File size: 15,805 Bytes
dc80a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import sys 
import os
project_dir = os.getcwd()
sys.path.append(project_dir)
import json 
from tqdm import tqdm
from goldfish_lv import GoldFish_LV,split_subtitles,time_to_seconds
import argparse
import json
import argparse
import torch
import re
from PIL import Image
# from openai import OpenAI
from index import MemoryIndex  
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn

def get_arguments():
    parser = argparse.ArgumentParser(description="Inference parameters")
    parser.add_argument("--neighbours", type=int, default=-1)
    parser.add_argument("--name", type=str,default="ckpt_92",help="name of the experiment")
    parser.add_argument("--exp_name", type=str,default="",help="name of the experiment")
    parser.add_argument("--add_unknown", action='store_true')
    parser.add_argument("--use_chatgpt", action='store_true')
    parser.add_argument("--use_choices_for_info", action='store_true')
    parser.add_argument("--use_gt_information", action='store_true')
    parser.add_argument("--inference_text", action='store_true')
    parser.add_argument("--use_gt_information_with_distraction", action='store_true')
    parser.add_argument("--num_distraction", type=int, default=2)
    parser.add_argument("--add_confidance_score", action='store_true')
    parser.add_argument("--use_original_video", action='store_true')
    parser.add_argument("--use_video_embedding", action='store_true')
    parser.add_argument("--use_clips_for_info", action='store_true')
    parser.add_argument("--use_GT_video", action='store_true')
    parser.add_argument("--use_gt_summary", action='store_true')
    
    parser.add_argument("--ask_the_question_early", action='store_true')
    parser.add_argument("--clip_in_ask_early", action='store_true')
    parser.add_argument("--use_coherent_description", action='store_true')
    
    parser.add_argument("--start", default=0, type=int)
    parser.add_argument("--end", default=100000, type=int)
    
    parser.add_argument("--vision_only", action='store_true')
    parser.add_argument("--model_summary_only", action='store_true')
    parser.add_argument("--subtitles_only", action='store_true')
    parser.add_argument("--subtitles_only_after_retrieval", action='store_true')
    parser.add_argument("--info_only", action='store_true')
    
    parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml")
    parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth")
    parser.add_argument("--add_subtitles", action='store_true')
    parser.add_argument("--eval_opt", type=str, default='all')
    parser.add_argument("--max_new_tokens", type=int, default=300)
    parser.add_argument("--batch_size", type=int, default=8)
    parser.add_argument("--lora_r", type=int, default=64)
    parser.add_argument("--lora_alpha", type=int, default=16)
    parser.add_argument("--video_path", type=str, help="path to the video")
    parser.add_argument("--options", nargs="+")
    return parser.parse_args()
   
def clean_text(subtitles_text):
    # Remove unwanted characters except for letters, digits, and single quotes
    subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text)
    # Replace multiple spaces with a single space
    subtitles_text = re.sub(r'\s+', ' ', subtitles_text)
    return subtitles_text.strip()
                     
class TVQAEVALRetrieval (GoldFish_LV):
    def __init__(self, args: argparse.Namespace) -> None:
        super().__init__(args)
        self.tv_shows_mapping={"Grey's Anatomy":"grey_frames", 'How I Met You Mother':"met_frames", 'Friends':"friends_frames", 'The Big Bang Theory':"bbt_frames", 'House M.D.':"house_frames", 'Castle':"castle_frames"} 
        self.save_long_videos_path = f"workspace/results/tv_shows/{args.name}"
        os.makedirs(self.save_long_videos_path, exist_ok=True)
        self.max_sub_len=400
        self.max_num_images=45
        self.fps=3
        with open("datasets/evaluation_datasets/goldfish_eval_datasets/tvqa/tvqa_preprocessed_subtitles.json") as f:
            self.subtitles_list=json.load(f)
        self.subtitles={}
        for sub in self.subtitles_list:
            self.subtitles[sub["vid_name"]]=sub["sub"]
     
    def _get_TVs_data(self):
        json_file_path="datasets/evaluation_datasets/long_video_datasets/tvqa/tvqa_val_edited.json"
        frames_path="/ibex/project/c2090/datasets/TVR_dataset/videos/video_files/frames_hq/"
        subtitle_path="/ibex/project/c2090/datasets/TVR_dataset/videos/tvqa_subtitles" 
        with open (json_file_path) as f:
            tv_shows_data=json.load(f)
        return tv_shows_data,frames_path,subtitle_path
        
