var Hx=Object.defineProperty;var qx=(gs,Pr,Ln)=>Pr in gs?Hx(gs,Pr,{enumerable:!0,configurable:!0,writable:!0,value:Ln}):gs[Pr]=Ln;var te=(gs,Pr,Ln)=>qx(gs,typeof Pr!="symbol"?Pr+"":Pr,Ln);(function(){"use strict";const gs=new Map,Pr=[],Ln=(e,r,t)=>{if(r&&typeof r.init=="function"&&typeof r.createInferenceSessionHandler=="function"){const s=gs.get(e);if(s===void 0)gs.set(e,{backend:r,priority:t});else{if(s.priority>t)return;if(s.priority===t&&s.backend!==r)throw new Error(`cannot register backend "${e}" using priority ${t}`)}if(t>=0){const o=Pr.indexOf(e);o!==-1&&Pr.splice(o,1);for(let n=0;n{const r=gs.get(e);if(!r)return"backend not found.";if(r.initialized)return r.backend;if(r.aborted)return r.error;{const t=!!r.initPromise;try{return t||(r.initPromise=r.backend.init(e)),await r.initPromise,r.initialized=!0,r.backend}catch(s){return t||(r.error=`${s}`,r.aborted=!0),r.error}finally{delete r.initPromise}}},R0=async e=>{const r=e.executionProviders||[],t=r.map(l=>typeof l=="string"?l:l.name),s=t.length===0?Pr:t;let o;const n=[],i=new Set;for(const l of s){const u=await B0(l);typeof u=="string"?n.push({name:l,err:u}):(o||(o=u),o===u&&i.add(l))}if(!o)throw new Error(`no available backend found. ERR: ${n.map(l=>`[${l.name}] ${l.err}`).join(", ")}`);for(const{name:l,err:u}of n)t.includes(l)&&console.warn(`removing requested execution provider "${l}" from session options because it is not available: ${u}`);const a=r.filter(l=>i.has(typeof l=="string"?l:l.name));return[o,new Proxy(e,{get:(l,u)=>u==="executionProviders"?a:Reflect.get(l,u)})]},j0="1.21.0";let xd="warning";const Yr={wasm:{},webgl:{},webgpu:{},versions:{common:j0},set logLevel(e){if(e!==void 0){if(typeof e!="string"||["verbose","info","warning","error","fatal"].indexOf(e)===-1)throw new Error(`Unsupported logging level: ${e}`);xd=e}},get logLevel(){return xd}};Object.defineProperty(Yr,"logLevel",{enumerable:!0});const N0=Yr,V0=(e,r)=>{const t=typeof document<"u"?document.createElement("canvas"):new OffscreenCanvas(1,1);t.width=e.dims[3],t.height=e.dims[2];const s=t.getContext("2d");if(s!=null){let o,n;(r==null?void 0:r.tensorLayout)!==void 0&&r.tensorLayout==="NHWC"?(o=e.dims[2],n=e.dims[3]):(o=e.dims[3],n=e.dims[2]);const i=(r==null?void 0:r.format)!==void 0?r.format:"RGB",a=r==null?void 0:r.norm;let l,u;a===void 0||a.mean===void 0?l=[255,255,255,255]:typeof a.mean=="number"?l=[a.mean,a.mean,a.mean,a.mean]:(l=[a.mean[0],a.mean[1],a.mean[2],0],a.mean[3]!==void 0&&(l[3]=a.mean[3])),a===void 0||a.bias===void 0?u=[0,0,0,0]:typeof a.bias=="number"?u=[a.bias,a.bias,a.bias,a.bias]:(u=[a.bias[0],a.bias[1],a.bias[2],0],a.bias[3]!==void 0&&(u[3]=a.bias[3]));const p=n*o;let d=0,c=p,f=p*2,_=-1;i==="RGBA"?(d=0,c=p,f=p*2,_=p*3):i==="RGB"?(d=0,c=p,f=p*2):i==="RBG"&&(d=0,f=p,c=p*2);for(let T=0;T{const t=typeof document<"u"?document.createElement("canvas").getContext("2d"):new OffscreenCanvas(1,1).getContext("2d");let s;if(t!=null){let o,n,i;(r==null?void 0:r.tensorLayout)!==void 0&&r.tensorLayout==="NHWC"?(o=e.dims[2],n=e.dims[1],i=e.dims[3]):(o=e.dims[3],n=e.dims[2],i=e.dims[1]);const a=r!==void 0&&r.format!==void 0?r.format:"RGB",l=r==null?void 0:r.norm;let u,p;l===void 0||l.mean===void 0?u=[255,255,255,255]:typeof l.mean=="number"?u=[l.mean,l.mean,l.mean,l.mean]:(u=[l.mean[0],l.mean[1],l.mean[2],255],l.mean[3]!==void 0&&(u[3]=l.mean[3])),l===void 0||l.bias===void 0?p=[0,0,0,0]:typeof l.bias=="number"?p=[l.bias,l.bias,l.bias,l.bias]:(p=[l.bias[0],l.bias[1],l.bias[2],0],l.bias[3]!==void 0&&(p[3]=l.bias[3]));const d=n*o;if(r!==void 0&&(r.format!==void 0&&i===4&&r.format!=="RGBA"||i===3&&r.format!=="RGB"&&r.format!=="BGR"))throw new Error("Tensor format doesn't match input tensor dims");const c=4;let f=0,_=1,T=2,$=3,w=0,g=d,S=d*2,E=-1;a==="RGBA"?(w=0,g=d,S=d*2,E=d*3):a==="RGB"?(w=0,g=d,S=d*2):a==="RBG"&&(w=0,S=d,g=d*2),s=t.createImageData(o,n);for(let y=0;y{if(e===void 0)throw new Error("Image buffer must be defined");if(r.height===void 0||r.width===void 0)throw new Error("Image height and width must be defined");if(r.tensorLayout==="NHWC")throw new Error("NHWC Tensor layout is not supported yet");const{height:t,width:s}=r,o=r.norm??{mean:255,bias:0};let n,i;typeof o.mean=="number"?n=[o.mean,o.mean,o.mean,o.mean]:n=[o.mean[0],o.mean[1],o.mean[2],o.mean[3]??255],typeof o.bias=="number"?i=[o.bias,o.bias,o.bias,o.bias]:i=[o.bias[0],o.bias[1],o.bias[2],o.bias[3]??0];const a=r.format!==void 0?r.format:"RGBA",l=r.tensorFormat!==void 0&&r.tensorFormat!==void 0?r.tensorFormat:"RGB",u=t*s,p=l==="RGBA"?new Float32Array(u*4):new Float32Array(u*3);let d=4,c=0,f=1,_=2,T=3,$=0,w=u,g=u*2,S=-1;a==="RGB"&&(d=3,c=0,f=1,_=2,T=-1),l==="RGBA"?S=u*3:l==="RBG"?($=0,g=u,w=u*2):l==="BGR"&&(g=0,w=u,$=u*2);for(let y=0;y{const t=typeof HTMLImageElement<"u"&&e instanceof HTMLImageElement,s=typeof ImageData<"u"&&e instanceof ImageData,o=typeof ImageBitmap<"u"&&e instanceof ImageBitmap,n=typeof e=="string";let i,a=r??