Spaces:
Running
Running
File size: 15,805 Bytes
dc80a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import sys
import os
project_dir = os.getcwd()
sys.path.append(project_dir)
import json
from tqdm import tqdm
from goldfish_lv import GoldFish_LV,split_subtitles,time_to_seconds
import argparse
import json
import argparse
import torch
import re
from PIL import Image
# from openai import OpenAI
from index import MemoryIndex
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--neighbours", type=int, default=-1)
parser.add_argument("--name", type=str,default="ckpt_92",help="name of the experiment")
parser.add_argument("--exp_name", type=str,default="",help="name of the experiment")
parser.add_argument("--add_unknown", action='store_true')
parser.add_argument("--use_chatgpt", action='store_true')
parser.add_argument("--use_choices_for_info", action='store_true')
parser.add_argument("--use_gt_information", action='store_true')
parser.add_argument("--inference_text", action='store_true')
parser.add_argument("--use_gt_information_with_distraction", action='store_true')
parser.add_argument("--num_distraction", type=int, default=2)
parser.add_argument("--add_confidance_score", action='store_true')
parser.add_argument("--use_original_video", action='store_true')
parser.add_argument("--use_video_embedding", action='store_true')
parser.add_argument("--use_clips_for_info", action='store_true')
parser.add_argument("--use_GT_video", action='store_true')
parser.add_argument("--use_gt_summary", action='store_true')
parser.add_argument("--ask_the_question_early", action='store_true')
parser.add_argument("--clip_in_ask_early", action='store_true')
parser.add_argument("--use_coherent_description", action='store_true')
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=100000, type=int)
parser.add_argument("--vision_only", action='store_true')
parser.add_argument("--model_summary_only", action='store_true')
parser.add_argument("--subtitles_only", action='store_true')
parser.add_argument("--subtitles_only_after_retrieval", action='store_true')
parser.add_argument("--info_only", action='store_true')
parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml")
parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth")
parser.add_argument("--add_subtitles", action='store_true')
parser.add_argument("--eval_opt", type=str, default='all')
parser.add_argument("--max_new_tokens", type=int, default=300)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--lora_r", type=int, default=64)
parser.add_argument("--lora_alpha", type=int, default=16)
parser.add_argument("--video_path", type=str, help="path to the video")
parser.add_argument("--options", nargs="+")
return parser.parse_args()
def clean_text(subtitles_text):
# Remove unwanted characters except for letters, digits, and single quotes
subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text)
# Replace multiple spaces with a single space
subtitles_text = re.sub(r'\s+', ' ', subtitles_text)
return subtitles_text.strip()
class TVQAEVALRetrieval (GoldFish_LV):
def __init__(self, args: argparse.Namespace) -> None:
super().__init__(args)
self.tv_shows_mapping={"Grey's Anatomy":"grey_frames", 'How I Met You Mother':"met_frames", 'Friends':"friends_frames", 'The Big Bang Theory':"bbt_frames", 'House M.D.':"house_frames", 'Castle':"castle_frames"}
self.save_long_videos_path = f"workspace/results/tv_shows/{args.name}"
os.makedirs(self.save_long_videos_path, exist_ok=True)
self.max_sub_len=400
self.max_num_images=45
self.fps=3
with open("datasets/evaluation_datasets/goldfish_eval_datasets/tvqa/tvqa_preprocessed_subtitles.json") as f:
self.subtitles_list=json.load(f)
self.subtitles={}
for sub in self.subtitles_list:
self.subtitles[sub["vid_name"]]=sub["sub"]
def _get_TVs_data(self):
json_file_path="datasets/evaluation_datasets/long_video_datasets/tvqa/tvqa_val_edited.json"
frames_path="/ibex/project/c2090/datasets/TVR_dataset/videos/video_files/frames_hq/"
subtitle_path="/ibex/project/c2090/datasets/TVR_dataset/videos/tvqa_subtitles"
with open (json_file_path) as f:
tv_shows_data=json.load(f)