        return vision_questions,subtitle_questions,frames_path
    def episode_inference(self,video_frames_path,qa,use_subtitles):
        batch_prepared_images,batch_img_placeholder,gt_clip_numbers=self.prepare_input_images(video_frames_path,qa,use_subtitles,n_clips=10)
        preds={}
        batch_instructions=[]
        batch_images=[]
        important_data = {}
        conversations=[]
        clips_numbers=[]
        for clip_number,images,img_placeholder in zip(range(len(batch_prepared_images)),batch_prepared_images,batch_img_placeholder):
            instruction = img_placeholder + '\n' + self.summary_instruction
            batch_images.append(images)
            batch_instructions.append(instruction)
            conv=img_placeholder.replace('<Img><ImageHere>','')
            conv=conv.replace('<Cap>',' ')
            conversations.append(conv.strip())
            clips_numbers.append(clip_number)
            if len(batch_images) < args.batch_size:
                continue
            batch_images = torch.stack(batch_images)
            setup_seeds(seed)
            batch_pred=self.run_images(batch_images,batch_instructions)
            for i,pred in enumerate(batch_pred):
                if args.use_coherent_description:
                    preds[f'caption__{clips_numbers[i]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[i]}"
                else:
                    if use_subtitles:
                        if conversations[i] != "":
                            important_data.update({f"subtitle__{clips_numbers[i]}": conversations[i]})   
                    preds[f'caption__{clips_numbers[i]}'] = pred
            
            batch_images=[]
            batch_instructions=[]
            conversations=[]
            clips_numbers=[]
        # run inference for the last batch
        if len(batch_images)>0:
            batch_images = torch.stack(batch_images)
            batch_pred=self.run_images(batch_images,batch_instructions)
            for i,pred in enumerate(batch_pred):
                if args.use_coherent_description:
                    preds[f'caption__{clips_numbers[i]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[i]}"
                else:
                    if use_subtitles:
                        if conversations[i] != "":
                            important_data.update({f"subtitle__{clips_numbers[i]}": conversations[i]})  
                    preds[f'caption__{clips_numbers[i]}'] = pred
            batch_images=[]
            batch_instructions=[]
            clips_numbers=[]
        return preds,important_data ,gt_clip_numbers
    
    def episode_inference_only_subtitles(self,video_frames_path,qa):
        use_subtitles=True
        batch_prepared_images,batch_img_placeholder,gt_clip_numbers=self.prepare_input_images(video_frames_path,qa,use_subtitles,n_clips=10)
        important_data = {}
        for clip_number,img_placeholder in enumerate(batch_img_placeholder) :
            conv=img_placeholder.replace('<Img><ImageHere>','')
            conv=conv.replace('<Cap>',' ')
            conversation=conv.strip()
            conversation=clean_text(conversation)
            if conversation != "":
                important_data.update({f"subtitle__{clip_number}": conversation})
        return important_data ,gt_clip_numbers
    def prepare_input_images(self,video_frames_path,qa,use_subtitles,n_clips=10):
        batch_images=[]
        batch_img_placeholder = []
        clip_name=video_frames_path.split('/')[-1]
        images=[]
        img_placeholders = []
        gt_clip_numbers = set()
        gt_start_time=qa['ts'][0]
        gt_end_time=qa['ts'][1]
        total_num_frames=len(os.listdir(video_frames_path))
        subtitle_text_in_interval = ""
        history_subtitles = {}
        number_of_sub_words=0
        # samples_per_clip = total_num_frames // n_clips
        samples_per_clip=45
        clip_num=0
        for i,frame in enumerate(sorted(os.listdir(video_frames_path))):
            # Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle
            # we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds
            if self.subtitles.get(clip_name,False) and use_subtitles:
                for subtitle in self.subtitles[clip_name]:
                    if (subtitle['start'] <= (i / self.fps) <= subtitle['end']) and subtitle['text'] not in subtitle_text_in_interval:
                        if not history_subtitles.get(subtitle['text'],False):
                            subtitle_text_in_interval+=subtitle['text']+" "
                        history_subtitles[subtitle['text']]=True
                        break
            if gt_start_time<=(i/self.fps)<= gt_end_time:
                    gt_clip_numbers.add(clip_num)
            if i % samples_per_clip == 0 and i != 0:
                # here we have one clip , let's sample 45 frames from images array
                sample_value=len(images)//self.max_num_images
                if sample_value==0:
                    sample_value=1
                frames_indices = [i for i in range(0, len(images), sample_value)]
                samples_images=[]
                img_placeholder=''
                for j in frames_indices:
                    samples_images.append(images[j])
                    img_placeholder+=img_placeholders[j]
                    if len(samples_images) >= self.max_num_images:
                        break
                if 0 <len(samples_images) < self.max_num_images:
                    last_item = samples_images[-1]
                    while len(samples_images) < self.max_num_images:
                        samples_images.append(last_item)
                        img_placeholder += '<Img><ImageHere>'
                samples_images = torch.stack(samples_images)
                batch_images.append(samples_images)
                batch_img_placeholder.append(img_placeholder)
                img_placeholders =[] 
                images = []
                clip_num+=1
                