{};const l=()=>{if(typeof document<"u")return document.createElement("canvas");if(typeof OffscreenCanvas<"u")return new OffscreenCanvas(1,1);throw new Error("Canvas is not supported")},u=p=>typeof HTMLCanvasElement<"u"&&p instanceof HTMLCanvasElement||p instanceof OffscreenCanvas?p.getContext("2d"):null;if(t){const p=l();p.width=e.width,p.height=e.height;const d=u(p);if(d!=null){let c=e.height,f=e.width;if(r!==void 0&&r.resizedHeight!==void 0&&r.resizedWidth!==void 0&&(c=r.resizedHeight,f=r.resizedWidth),r!==void 0){if(a=r,r.tensorFormat!==void 0)throw new Error("Image input config format must be RGBA for HTMLImageElement");a.tensorFormat="RGBA",a.height=c,a.width=f}else a.tensorFormat="RGBA",a.height=c,a.width=f;d.drawImage(e,0,0),i=d.getImageData(0,0,f,c).data}else throw new Error("Can not access image data")}else if(s){let p,d;if(r!==void 0&&r.resizedWidth!==void 0&&r.resizedHeight!==void 0?(p=r.resizedHeight,d=r.resizedWidth):(p=e.height,d=e.width),r!==void 0&&(a=r),a.format="RGBA",a.height=p,a.width=d,r!==void 0){const c=l();c.width=d,c.height=p;const f=u(c);if(f!=null)f.putImageData(e,0,0),i=f.getImageData(0,0,d,p).data;else throw new Error("Can not access image data")}else i=e.data}else if(o){if(r===void 0)throw new Error("Please provide image config with format for Imagebitmap");const p=l();p.width=e.width,p.height=e.height;const d=u(p);if(d!=null){const c=e.height,f=e.width;return d.drawImage(e,0,0,f,c),i=d.getImageData(0,0,f,c).data,a.height=c,a.width=f,ga(i,a)}else throw new Error("Can not access image data")}else{if(n)return new Promise((p,d)=>{const c=l(),f=u(c);if(!e||!f)return d();const _=new Image;_.crossOrigin="Anonymous",_.src=e,_.onload=()=>{c.width=_.width,c.height=_.height,f.drawImage(_,0,0,c.width,c.height);const T=f.getImageData(0,0,c.width,c.height);a.height=c.height,a.width=c.width,p(ga(T.data,a))}});throw new Error("Input data provided is not supported - aborted tensor creation")}if(i!==void 0)return ga(i,a);throw new Error("Input data provided is not supported - aborted tensor creation")},G0=(e,r)=>{const{width:t,height:s,download:o,dispose:n}=r,i=[1,s,t,4];return new Ur({location:"texture",type:"float32",texture:e,dims:i,download:o,dispose:n})},K0=(e,r)=>{const{dataType:t,dims:s,download:o,dispose:n}=r;return new Ur({location:"gpu-buffer",type:t??"float32",gpuBuffer:e,dims:s,download:o,dispose:n})},H0=(e,r)=>{const{dataType:t,dims:s,download:o,dispose:n}=r;return new Ur({location:"ml-tensor",type:t??"float32",mlTensor:e,dims:s,download:o,dispose:n})},q0=(e,r,t)=>new Ur({location:"cpu-pinned",type:e,data:r,dims:t??[r.length]}),zn=new Map([["float32",Float32Array],["uint8",Uint8Array],["int8",Int8Array],["uint16",Uint16Array],["int16",Int16Array],["int32",Int32Array],["bool",Uint8Array],["float64",Float64Array],["uint32",Uint32Array],["int4",Uint8Array],["uint4",Uint8Array]]),Yo=new Map([[Float32Array,"float32"],[Uint8Array,"uint8"],[Int8Array,"int8"],[Uint16Array,"uint16"],[Int16Array,"int16"],[Int32Array,"int32"],[Float64Array,"float64"],[Uint32Array,"uint32"]]);let Td=!1;const X0=()=>{if(!Td){Td=!0;const e=typeof BigInt64Array<"u"&&BigInt64Array.from,r=typeof BigUint64Array<"u"&&BigUint64Array.from,t=globalThis.Float16Array,s=typeof t<"u"&&t.from;e&&(zn.set("int64",BigInt64Array),Yo.set(BigInt64Array,"int64")),r&&(zn.set("uint64",BigUint64Array),Yo.set(BigUint64Array,"uint64")),s?(zn.set("float16",t),Yo.set(t,"float16")):zn.set("float16",Uint16Array)}},Q0=e=>{let r=1;for(let t=0;t{switch(e.location){case"cpu":return new Ur(e.type,e.data,r);case"cpu-pinned":return new Ur({location:"cpu-pinned",data:e.data,type:e.type,dims:r});case"texture":return new Ur({location:"texture",texture:e.texture,type:e.type,dims:r});case"gpu-buffer":return new Ur({location:"gpu-buffer",gpuBuffer:e.gpuBuffer,type:e.type,dims:r});case"ml-tensor":return new Ur({location:"ml-tensor",mlTensor:e.mlTensor,type:e.type,dims:r});default:throw new Error(`tensorReshape: tensor location ${e.location} is not supported`)}};let Ur=class{constructor(r,t,s){X0();let o,n;if(typeof r=="object"&&"location"in r)switch(this.dataLocation=r.location,o=r.type,n=r.dims,r.location){case"cpu-pinned":{const a=zn.get(o);if(!a)throw new TypeError(`unsupported type "${o}" to create tensor from pinned buffer`);if(!(r.data instanceof a))throw new TypeError(`buffer should be of type ${a.name}`);this.cpuData=r.data;break}case"texture":{if(o!=="float32")throw new TypeError(`unsupported type "${o}" to create tensor from texture`);this.gpuTextureData=r.texture,this.downloader=r.download,this.disposer=r.dispose;break}case"gpu-buffer":{if(o!=="float32"&&o!=="float16"&&o!=="int32"&&o!=="int64"&&o!=="uint32"&&o!=="uint8"&&o!=="bool"&&o!=="uint4"&&o!=="int4")throw new TypeError(`unsupported type "${o}" to create tensor from gpu buffer`);this.gpuBufferData=r.gpuBuffer,this.downloader=r.download,this.disposer=r.dispose;break}case"ml-tensor":{if(o!=="float32"&&o!=="float16"&&o!=="int32"&&o!=="int64"&&o!=="uint32"&&o!=="uint64"&&o!=="int8"&&o!=="uint8"&&o!=="bool"&&o!=="uint4"&&o!