies_dict[movie],desc="Inference questions"): batch_questions.append(qa) if len(batch_questions)0: model_ans,related_text=self.answer_movie_questions_RAG(batch_questions,information_RAG_path,embedding_path) for qa,ans,related_info in zip(batch_questions,model_ans,related_text): qa.update({'pred':ans}) qa.update({'related_info':related_info}) pred_json.append(qa) full_questions_result.extend(pred_json) with open(f"{save_dir}/{movie}.json", 'w') as fp: json.dump(pred_json, fp) print(f"Movie {movie} prediction saved to {save_dir}/{movie}.json") movie_number+=1 with open(f"{save_dir}/full_pred_s{start}_end{end}.json", 'w') as fp: json.dump(full_questions_result, fp) args=get_arguments() def setup_seeds(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True import yaml # read this file test_configs/llama2_test_config.yaml with open('test_configs/llama2_test_config.yaml') as file: config = yaml.load(file, Loader=yaml.FullLoader) seed=config['run']['seed'] print("seed",seed) if __name__ == "__main__": setup_seeds(seed) llama_vid_eval=LlamaVidQAEval(args) llama_vid_eval.eval_llama_vid()