            frame = Image.open(os.path.join(video_frames_path,frame)).convert("RGB") 
            frame = self.vis_processor(frame)
            images.append(frame)
            img_placeholder = '<Img><ImageHere>'
            if number_of_sub_words<self.max_sub_len and use_subtitles:
                if subtitle_text_in_interval != "":
                    subtitle_text_in_interval=clean_text(subtitle_text_in_interval)
                    img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
                    number_of_sub_words+=len(subtitle_text_in_interval.split(' '))
                    subtitle_text_in_interval = ""
            img_placeholders.append(img_placeholder)
        return batch_images,batch_img_placeholder,list(gt_clip_numbers)

    def test_retrieval(self,indexed_data_path,qa,gt_clip_numbers):  
        external_memory=MemoryIndex(args.neighbours, use_openai=True)
        external_memory.load_documents_from_json(indexed_data_path)
        question=qa['desc']
        related_context_documents,related_context_keys = external_memory.search_by_similarity(question)
        print(f"related_context_keys {related_context_keys}")
        print(f"gt_clip_numbers {gt_clip_numbers}")
        for key in related_context_keys:
            clip_idx=int(key.split('__')[-1])
            if clip_idx in gt_clip_numbers:
                return True
        return False
    
    def get_ground_truth_clip(self,video_frames_path,qa):
        gt_clip_numbers = set()
        gt_start_time=qa['ts'][0]
        gt_end_time=qa['ts'][1]
        samples_per_clip=45
        clip_num=0
        for i in range(len(os.listdir(video_frames_path))):
            if gt_start_time<=(i/self.fps)<= gt_end_time:
                    gt_clip_numbers.add(clip_num)
            if i % samples_per_clip == 0 and i != 0:
                clip_num+=1  
        return list(gt_clip_numbers)
                
    def eval_tv_shows(self,):
        vision_questions,subtitle_questions,frames_path=self._get_TVs_data()
        number_of_videos=0
        start=args.start
        end=args.end
        if args.exp_name=="vision":
            questions=vision_questions
        else:
            questions=subtitle_questions
        correct_retrieval=0
        wrong_retrieval=0
        for qa in questions:
            # Generate clips summary and store the important data (summary and subtitles) in json file
            if start<=number_of_videos<end: 
                show_name=qa['vid_name'].split('_')[0]
                if self.tv_shows_mapping.get(show_name,False):
                    folder_name=self.tv_shows_mapping[show_name]
                else:
                    folder_name=self.tv_shows_mapping['bbt']
                
                clip_frames_path =os.path.join(frames_path,folder_name,qa['vid_name'])
                save_name="subtitles_only" if args.subtitles_only else "vision_only" if args.vision_only else "vision_subtitles"
                indexed_data_path=os.path.join(self.save_long_videos_path,f"{qa['vid_name']}_{args.exp_name}_{save_name}_num_{number_of_videos}.json")
                if not os.path.exists(indexed_data_path):
                    if args.subtitles_only :
                        # TODO
                        important_data,gt_clip_numbers=self.episode_inference_only_subtitles(clip_frames_path,qa)
                    else:
                        preds,important_data ,gt_clip_numbers=self.episode_inference(clip_frames_path,qa,use_subtitles=not args.vision_only)
                        important_data.update(preds)
                    with open(indexed_data_path, 'w') as file:
                        json.dump(important_data, file, indent=4)
                else:
                    gt_clip_numbers=self.get_ground_truth_clip(clip_frames_path,qa)
                retrieval_res=self.test_retrieval(indexed_data_path,qa,gt_clip_numbers)
                if retrieval_res==True:
                    correct_retrieval+=1
                else:
                    wrong_retrieval+=1
            number_of_videos+=1
        
        save_dir=f"workspace/eval/retrieval/{args.exp_name}_neighbors_{args.neighbours}"
        save_dir+="_subtitles_only" if args.subtitles_only else "_vision_only" if args.vision_only else "_vision_subtitles"
        os.makedirs(save_dir,exist_ok=True)
        with open(f"{save_dir}/s{start}_end{end}.json", 'w') as fp:
            json.dump({"correct":correct_retrieval,"wrong":wrong_retrieval}, fp)
args=get_arguments()

def setup_seeds(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    cudnn.benchmark = False
    cudnn.deterministic = True

import yaml 
with open('test_configs/llama2_test_config.yaml') as file:
    config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)

if __name__ == "__main__":
    setup_seeds(seed)
    tvqa_eval=TVQAEVALRetrieval(args)
    tvqa_eval.eval_tv_shows()