=="int4")throw new TypeError(`unsupported type "${o}" to create tensor from MLTensor`);this.mlTensorData=r.mlTensor,this.downloader=r.download,this.disposer=r.dispose;break}default:throw new Error(`Tensor constructor: unsupported location '${this.dataLocation}'`)}else{let a,l;if(typeof r=="string")if(o=r,l=s,r==="string"){if(!Array.isArray(t))throw new TypeError("A string tensor's data must be a string array.");a=t}else{const u=zn.get(r);if(u===void 0)throw new TypeError(`Unsupported tensor type: ${r}.`);if(Array.isArray(t)){if(r==="float16"&&u===Uint16Array||r==="uint4"||r==="int4")throw new TypeError(`Creating a ${r} tensor from number array is not supported. Please use ${u.name} as data.`);r==="uint64"||r==="int64"?a=u.from(t,BigInt):a=u.from(t)}else if(t instanceof u)a=t;else if(t instanceof Uint8ClampedArray)if(r==="uint8")a=Uint8Array.from(t);else throw new TypeError("A Uint8ClampedArray tensor's data must be type of uint8");else if(r==="float16"&&t instanceof Uint16Array&&u!==Uint16Array)a=new globalThis.Float16Array(t.buffer,t.byteOffset,t.length);else throw new TypeError(`A ${o} tensor's data must be type of ${u}`)}else if(l=t,Array.isArray(r)){if(r.length===0)throw new TypeError("Tensor type cannot be inferred from an empty array.");const u=typeof r[0];if(u==="string")o="string",a=r;else if(u==="boolean")o="bool",a=Uint8Array.from(r);else throw new TypeError(`Invalid element type of data array: ${u}.`)}else if(r instanceof Uint8ClampedArray)o="uint8",a=Uint8Array.from(r);else{const u=Yo.get(r.constructor);if(u===void 0)throw new TypeError(`Unsupported type for tensor data: ${r.constructor}.`);o=u,a=r}if(l===void 0)l=[a.length];else if(!Array.isArray(l))throw new TypeError("A tensor's dims must be a number array");n=l,this.cpuData=a,this.dataLocation="cpu"}const i=Q0(n);if(this.cpuData&&i!==this.cpuData.length&&!((o==="uint4"||o==="int4")&&Math.ceil(i/2)===this.cpuData.length))throw new Error(`Tensor's size(${i}) does not match data length(${this.cpuData.length}).`);this.type=o,this.dims=n,this.size=i}static async fromImage(r,t){return W0(r,t)}static fromTexture(r,t){return G0(r,t)}static fromGpuBuffer(r,t){return K0(r,t)}static fromMLTensor(r,t){return H0(r,t)}static fromPinnedBuffer(r,t,s){return q0(r,t,s)}toDataURL(r){return V0(this,r)}toImageData(r){return U0(this,r)}get data(){if(this.ensureValid(),!this.cpuData)throw new Error("The data is not on CPU. Use `getData()` to download GPU data to CPU, or use `texture` or `gpuBuffer` property to access the GPU data directly.");return this.cpuData}get location(){return this.dataLocation}get texture(){if(this.ensureValid(),!this.gpuTextureData)throw new Error("The data is not stored as a WebGL texture.");return this.gpuTextureData}get gpuBuffer(){if(this.ensureValid(),!this.gpuBufferData)throw new Error("The data is not stored as a WebGPU buffer.");return this.gpuBufferData}get mlTensor(){if(this.ensureValid(),!this.mlTensorData)throw new Error("The data is not stored as a WebNN MLTensor.");return this.mlTensorData}async getData(r){switch(this.ensureValid(),this.dataLocation){case"cpu":case"cpu-pinned":return this.data;case"texture":case"gpu-buffer":case"ml-tensor":{if(!this.downloader)throw new Error("The current tensor is not created with a specified data downloader.");if(this.isDownloading)throw new Error("The current tensor is being downloaded.");try{this.isDownloading=!0;const t=await this.downloader();return this.downloader=void 0,this.dataLocation="cpu",this.cpuData=t,r&&this.disposer&&(this.disposer(),this.disposer=void 0),t}finally{this.isDownloading=!1}}default:throw new Error(`cannot get data from location: ${this.dataLocation}`)}}dispose(){if(this.isDownloading)throw new Error("The current tensor is being downloaded.");this.disposer&&(this.disposer(),this.disposer=void 0),this.cpuData=void 0,this.gpuTextureData=void 0,this.gpuBufferData=void 0,this.mlTensorData=void 0,this.downloader=void 0,this.isDownloading=void 0,this.dataLocation="none"}ensureValid(){if(this.dataLocation==="none")throw new Error("The tensor is disposed.")}reshape(r){if(this.ensureValid(),this.downloader||this.disposer)throw new Error("Cannot reshape a tensor that owns GPU resource.");return J0(this,r)}};const Bn=Ur,Ed=(e,r)=>{(typeof Yr.trace>"u"?!Yr.wasm.trace:!Yr.trace)||console.timeStamp(`${e}::ORT::${r}`)},Pd=(e,r)=>{var o;const t=((o=new Error().stack)==null?void 0:o.split(/\r\n|\r|\n/g))||[];let s=!1;for(let n=0;n{(typeof Yr.trace>"u"?!Yr.wasm.trace:!Yr.trace)||Pd("BEGIN",e)},Ma=e=>{(typeof Yr.trace>"u"?!Yr.wasm.trace:!Yr.trace)||Pd("END",e)};var Y0=Object.freeze({__proto__:null,InferenceSession:class D0{constructor(r){this.handler=r}async run(r,t,s){wa();const o={};let n={};if(typeof r!="object"||r===null||r instanceof Bn||Array.isArray(r))throw new TypeError("'feeds' must be an object that use input names as keys and OnnxValue as corresponding values.");let i=!0;if(typeof t=="object"){if(t===null)throw new TypeError("Unexpected argument[1]: cannot be null.");if(t instanceof Bn)throw new TypeError("'fetches' cannot be a Tensor");if(Array.isArray(t)){if(t.length===0)throw new TypeError("'fetches' cannot be an empty array.");i=!1;for(const u of t){if(typeof u!