return tv_shows_data,frames_path,subtitle_path
return vision_questions,subtitle_questions,frames_path
def episode_inference(self,video_frames_path,qa,use_subtitles):
batch_prepared_images,batch_img_placeholder,gt_clip_numbers=self.prepare_input_images(video_frames_path,qa,use_subtitles,n_clips=10)
preds={}
batch_instructions=[]
batch_images=[]
important_data = {}
conversations=[]
clips_numbers=[]
for clip_number,images,img_placeholder in zip(range(len(batch_prepared_images)),batch_prepared_images,batch_img_placeholder):
instruction = img_placeholder + '\n' + self.summary_instruction
batch_images.append(images)
batch_instructions.append(instruction)
conv=img_placeholder.replace('<Img><ImageHere>','')
conv=conv.replace('<Cap>',' ')
conversations.append(conv.strip())
clips_numbers.append(clip_number)
if len(batch_images) < args.batch_size:
continue
batch_images = torch.stack(batch_images)
setup_seeds(seed)
batch_pred=self.run_images(batch_images,batch_instructions)
for i,pred in enumerate(batch_pred):
if args.use_coherent_description:
preds[f'caption__{clips_numbers[i]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[i]}"
else:
if use_subtitles:
if conversations[i] != "":
important_data.update({f"subtitle__{clips_numbers[i]}": conversations[i]})
preds[f'caption__{clips_numbers[i]}'] = pred
batch_images=[]
batch_instructions=[]
conversations=[]
clips_numbers=[]
# run inference for the last batch
if len(batch_images)>0:
batch_images = torch.stack(batch_images)
batch_pred=self.run_images(batch_images,batch_instructions)
for i,pred in enumerate(batch_pred):
if args.use_coherent_description:
preds[f'caption__{clips_numbers[i]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[i]}"
else:
if use_subtitles:
if conversations[i] != "":
important_data.update({f"subtitle__{clips_numbers[i]}": conversations[i]})
preds[f'caption__{clips_numbers[i]}'] = pred
batch_images=[]
batch_instructions=[]
clips_numbers=[]
return preds,important_data ,gt_clip_numbers
def episode_inference_only_subtitles(self,video_frames_path,qa):
use_subtitles=True
batch_prepared_images,batch_img_placeholder,gt_clip_numbers=self.prepare_input_images(video_frames_path,qa,use_subtitles,n_clips=10)
important_data = {}
for clip_number,img_placeholder in enumerate(batch_img_placeholder) :
conv=img_placeholder.replace('<Img><ImageHere>','')
conv=conv.replace('<Cap>',' ')
conversation=conv.strip()
conversation=clean_text(conversation)
if conversation != "":
important_data.update({f"subtitle__{clip_number}": conversation})
return important_data ,gt_clip_numbers
def prepare_input_images(self,video_frames_path,qa,use_subtitles,n_clips=10):
batch_images=[]
batch_img_placeholder = []
clip_name=video_frames_path.split('/')[-1]
images=[]
img_placeholders = []
gt_clip_numbers = set()
gt_start_time=qa['ts'][0]
gt_end_time=qa['ts'][1]
total_num_frames=len(os.listdir(video_frames_path))
subtitle_text_in_interval = ""
history_subtitles = {}
number_of_sub_words=0
# samples_per_clip = total_num_frames // n_clips
samples_per_clip=45
clip_num=0
for i,frame in enumerate(sorted(os.listdir(video_frames_path))):
# Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle
# we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds
if self.subtitles.get(clip_name,False) and use_subtitles:
for subtitle in self.subtitles[clip_name]:
if (subtitle['start'] <= (i / self.fps) <= subtitle['end']) and subtitle['text'] not in subtitle_text_in_interval:
if not history_subtitles.get(subtitle['text'],False):
subtitle_text_in_interval+=subtitle['text']+" "
history_subtitles[subtitle['text']]=True
break
if gt_start_time<=(i/self.fps)<= gt_end_time:
gt_clip_numbers.add(clip_num)
if i % samples_per_clip == 0 and i != 0:
# here we have one clip , let's sample 45 frames from images array
sample_value=len(images)//self.max_num_images
if sample_value==0:
sample_value=1
frames_indices = [i for i in range(0, len(images), sample_value)]
samples_images=[]
img_placeholder=''
for j in frames_indices:
samples_images.append(images[j])
img_placeholder+=img_placeholders[j]
