Spaces:
Running
Running
File size: 10,497 Bytes
dc80a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import spaces
import os
import argparse
import gradio as gr
from goldfish_lv import GoldFish_LV
from theme import minigptlv_style, custom_css,text_css
import re
from huggingface_hub import login, hf_hub_download
import time
import moviepy.editor as mp
from index import MemoryIndex
# hf_token = os.environ.get('HF_TKN')
# login(token=hf_token)
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml")
parser.add_argument("--name", type=str, default='test')
parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth")
parser.add_argument("--add_subtitles", action='store_true')
parser.add_argument("--neighbours", type=int, default=3)
parser.add_argument("--eval_opt", type=str, default='all')
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument("--use_openai_embedding",type=str2bool, default=False)
parser.add_argument("--batch_size", type=int, default=2, help="Batch size for short video clips")
parser.add_argument("--lora_r", type=int, default=64)
parser.add_argument("--lora_alpha", type=int, default=16)
parser.add_argument("--video_path", type=str, help="Path to the video file")
parser.add_argument("--options", nargs="+")
return parser.parse_args()
def download_video(youtube_url, download_finish):
if is_youtube_url(youtube_url):
processed_video_path = goldfish_obj.process_video_url(youtube_url)
download_finish = gr.State(value=True)
return processed_video_path, download_finish
else:
return None, download_finish
def is_youtube_url(url: str) -> bool:
youtube_regex = (
r'(https?://)?(www\.)?'
'(youtube|youtu|youtube-nocookie)\.(com|be)/'
'(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})'
)
return bool(re.match(youtube_regex, url))
@spaces.GPU(duration=60*5)
def gradio_long_inference_video(videos_list,tmp_save_path,subtitle_paths, use_subtitles=True):
clips_summary = goldfish_obj.long_inference_video(videos_list,tmp_save_path,subtitle_paths)
return clips_summary
@spaces.GPU(duration=60*3)
def gradio_short_inference_video(video_path, instruction, use_subtitles=True):
pred = goldfish_obj.short_video_inference(video_path, instruction, use_subtitles)
return pred
@spaces.GPU(duration=60*3)
def gradio_inference_RAG (instruction,related_information):
pred=goldfish_obj.inference_RAG([instruction], [related_information])[0]
return pred
def inference(video_path, use_subtitles=True, instruction="", number_of_neighbours=3):
start_time = time.time()
video_name = os.path.splitext(os.path.basename(video_path))[0]
goldfish_obj.args.neighbours = number_of_neighbours
print(f"Video name: {video_name}")
video_duration = mp.VideoFileClip(video_path).duration
print(f"Video duration: {video_duration:.2f} seconds")
# if the video duration is more than 2 minutes we need to run the long inference
if video_duration > 180 :
print("Long video")
# if the video data is already stored in the external memory, we can use it directly else we need to run the long inference
file_path=f'new_workspace/clips_summary/demo/{video_name}.json'
if not os.path.exists(file_path):
print("Clips summary is not ready")
videos_list,tmp_save_path=goldfish_obj.split_long_video_into_clips(video_path)
subtitle_paths = []
for video_p in videos_list:
clip_path = os.path.join(tmp_save_path, video_p)
subtitle_path = goldfish_obj.get_subtitles(clip_path) if use_subtitles else None
subtitle_paths.append(subtitle_path)
gradio_long_inference_video(videos_list,tmp_save_path,subtitle_paths, use_subtitles=use_subtitles)
else:
print("External memory is ready")
os.makedirs("new_workspace/embedding/demo", exist_ok=True)
os.makedirs("new_workspace/open_ai_embedding/demo", exist_ok=True)
if goldfish_obj.args.use_openai_embedding:
embedding_path=f"new_workspace/open_ai_embedding/demo/{video_name}.pkl"
else:
embedding_path=f"new_workspace/embedding/demo/{video_name}.pkl"
external_memory=MemoryIndex(goldfish_obj.args.neighbours,use_openai=goldfish_obj.args.use_openai_embedding)
if os.path.exists(embedding_path):
print("Loading embeddings from pkl file")
external_memory.load_embeddings_from_pkl(embedding_path)
else:
# will embed the information and save it in the pkl file
external_memory.load_documents_from_json(file_path,embedding_path)
# get the most similar context from the external memory to this instruction
related_context_documents,related_context_keys = external_memory.search_by_similarity(instruction)
related_information=goldfish_obj.get_related_context(external_memory,related_context_keys)
pred=gradio_inference_RAG(instruction,related_information)
# remove stored data
# os.remove(file_path)
# os.system(f"rm -r workspace/tmp/{self.video_name}")
# os.system(f"rm -r workspace/subtitles/{self.video_name}")
# os.system(f"rm workspace/tmp/{self.video_id}.mp4")
else:
print("Short video")
goldfish_obj.video_name=video_path.split('/')[-1].split('.')[0]
pred=gradio_short_inference_video(video_path,instruction,use_subtitles)
processing_time = time.time() - start_time
print(f"Processing time: {processing_time:.2f} seconds")
return pred
def process_video(path_url, has_subtitles, instruction, number_of_neighbours):
if is_youtube_url(path_url):
video_path = return_video_path(path_url)
else:
video_path = path_url
pred = inference(video_path, has_subtitles, instruction, number_of_neighbours)
return pred
def return_video_path(youtube_url):
video_id = youtube_url.split("https://www.youtube.com/watch?v=")[-1].split('&')[0]
if video_id:
return os.path.join("workspace", "tmp", f"{video_id}.mp4")
else:
raise ValueError("Invalid YouTube URL provided.")