="string")throw new TypeError("'fetches' must be a string array or an object.");if(this.outputNames.indexOf(u)===-1)throw new RangeError(`'fetches' contains invalid output name: ${u}.`);o[u]=null}if(typeof s=="object"&&s!==null)n=s;else if(typeof s<"u")throw new TypeError("'options' must be an object.")}else{let u=!1;const p=Object.getOwnPropertyNames(t);for(const d of this.outputNames)if(p.indexOf(d)!==-1){const c=t[d];(c===null||c instanceof Bn)&&(u=!0,i=!1,o[d]=c)}if(u){if(typeof s=="object"&&s!==null)n=s;else if(typeof s<"u")throw new TypeError("'options' must be an object.")}else n=t}}else if(typeof t<"u")throw new TypeError("Unexpected argument[1]: must be 'fetches' or 'options'.");for(const u of this.inputNames)if(typeof r[u]>"u")throw new Error(`input '${u}' is missing in 'feeds'.`);if(i)for(const u of this.outputNames)o[u]=null;const a=await this.handler.run(r,o,n),l={};for(const u in a)if(Object.hasOwnProperty.call(a,u)){const p=a[u];p instanceof Bn?l[u]=p:l[u]=new Bn(p.type,p.data,p.dims)}return Ma(),l}async release(){return this.handler.dispose()}static async create(r,t,s,o){wa();let n,i={};if(typeof r=="string"){if(n=r,typeof t=="object"&&t!==null)i=t;else if(typeof t<"u")throw new TypeError("'options' must be an object.")}else if(r instanceof Uint8Array){if(n=r,typeof t=="object"&&t!==null)i=t;else if(typeof t<"u")throw new TypeError("'options' must be an object.")}else if(r instanceof ArrayBuffer||typeof SharedArrayBuffer<"u"&&r instanceof SharedArrayBuffer){const p=r;let d=0,c=r.byteLength;if(typeof t=="object"&&t!==null)i=t;else if(typeof t=="number"){if(d=t,!Number.isSafeInteger(d))throw new RangeError("'byteOffset' must be an integer.");if(d<0||d>=p.byteLength)throw new RangeError(`'byteOffset' is out of range [0, ${p.byteLength}).`);if(c=r.byteLength-d,typeof s=="number"){if(c=s,!Number.isSafeInteger(c))throw new RangeError("'byteLength' must be an integer.");if(c<=0||d+c>p.byteLength)throw new RangeError(`'byteLength' is out of range (0, ${p.byteLength-d}].`);if(typeof o=="object"&&o!==null)i=o;else if(typeof o<"u")throw new TypeError("'options' must be an object.")}else if(typeof s<"u")throw new TypeError("'byteLength' must be a number.")}else if(typeof t<"u")throw new TypeError("'options' must be an object.");n=new Uint8Array(p,d,c)}else throw new TypeError("Unexpected argument[0]: must be 'path' or 'buffer'.");const[a,l]=await R0(i),u=await a.createInferenceSessionHandler(n,l);return Ma(),new D0(u)}startProfiling(){this.handler.startProfiling()}endProfiling(){this.handler.endProfiling()}get inputNames(){return this.handler.inputNames}get outputNames(){return this.handler.outputNames}},TRACE:Ed,TRACE_FUNC_BEGIN:wa,TRACE_FUNC_END:Ma,Tensor:Bn,env:N0,registerBackend:Ln});/*! * ONNX Runtime Web v1.22.0-dev.20250409-89f8206ba4 * Copyright (c) Microsoft Corporation. All rights reserved. * Licensed under the MIT License. */var ba=Object.defineProperty,Z0=Object.getOwnPropertyDescriptor,ev=Object.getOwnPropertyNames,tv=Object.prototype.hasOwnProperty,rv=(e=>typeof require<"u"?require:typeof Proxy<"u"?new Proxy(e,{get:(r,t)=>(typeof require<"u"?require:r)[t]}):e)(function(e){if(typeof require<"u")return require.apply(this,arguments);throw Error('Dynamic require of "'+e+'" is not supported')}),Be=(e,r)=>()=>(e&&(r=e(e=0)),r),Rn=(e,r)=>{for(var t in r)ba(e,t,{get:r[t],enumerable:!0})},sv=(e,r,t,s)=>{if(r&&typeof r=="object"||typeof r=="function")for(let o of ev(r))!tv.call(e,o)&&o!==t&&ba(e,o,{get:()=>r[o],enumerable:!(s=Z0(r,o))||s.enumerable});return e},io=e=>sv(ba({},"__esModule",{value:!0}),e),ao,Ds,Ys,Cd,Sd,$d=Be(()=>{ao=new Map,Ds=[],Ys=(e,r,t)=>{if(r&&typeof r.init=="function"&&typeof r.createInferenceSessionHandler=="function"){let s=ao.get(e);if(s===void 0)ao.set(e,{backend:r,priority:t});else{if(s.priority>t)return;if(s.priority===t&&s.backend!==r)throw new Error(`cannot register backend "${e}" using priority ${t}`)}if(t>=0){let o=Ds.indexOf(e);o!==-1&&Ds.splice(o,1);for(let n=0;n{let r=ao.get(e);if(!r)return"backend not found.";if(r.initialized)return r.backend;if(r.aborted)return r.error;{let t=!!r.initPromise;try{return t||(r.initPromise=r.backend.init(e)),await r.initPromise,r.initialized=!0,r.backend}catch(s){return t||(r.error=`${s}`,r.aborted=!0),r.error}finally{delete r.initPromise}}},Sd=async e=>{let r=e.executionProviders||[],t=r.map(l=>typeof l=="string"?l:l.name),s=t.length===0?Ds:t,o,n=[],i=new Set;for(let l of s){let u=await Cd(l);typeof u=="string"?n.push({name:l,err:u}):(o||(o=u),o===u&&i.add(l))}if(!o)throw new Error(`no available backend found. ERR: ${n.map(l=>`[${l.name}] ${l.err}`).join(", ")}`);for(let{name:l,err:u}of n)t.includes(l)&&console.warn(`removing requested execution provider "${l}" from session options because it is not available: ${u}`);let a=r.filter(l=>i.has(typeof l=="string"?l:l.name));return[o,new Proxy(e,{get:(l,u)=>u==="executionProviders"?a:Reflect.get(l,u)})]}}),nv=Be(()=>{$d()}),kd,ov=Be(()=>{kd="1.22.0-dev.20250409-89f8206ba4"}),ya,Wr,Id=Be(()=>{ov(),ya="warning",Wr={wasm:{},webgl:{},webgpu:{},versions:{common:kd},set logLevel(e){if(e!