Spaces:
Running
Running
#SBATCH --partition=batch | |
#SBATCH --job-name=L_RAG_general_summary_3_subtitles_together_%j | |
#SBATCH --output=L_RAG_general_summary_3_subtitles_together_%j.out | |
#SBATCH --error=L_RAG_general_summary_3_subtitles_together_%j.err | |
#SBATCH --time=0-23:00:00 | |
#SBATCH --mem=64G | |
#SBATCH --gres=gpu:a100:1 | |
#SBATCH --nodes=1 | |
## run the application: | |
CKPT_PATH="checkpoints/video_llama_checkpoint_last.pth" | |
START=$1 | |
END=$2 | |
BATCH_SIZE=4 | |
NEIGHBOURS=3 | |
## Dataset paths | |
videos_path="path to the videos" | |
subtitle_path="path to the subtitles" | |
video_clips_saving_path="path to save the video clips" | |
annotation_file="path to the annotation file" | |
movienet_annotations_dir="path to the movienet annotations directory" | |
# if you want to use openai embedding, then you need to set the OPENAI_API_KEY | |
use_openai_embedding=True | |
export OPENAI_API_KEY="your_openai_key" | |
# if start and end are not provided, then use the whole dataset | |
if [ -z "$START" ] | |
then | |
START=0 | |
fi | |
if [ -z "$END" ] | |
then | |
END=100000 | |
fi | |
echo "Start: $START" | |
echo "End: $END" | |
# # Vision + subtitles | |
exp_name="Vsion_subtitles_model_summary_subtitle" | |
echo $exp_name | |
python evaluation/eval_goldfish_llama_vid.py --index_subtitles_together --neighbours=$NEIGHBOURS --start=$START --end=$END --batch_size $BATCH_SIZE --ckpt $CKPT_PATH --exp_name=$exp_name\ | |
--videos_path $videos_path --subtitle_path $subtitle_path --video_clips_saving_path $video_clips_saving_path --annotation_path $annotation_path --movienet_annotations_dir $movienet_annotations_dir --use_openai_embedding $use_openai_embedding | |
# vision only | |
# exp_name="vision_only" | |
# echo $exp_name | |
# python eval_goldfish_llama_vid.py --vision_only --model_summary_only --neighbours=$NEIGHBOURS --start=$START --end=$END --batch_size $BATCH_SIZE --ckpt $CKPT_PATH --exp_name=$exp_name\ | |
# --videos_path $videos_path --subtitle_path $subtitle_path --video_clips_saving_path $video_clips_saving_path --annotation_path $annotation_path --movienet_annotations_dir $movienet_annotations_dir --use_openai_embedding $use_openai_embedding | |
# subtiltes only (eliminate the vision) | |
# exp_name="subtitles_only" | |
# echo $exp_name | |
# python eval_goldfish_llama_vid.py --index_subtitles_together --subtitles_only --neighbours=$NEIGHBOURS --start=$START --end=$END --batch_size $BATCH_SIZE --ckpt $CKPT_PATH --exp_name=$exp_name\ | |
# --videos_path $videos_path --subtitle_path $subtitle_path --video_clips_saving_path $video_clips_saving_path --annotation_path $annotation_path --movienet_annotations_dir $movienet_annotations_dir --use_openai_embedding $use_openai_embedding | |