def run_gradio():
title = """<h1 align="center">Goldfish Demo </h1>"""
description = """<h5>[ECCV 2024 Accepted]Goldfish: Vision-Language Understanding of Arbitrarily Long Videos</h5>"""
project_page = """<p><a href='https://vision-cair.github.io/MiniGPT4-video/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>"""
code_link="""<p><a href='https://github.com/Vision-CAIR/MiniGPT4-video'><img src='repo_imgs/goldfishai_png.png'></a></p>"""
paper_link="""<p><a href=''><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>"""
with gr.Blocks(title="Goldfish demo",css=text_css ) as demo :
gr.Markdown(title)
gr.Markdown(description)
with gr.Tab("Youtube videos") as youtube_tab:
with gr.Row():
with gr.Column():
youtube_link = gr.Textbox(label="YouTube link", placeholder="Paste YouTube URL here")
video_player = gr.Video(autoplay=False)
download_finish = gr.State(value=False)
youtube_link.change(
fn=download_video,
inputs=[youtube_link, download_finish],
outputs=[video_player, download_finish]
)
with gr.Row():
with gr.Column(scale=2) :
youtube_question = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?")
youtube_has_subtitles = gr.Checkbox(label="Use subtitles", value=True)
youtube_input_note = """<p>For the global questions set the number of neighbours=-1 otherwise use 3 as the defualt.</p>"""
gr.Markdown(youtube_input_note)
# input number
youtube_number_of_neighbours=gr.Number(label="Number of Neighbours",interactive=True,value=3)
youtube_process_button = gr.Button("⛓️ Answer the Question (QA)")
with gr.Column(scale=3):
youtube_answer = gr.Textbox(label="Answer of the question", lines=8, interactive=True, placeholder="Answer of the question will show up here.")
youtube_process_button.click(fn=process_video, inputs=[youtube_link, youtube_has_subtitles, youtube_question,youtube_number_of_neighbours], outputs=[youtube_answer])
with gr.Tab("Local videos") as local_tab:
with gr.Row():
with gr.Column():
local_video_player = gr.Video(sources=["upload"])
with gr.Row():
with gr.Column(scale=2):
local_question = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?")
local_has_subtitles = gr.Checkbox(label="Use subtitles", value=True)
local_input_note = """<p>For the global questions set the number of neighbours=-1 otherwise use 3 as the defualt.</p>"""
gr.Markdown(local_input_note)
local_number_of_neighbours=gr.Number(label="Number of Neighbours",interactive=True,value=3)
local_process_button = gr.Button("⛓️ Answer the Question (QA)")
with gr.Column(scale=3):
local_answer = gr.Textbox(label="Answer of the question", lines=8, interactive=True, placeholder="Answer of the question will show up here.")
local_process_button.click(fn=process_video, inputs=[local_video_player, local_has_subtitles, local_question,local_number_of_neighbours], outputs=[local_answer])
demo.queue(max_size=10).launch(show_error=True,share=True, show_api=False,server_port=5000)
if __name__ == "__main__":
args=get_arguments()
goldfish_obj = GoldFish_LV(args)
run_gradio() |