==void 0){if(typeof e!="string"||["verbose","info","warning","error","fatal"].indexOf(e)===-1)throw new Error(`Unsupported logging level: ${e}`);ya=e}},get logLevel(){return ya}},Object.defineProperty(Wr,"logLevel",{enumerable:!0})}),Bt,iv=Be(()=>{Id(),Bt=Wr}),Ad,Fd,av=Be(()=>{Ad=(e,r)=>{let t=typeof document<"u"?document.createElement("canvas"):new OffscreenCanvas(1,1);t.width=e.dims[3],t.height=e.dims[2];let s=t.getContext("2d");if(s!=null){let o,n;(r==null?void 0:r.tensorLayout)!==void 0&&r.tensorLayout==="NHWC"?(o=e.dims[2],n=e.dims[3]):(o=e.dims[3],n=e.dims[2]);let i=(r==null?void 0:r.format)!==void 0?r.format:"RGB",a=r==null?void 0:r.norm,l,u;a===void 0||a.mean===void 0?l=[255,255,255,255]:typeof a.mean=="number"?l=[a.mean,a.mean,a.mean,a.mean]:(l=[a.mean[0],a.mean[1],a.mean[2],0],a.mean[3]!==void 0&&(l[3]=a.mean[3])),a===void 0||a.bias===void 0?u=[0,0,0,0]:typeof a.bias=="number"?u=[a.bias,a.bias,a.bias,a.bias]:(u=[a.bias[0],a.bias[1],a.bias[2],0],a.bias[3]!==void 0&&(u[3]=a.bias[3]));let p=n*o,d=0,c=p,f=p*2,_=-1;i==="RGBA"?(d=0,c=p,f=p*2,_=p*3):i==="RGB"?(d=0,c=p,f=p*2):i==="RBG"&&(d=0,f=p,c=p*2);for(let T=0;T{let t=typeof document<"u"?document.createElement("canvas").getContext("2d"):new OffscreenCanvas(1,1).getContext("2d"),s;if(t!=null){let o,n,i;(r==null?void 0:r.tensorLayout)!==void 0&&r.tensorLayout==="NHWC"?(o=e.dims[2],n=e.dims[1],i=e.dims[3]):(o=e.dims[3],n=e.dims[2],i=e.dims[1]);let a=r!==void 0&&r.format!==void 0?r.format:"RGB",l=r==null?void 0:r.norm,u,p;l===void 0||l.mean===void 0?u=[255,255,255,255]:typeof l.mean=="number"?u=[l.mean,l.mean,l.mean,l.mean]:(u=[l.mean[0],l.mean[1],l.mean[2],255],l.mean[3]!==void 0&&(u[3]=l.mean[3])),l===void 0||l.bias===void 0?p=[0,0,0,0]:typeof l.bias=="number"?p=[l.bias,l.bias,l.bias,l.bias]:(p=[l.bias[0],l.bias[1],l.bias[2],0],l.bias[3]!==void 0&&(p[3]=l.bias[3]));let d=n*o;if(r!==void 0&&(r.format!==void 0&&i===4&&r.format!=="RGBA"||i===3&&r.format!=="RGB"&&r.format!=="BGR"))throw new Error("Tensor format doesn't match input tensor dims");let c=4,f=0,_=1,T=2,$=3,w=0,g=d,S=d*2,E=-1;a==="RGBA"?(w=0,g=d,S=d*2,E=d*3):a==="RGB"?(w=0,g=d,S=d*2):a==="RBG"&&(w=0,S=d,g=d*2),s=t.createImageData(o,n);for(let y=0;y{xa(),Zo=(e,r)=>{if(e===void 0)throw new Error("Image buffer must be defined");if(r.height===void 0||r.width===void 0)throw new Error("Image height and width must be defined");if(r.tensorLayout==="NHWC")throw new Error("NHWC Tensor layout is not supported yet");let{height:t,width:s}=r,o=r.norm??{mean:255,bias:0},n,i;typeof o.mean=="number"?n=[o.mean,o.mean,o.mean,o.mean]:n=[o.mean[0],o.mean[1],o.mean[2],o.mean[3]??255],typeof o.bias=="number"?i=[o.bias,o.bias,o.bias,o.bias]:i=[o.bias[0],o.bias[1],o.bias[2],o.bias[3]??0];let a=r.format!==void 0?r.format:"RGBA",l=r.tensorFormat!==void 0&&r.tensorFormat!==void 0?r.tensorFormat:"RGB",u=t*s,p=l==="RGBA"?new Float32Array(u*4):new Float32Array(u*3),d=4,c=0,f=1,_=2,T=3,$=0,w=u,g=u*2,S=-1;a==="RGB"&&(d=3,c=0,f=1,_=2,T=-1),l==="RGBA"?S=u*3:l==="RBG"?($=0,g=u,w=u*2):l==="BGR"&&(g=0,w=u,$=u*2);for(let E=0;E{let t=typeof HTMLImageElement<"u"&&e instanceof HTMLImageElement,s=typeof ImageData<"u"&&e instanceof ImageData,o=typeof ImageBitmap<"u"&&e instanceof ImageBitmap,n=typeof e=="string",i,a=r??{},l=()=>{if(typeof document<"u")return document.createElement("canvas");if(typeof OffscreenCanvas<"u")return new OffscreenCanvas(1,1);throw new Error("Canvas is not supported")},u=p=>typeof HTMLCanvasElement<"u"&&p instanceof HTMLCanvasElement||p instanceof OffscreenCanvas?p.getContext("2d"):null;if(t){let p=l();p.width=e.width,p.height=e.height;let d=u(p);if(d!=null){let c=e.height,f=e.width;if(r!==void 0&&r.resizedHeight!==void 0&&r.resizedWidth!==void 0&&(c=r.resizedHeight,f=r.resizedWidth),r!==void 0){if(a=r,r.tensorFormat!==void 0)throw new Error("Image input config format must be RGBA for HTMLImageElement");a.tensorFormat="RGBA",a.height=c,a.width=f}else a.tensorFormat="RGBA",a.height=c,a.width=f;d.drawImage(e,0,0),i=d.getImageData(0,0,f,c).data}else throw new Error("Can not access image data")}else if(s){let p,d;if(r!==void 0&&r.resizedWidth!==void 0&&r.resizedHeight!==void 0?(p=r.resizedHeight,d=r.resizedWidth):(p=e.height,d=e.width),r!==void 0&&(a=r),a.format="RGBA",a.height=p,a.width=d,r!==void 0){let c=l();c.width=d,c.height=p;let f=u(c);if(f!=null)f.putImageData(e,0,0),i=f.getImageData(0,0,d,p).data;else throw new Error("Can not access image data")}else i=e.data}else if(o){if(r===void 0)throw new Error("Please provide image config with format for Imagebitmap");let p=l();p.width=e.width,p.height=e.height;let d=u(p);if(d!