Spaces:
Runtime error
Runtime error
Commit
·
0d50143
1
Parent(s):
e764a5d
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
| 2 |
+
from threading import Thread
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import transformers
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
# Run the entire app with `python run_mixtral.py`
|
| 8 |
+
|
| 9 |
+
""" The messages list should be of the following format:
|
| 10 |
+
|
| 11 |
+
messages =
|
| 12 |
+
|
| 13 |
+
[
|
| 14 |
+
{"role": "user", "content": "User's first message"},
|
| 15 |
+
{"role": "assistant", "content": "Assistant's first response"},
|
| 16 |
+
{"role": "user", "content": "User's second message"},
|
| 17 |
+
{"role": "assistant", "content": "Assistant's second response"},
|
| 18 |
+
{"role": "user", "content": "User's third message"}
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
"""
|
| 22 |
+
""" The `format_chat_history` function below is designed to format the dialogue history into a prompt that can be fed into the Mixtral model. This will help understand the context of the conversation and generate appropriate responses by the Model.
|
| 23 |
+
The function takes a history of dialogues as input, which is a list of lists where each sublist represents a pair of user and assistant messages.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def format_chat_history(history) -> str:
|
| 28 |
+
messages = [{"role": ("user" if i % 2 == 0 else "assistant"), "content": dialog[i % 2]}
|
| 29 |
+
for i, dialog in enumerate(history) for _ in (0, 1) if dialog[i % 2]]
|
| 30 |
+
# The conditional `(if dialog[i % 2])` ensures that messages
|
| 31 |
+
# that are None (like the latest assistant response in an ongoing
|
| 32 |
+
# conversation) are not included.
|
| 33 |
+
return pipeline.tokenizer.apply_chat_template(
|
| 34 |
+
messages, tokenize=False,
|
| 35 |
+
add_generation_prompt=True)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def model_loading_pipeline():
|
| 39 |
+
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 41 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, Timeout=5)
|
| 42 |
+
|
| 43 |
+
pipeline = transformers.pipeline(
|
| 44 |
+
"text-generation",
|
| 45 |
+
model=model_id,
|
| 46 |
+
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True,
|
| 47 |
+
"quantization_config": BitsAndBytesConfig(
|
| 48 |
+
load_in_4bit=True,
|
| 49 |
+
bnb_4bit_compute_dtype=torch.float16)},
|
| 50 |
+
streamer=streamer
|
| 51 |
+
)
|
| 52 |
+
return pipeline, streamer
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def launch_gradio_app(pipeline, streamer):
|
| 56 |
+
with gr.Blocks() as demo:
|
| 57 |
+
chatbot = gr.Chatbot()
|
| 58 |
+
msg = gr.Textbox()
|
| 59 |
+
clear = gr.Button("Clear")
|
| 60 |
+
|
| 61 |
+
def user(user_message, history):
|
| 62 |
+
return "", history + [[user_message, None]]
|
| 63 |
+
|
| 64 |
+
def bot(history):
|
| 65 |
+
prompt = format_chat_history(history)
|
| 66 |
+
|
| 67 |
+
history[-1][1] = ""
|
| 68 |
+
kwargs = dict(text_inputs=prompt, max_new_tokens=2048,
|
| 69 |
+
do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
| 70 |
+
thread = Thread(target=pipeline, kwargs=kwargs)
|
| 71 |
+
thread.start()
|
| 72 |
+
|
| 73 |
+
for token in streamer:
|
| 74 |
+
history[-1][1] += token
|
| 75 |
+
yield history
|
| 76 |
+
|
| 77 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot],
|
| 78 |
+
queue=False).then(bot, chatbot, chatbot)
|
| 79 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 80 |
+
|
| 81 |
+
demo.queue()
|
| 82 |
+
demo.launch(share=True, debug=True)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
if __name__ == '__main__':
|
| 86 |
+
pipeline, streamer = model_loading_pipeline()
|
| 87 |
+
launch_gradio_app(pipeline, streamer)
|
| 88 |
+
|
| 89 |
+
# Run the entire app with `python run_mixtral.py`
|