if len(samples_images) >= self.max_num_images:
break
if 0 <len(samples_images) < self.max_num_images:
last_item = samples_images[-1]
while len(samples_images) < self.max_num_images:
samples_images.append(last_item)
img_placeholder += '<Img><ImageHere>'
samples_images = torch.stack(samples_images)
batch_images.append(samples_images)
batch_img_placeholder.append(img_placeholder)
img_placeholders =[]
images = []
clip_num+=1
frame = Image.open(os.path.join(video_frames_path,frame)).convert("RGB")
frame = self.vis_processor(frame)
images.append(frame)
img_placeholder = '<Img><ImageHere>'
if number_of_sub_words<self.max_sub_len and use_subtitles:
if subtitle_text_in_interval != "":
subtitle_text_in_interval=clean_text(subtitle_text_in_interval)
img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
number_of_sub_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
img_placeholders.append(img_placeholder)
return batch_images,batch_img_placeholder,list(gt_clip_numbers)
def test_retrieval(self,indexed_data_path,qa,gt_clip_numbers):
external_memory=MemoryIndex(args.neighbours, use_openai=True)
external_memory.load_documents_from_json(indexed_data_path)
question=qa['desc']
related_context_documents,related_context_keys = external_memory.search_by_similarity(question)
print(f"related_context_keys {related_context_keys}")
print(f"gt_clip_numbers {gt_clip_numbers}")
for key in related_context_keys:
clip_idx=int(key.split('__')[-1])
if clip_idx in gt_clip_numbers:
return True
return False
def get_ground_truth_clip(self,video_frames_path,qa):
gt_clip_numbers = set()
gt_start_time=qa['ts'][0]
gt_end_time=qa['ts'][1]
samples_per_clip=45
clip_num=0
for i in range(len(os.listdir(video_frames_path))):
if gt_start_time<=(i/self.fps)<= gt_end_time:
gt_clip_numbers.add(clip_num)
if i % samples_per_clip == 0 and i != 0:
clip_num+=1
return list(gt_clip_numbers)
def eval_tv_shows(self,):
vision_questions,subtitle_questions,frames_path=self._get_TVs_data()
number_of_videos=0
start=args.start
end=args.end
if args.exp_name=="vision":
questions=vision_questions
else:
questions=subtitle_questions
correct_retrieval=0
wrong_retrieval=0
for qa in questions:
# Generate clips summary and store the important data (summary and subtitles) in json file
if start<=number_of_videos<end:
show_name=qa['vid_name'].split('_')[0]
if self.tv_shows_mapping.get(show_name,False):
folder_name=self.tv_shows_mapping[show_name]
else:
folder_name=self.tv_shows_mapping['bbt']
clip_frames_path =os.path.join(frames_path,folder_name,qa['vid_name'])
save_name="subtitles_only" if args.subtitles_only else "vision_only" if args.vision_only else "vision_subtitles"
indexed_data_path=os.path.join(self.save_long_videos_path,f"{qa['vid_name']}_{args.exp_name}_{save_name}_num_{number_of_videos}.json")
if not os.path.exists(indexed_data_path):
if args.subtitles_only :
# TODO
important_data,gt_clip_numbers=self.episode_inference_only_subtitles(clip_frames_path,qa)
else:
preds,important_data ,gt_clip_numbers=self.episode_inference(clip_frames_path,qa,use_subtitles=not args.vision_only)
important_data.update(preds)
with open(indexed_data_path, 'w') as file:
json.dump(important_data, file, indent=4)
else:
gt_clip_numbers=self.get_ground_truth_clip(clip_frames_path,qa)
retrieval_res=self.test_retrieval(indexed_data_path,qa,gt_clip_numbers)
if retrieval_res==True:
correct_retrieval+=1
else:
wrong_retrieval+=1
number_of_videos+=1
save_dir=f"workspace/eval/retrieval/{args.exp_name}_neighbors_{args.neighbours}"
save_dir+="_subtitles_only" if args.subtitles_only else "_vision_only" if args.vision_only else "_vision_subtitles"
os.makedirs(save_dir,exist_ok=True)
with open(f"{save_dir}/s{start}_end{end}.json", 'w') as fp:
json.dump({"correct":correct_retrieval,"wrong":wrong_retrieval}, fp)
args=get_arguments()
def setup_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
import yaml
with open('test_configs/llama2_test_config.yaml') as file:
config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)
if __name__ == "__main__":
setup_seeds(seed)
tvqa_eval=TVQAEVALRetrieval(args)
tvqa_eval.eval_tv_shows() |