=null){let c=e.height,f=e.width;return d.drawImage(e,0,0,f,c),i=d.getImageData(0,0,f,c).data,a.height=c,a.width=f,Zo(i,a)}else throw new Error("Can not access image data")}else{if(n)return new Promise((p,d)=>{let c=l(),f=u(c);if(!e||!f)return d();let _=new Image;_.crossOrigin="Anonymous",_.src=e,_.onload=()=>{c.width=_.width,c.height=_.height,f.drawImage(_,0,0,c.width,c.height);let T=f.getImageData(0,0,c.width,c.height);a.height=c.height,a.width=c.width,p(Zo(T.data,a))}});throw new Error("Input data provided is not supported - aborted tensor creation")}if(i!==void 0)return Zo(i,a);throw new Error("Input data provided is not supported - aborted tensor creation")},Dd=(e,r)=>{let{width:t,height:s,download:o,dispose:n}=r,i=[1,s,t,4];return new Or({location:"texture",type:"float32",texture:e,dims:i,download:o,dispose:n})},Ld=(e,r)=>{let{dataType:t,dims:s,download:o,dispose:n}=r;return new Or({location:"gpu-buffer",type:t??"float32",gpuBuffer:e,dims:s,download:o,dispose:n})},zd=(e,r)=>{let{dataType:t,dims:s,download:o,dispose:n}=r;return new Or({location:"ml-tensor",type:t??"float32",mlTensor:e,dims:s,download:o,dispose:n})},Bd=(e,r,t)=>new Or({location:"cpu-pinned",type:e,data:r,dims:t??[r.length]})}),Zs,lo,va,Rd,uv=Be(()=>{Zs=new Map([["float32",Float32Array],["uint8",Uint8Array],["int8",Int8Array],["uint16",Uint16Array],["int16",Int16Array],["int32",Int32Array],["bool",Uint8Array],["float64",Float64Array],["uint32",Uint32Array],["int4",Uint8Array],["uint4",Uint8Array]]),lo=new Map([[Float32Array,"float32"],[Uint8Array,"uint8"],[Int8Array,"int8"],[Uint16Array,"uint16"],[Int16Array,"int16"],[Int32Array,"int32"],[Float64Array,"float64"],[Uint32Array,"uint32"]]),va=!1,Rd=()=>{if(!va){va=!0;let e=typeof BigInt64Array<"u"&&BigInt64Array.from,r=typeof BigUint64Array<"u"&&BigUint64Array.from,t=globalThis.Float16Array,s=typeof t<"u"&&t.from;e&&(Zs.set("int64",BigInt64Array),lo.set(BigInt64Array,"int64")),r&&(Zs.set("uint64",BigUint64Array),lo.set(BigUint64Array,"uint64")),s?(Zs.set("float16",t),lo.set(t,"float16")):Zs.set("float16",Uint16Array)}}}),jd,Nd,dv=Be(()=>{xa(),jd=e=>{let r=1;for(let t=0;t{switch(e.location){case"cpu":return new Or(e.type,e.data,r);case"cpu-pinned":return new Or({location:"cpu-pinned",data:e.data,type:e.type,dims:r});case"texture":return new Or({location:"texture",texture:e.texture,type:e.type,dims:r});case"gpu-buffer":return new Or({location:"gpu-buffer",gpuBuffer:e.gpuBuffer,type:e.type,dims:r});case"ml-tensor":return new Or({location:"ml-tensor",mlTensor:e.mlTensor,type:e.type,dims:r});default:throw new Error(`tensorReshape: tensor location ${e.location} is not supported`)}}}),Or,xa=Be(()=>{av(),lv(),uv(),dv(),Or=class{constructor(e,r,t){Rd();let s,o;if(typeof e=="object"&&"location"in e)switch(this.dataLocation=e.location,s=e.type,o=e.dims,e.location){case"cpu-pinned":{let i=Zs.get(s);if(!i)throw new TypeError(`unsupported type "${s}" to create tensor from pinned buffer`);if(!(e.data instanceof i))throw new TypeError(`buffer should be of type ${i.name}`);this.cpuData=e.data;break}case"texture":{if(s!=="float32")throw new TypeError(`unsupported type "${s}" to create tensor from texture`);this.gpuTextureData=e.texture,this.downloader=e.download,this.disposer=e.dispose;break}case"gpu-buffer":{if(s!=="float32"&&s!=="float16"&&s!=="int32"&&s!=="int64"&&s!=="uint32"&&s!=="uint8"&&s!=="bool"&&s!=="uint4"&&s!=="int4")throw new TypeError(`unsupported type "${s}" to create tensor from gpu buffer`);this.gpuBufferData=e.gpuBuffer,this.downloader=e.download,this.disposer=e.dispose;break}case"ml-tensor":{if(s!=="float32"&&s!=="float16"&&s!=="int32"&&s!=="int64"&&s!=="uint32"&&s!=="uint64"&&s!=="int8"&&s!=="uint8"&&s!=="bool"&&s!=="uint4"&&s!=="int4")throw new TypeError(`unsupported type "${s}" to create tensor from MLTensor`);this.mlTensorData=e.mlTensor,this.downloader=e.download,this.disposer=e.dispose;break}default:throw new Error(`Tensor constructor: unsupported location '${this.dataLocation}'`)}else{let i,a;if(typeof e=="string")if(s=e,a=t,e==="string"){if(!Array.isArray(r))throw new TypeError("A string tensor's data must be a string array.");i=r}else{let l=Zs.get(e);if(l===void 0)throw new TypeError(`Unsupported tensor type: ${e}.`);if(Array.isArray(r)){if(e==="float16"&&l===Uint16Array||e==="uint4"||e==="int4")throw new TypeError(`Creating a ${e} tensor from number array is not supported. Please use ${l.name} as data.`);e==="uint64"||e==="int64"?i=l.from(r,BigInt):i=l.from(r)}else if(r instanceof l)i=r;else if(r instanceof Uint8ClampedArray)if(e==="uint8")i=Uint8Array.from(r);else throw new TypeError("A Uint8ClampedArray tensor's data must be type of uint8");else if(e==="float16"&&r instanceof Uint16Array&&l!==Uint16Array)i=new globalThis.Float16Array(r.buffer,r.byteOffset,r.length);else throw new TypeError(`A ${s} tensor's data must be type of ${l}`)}else if(a=r,Array.isArray(e)){if(e.length===0)throw new TypeError("Tensor type cannot be inferred from an empty array.");let l=typeof e[0];if(l==="string")s="string",i=e;else if(l==="boolean")s="bool",i=Uint8Array.from(e);else throw new TypeError(`Invalid element type of data array: ${l}.`)}else if(e instanceof Uint8ClampedArray)s="uint8",i=Uint8Array.from(e);else{let l=lo.get(e.constructor);if(l===void 0)throw new TypeError(`Unsupported type for tensor data: ${e.constructor}.`);s=l,i=e}if(a===void 0)a=[i.length];else if(!Array.isArray(a))throw new TypeError("A tensor's dims must be a number array");o=a,this.cpuData=i,this.dataLocation="cpu"}let n=jd(o);if(this.cpuData&&n!==this.cpuData.length&&!((s==="uint4"||s==="int4")&&Math.ceil(n/2)===this.cpuData.length))throw new Error(`Tensor's size(${n}) does not match data length(${this.cpuData.length}).`);this.type=s,this.dims=o,this.size=n}static async fromImage(e,r){return Od(e,r)}static fromTexture(e,r){return Dd(e,r)}static fromGpuBuffer(e,r){return Ld(e,r)}static fromMLTensor(e,r){return zd(e,r)}static fromPinnedBuffer(e,r,t){return Bd(e,r,t)}toDataURL(e){return Ad(this,e)}toImageData(e){return Fd(this,e)}get data(){if(this.ensureValid(),!this.cpuData)throw new Error("The data is not on CPU. Use `getData()` to download GPU data to CPU, or use `texture` or `gpuBuffer` property to access the GPU data directly.");return this.cpuData}get location(){return this.dataLocation}get texture(){if(this.ensureValid(),!this.gpuTextureData)throw new Error("The data is not stored as a WebGL texture.");return this.gpuTextureData}get gpuBuffer(){if(this.ensureValid(),!this.gpuBufferData)throw new Error("The data is not stored as a WebGPU buffer.");return this.gpuBufferData}get mlTensor(){if(this.ensureValid(),!this.mlTensorData)throw new Error("The data is not stored as a WebNN MLTensor.");return this.mlTensorData}async getData(e){switch(this.ensureValid(),this.dataLocation){case"cpu":case"cpu-pinned":return this.data;case"texture":case"gpu-buffer":case"ml-tensor":{if(!this.downloader)throw new Error("The current tensor is not created with a specified data downloader.");if(this.isDownloading)throw new Error("The current tensor is being downloaded.");try{this.isDownloading=!0;let r=await this.downloader();return this.downloader=void 0,this.dataLocation="cpu",this.cpuData=r,e&&this.disposer&&(this.disposer(),this.disposer=void 0),r}finally{this.isDownloading=!1}}default:throw new Error(`cannot get data from location: ${this.dataLocation}`)}}dispose(){if(this.isDownloading)throw new Error("The current tensor is being downloaded.");this.disposer&&(this.disposer(),this.disposer=void 0),this.cpuData=void 0,this.gpuTextureData=void 0,this.gpuBufferData=void 0,this.mlTensorData=void 0,this.downloader=void 0,this.isDownloading=void 0,this.dataLocation="none"}ensureValid(){if(this.dataLocation==="none")throw new Error("The tensor is disposed.")}reshape(e){if(this.ensureValid(),this.downloader||this.disposer)throw new Error("Cannot reshape a tensor that owns GPU resource.");return Nd(this,e)}}}),Zr,Vd=Be(()=>{xa(),Zr=Or}),uo,Ta,es,Gr,Ud=Be(()=>{Id(),uo=(e,r)=>{(typeof Wr.trace>"u"?!Wr.wasm.trace:!Wr.trace)||console.timeStamp(`${e}::ORT::${r}`)},Ta=(e,r)=>{var o;let t=((o=new Error().stack)==null?void 0:o.split(/\r\n|\r|\n/g))||[],s=!1;for(let n=0;n{(typeof Wr.trace>"u"?!Wr.wasm.trace:!Wr.trace)||Ta("BEGIN",e)},Gr=e=>{(typeof Wr.trace>"u"?!Wr.wasm.trace:!Wr.trace)||Ta("END",e)}}),Wd,cv=Be(()=>{$d(),Vd(),Ud(),Wd=class L0{constructor(r){this.handler=r}async run(r,t,s){es();let o={},n={};if(typeof r!="object"||r===null||r instanceof Zr||Array.isArray(r))throw new TypeError("'feeds' must be an object that use input names as keys and OnnxValue as corresponding values.");let i=!0;if(typeof t=="object"){if(t===null)throw new TypeError("Unexpected argument[1]: cannot be null.");if(t instanceof Zr)throw new TypeError("'fetches' cannot be a Tensor");if(Array.isArray(t)){if(t.length===0)throw new TypeError("'fetches' cannot be an empty array.");i=!1;for(let u of t){if(typeof u!="string")throw new TypeError("'fetches' must be a string array or an object.");if(this.outputNames.indexOf(u)===-1)throw new RangeError(`'fetches' contains invalid output name: ${u}.`);o[u]=null}if(typeof s=="object"&&s!==null)n=s;else if(typeof s<"u")throw new TypeError("'options' must be an object.")}else{let u=!1,p=Object.getOwnPropertyNames(t);for(let d of this.outputNames)if(p.indexOf(d)!==-1){let c=t[d];(c===null||c instanceof Zr)&&(u=!0,i=!1,o[d]=c)}if(u){if(typeof s=="object"&&s!==null)n=s;else if(typeof s<"u")throw new TypeError("'options' must be an object.")}else n=t}}else if(typeof t<"u")throw new TypeError("Unexpected argument[1]: must be 'fetches' or 'options'.");for(let u of this.inputNames)if(typeof r[u]>"u")throw new Error(`input '${u}' is missing in 'feeds'.`);if(i)for(let u of this.outputNames)o[u]=null;let a=await this.handler.run(r,o,n),l={};for(let u in a)if(Object.hasOwnProperty.call(a,u)){let p=a[u];p instanceof Zr?l[u]=p:l[u]=new Zr(p.type,p.data,p.dims)}return Gr(),l}async release(){return this.handler.dispose()}static async create(r,t,s,o){es();let n,i={};if(typeof r=="string"){if(n=r,typeof t=="object"&&t!==null)i=t;else if(typeof t<"u")throw new TypeError("'options' must be an object.")}else if(r instanceof Uint8Array){if(n=r,typeof t=="object"&&t!==null)i=t;else if(typeof t<"u")throw new TypeError("'options' must be an object.")}else if(r instanceof ArrayBuffer||typeof SharedArrayBuffer<"u"&&r instanceof SharedArrayBuffer){let p=r,d=0,c=r.byteLength;if(typeof t=="object"&&t!==null)i=t;else if(typeof t=="number"){if(d=t,!Number.isSafeInteger(d))throw new RangeError("'byteOffset' must be an integer.");if(d<0||d>=p.byteLength)throw new RangeError(`'byteOffset' is out of range [0, ${p.byteLength}).`);if(c=r.byteLength-d,typeof s=="number"){if(c=s,!Number.isSafeInteger(c))throw new RangeError("'byteLength' must be an integer.");if(c<=0||d+c>p.byteLength)throw new RangeError(`'byteLength' is out of range (0, ${p.byteLength-d}].`);if(typeof o=="object"&&o!==null)i=o;else if(typeof o<"u")throw new TypeError("'options' must be an object.")}else if(typeof s<"u")throw new TypeError("'byteLength' must be a number.")}else if(typeof t<"u")throw new TypeError("'options' must be an object.");n=new Uint8Array(p,d,c)}else throw new TypeError("Unexpected argument[0]: must be 'path' or 'buffer'.");let[a,l]=await Sd(i),u=await a.createInferenceSessionHandler(n,l);return Gr(),new L0(u)}startProfiling(){this.handler.startProfiling()}endProfiling(){this.handler.endProfiling()}get inputNames(){return this.handler.inputNames}get outputNames(){return this.handler.outputNames}get inputMetadata(){return this.handler.inputMetadata}get outputMetadata(){return this.handler.outputMetadata}}}),Ea,pv=Be(()=>{cv(),Ea=Wd}),hv=Be(()=>{}),mv=Be(()=>{}),_v=Be(()=>{}),fv=Be(()=>{}),Gd={};Rn(Gd,{InferenceSession:()=>Ea,TRACE:()=>uo,TRACE_FUNC_BEGIN:()=>es,TRACE_FUNC_END:()=>Gr,Tensor:()=>Zr,env:()=>Bt,registerBackend:()=>Ys});var ts=Be(()=>{nv(),iv(),pv(),Vd(),hv(),mv(),Ud(),_v(),fv()}),Pa=Be(()=>{}),Kd={};Rn(Kd,{default:()=>Hd});var Ca,Sa,Hd,gv=Be(()=>{var e;Cg(),en(),La(),Ca="ort-wasm-proxy-worker",Sa=((e=globalThis.self)==null?void 0:e.name)===Ca,Sa&&(self.onmessage=r=>{let{type:t,in:s}=r.data;try{switch(t){case"init-wasm":Ra(s.wasm).then(()=>{Yl(s).then(()=>{postMessage({type:t})},o=>{postMessage({type:t,err:o})})},o=>{postMessage({type:t,err:o})});break;case"init-ep":{let{epName:o,env:n}=s;Zl(n,o).then(()=>{postMessage({type:t})},i=>{postMessage({type:t,err:i})});break}case"copy-from":{let{buffer:o}=s,n=wi(o);postMessage({type:t,out:n});break}case"create":{let{model:o,options:n}=s;tu(o,n).then(i=>{postMessage({type:t,out:i})},i=>{postMessage({type:t,err:i})});break}case"release":ru(s),postMessage({type:t});break;case"run":{let{sessionId:o,inputIndices:n,inputs:i,outputIndices:a,options:l}=s;nu(o,n,i,a,new Array(a.length).fill(null),l).then(u=>{u.some(p=>p[3]!=="cpu")?postMessage({type:t,err:"Proxy does not support non-cpu tensor location."}):postMessage({type:t,out:u},iu([...i,...u]))},u=>{postMessage({type:t,err:u})});break}case"end-profiling":ou(s),postMessage({type:t});break;default:}}catch(o){postMessage({type:t,err:o})}}),Hd=Sa?null:r=>new Worker(r??Dr,{type:"module",name:Ca})}),qd={};Rn(qd,{default:()=>Xd});var $a,ka,Xd,Qd,wv=Be(()=>{var e,r;ka=($a=self.location.href,async function(t={}){var Xo;var s,o,n=t,i=new Promise((h,x)=>{s=h,o=x}),a=typeof window=="object",l=typeof WorkerGlobalScope<"u",u=l&&((Xo=self.name)==null?void 0:Xo.startsWith("em-pthread"));n.mountExternalData=(h,x)=>{h.startsWith("./")&&(h=h.substring(2)),(n.Eb||(n.Eb=new Map)).set(h,x)},n.unmountExternalData=()=>{delete n.Eb};var p=globalThis.SharedArrayBuffer??new WebAssembly.Memory({initial:0,maximum:0,pc:!0}).buffer.constructor;let d=h=>async(...x)=>{var I;try{if(n.Fb)throw Error("Session already started");let L=n.Fb={dc:x[0],errors:[]},U=await h(...x);if(n.Fb!==L)throw Error("Session mismatch");(I=n.Jb)==null||I.flush();let ue=L.errors;if(0Oe),0{if(h==="webgpu"){[n.Jb,n.Ub,n.Yb,n.Kb,n.Xb,n.jb,n.Zb,n.ac,n.Vb,n.Wb,n.$b]=x;let I=n.Jb;n.jsepRegisterBuffer=(L,U,ue,Te)=>I.registerBuffer(L,U,ue,Te),n.jsepGetBuffer=L=>I.getBuffer(L),n.jsepCreateDownloader=(L,U,ue)=>I.createDownloader(L,U,ue),n.jsepOnCreateSession=L=>{I.onCreateSession(L)},n.jsepOnReleaseSession=L=>{I.onReleaseSession(L)},n.jsepOnRunStart=L=>I.onRunStart(L),n.bc=(L,U)=>{I.upload(L,U)}}else if(h==="webnn"){let I=x[0];[n.nc,n.Nb,n.webnnEnsureTensor,n.Ob,n.webnnDownloadTensor]=x.slice(1),n.webnnReleaseTensorId=n.Nb,n.webnnUploadTensor=n.Ob,n.webnnOnRunStart=L=>I.onRunStart(L),n.webnnOnRunEnd=I.onRunEnd.bind(I),n.webnnRegisterMLContext=(L,U)=>{I.registerMLContext(L,U)},n.webnnOnReleaseSession=L=>{I.onReleaseSession(L)},n.webnnCreateMLTensorDownloader=(L,U)=>I.createMLTensorDownloader(L,U),n.webnnRegisterMLTensor=(L,U,ue,Te)=>I.registerMLTensor(L,U,ue,Te),n.webnnCreateMLContext=L=>I.createMLContext(L),n.webnnRegisterMLConstant=(L,U,ue,Te,Oe,Ke)=>I.registerMLConstant(L,U,ue,Te,Oe,n.Eb,Ke),n.webnnRegisterGraphInput=I.registerGraphInput.bind(I),n.webnnIsGraphInput=I.isGraphInput.bind(I),n.webnnCreateTemporaryTensor=I.createTemporaryTensor.bind(I),n.webnnIsInt64Supported=I.isInt64Supported.bind(I)}};let c=()=>{let h=(x,I,L)=>(...U)=>{let ue=Nt,Te=I==null?void 0:I();U=x(...U);let Oe=I==null?void 0:I();return Te!==Oe&&(x=Oe,L(Te),I=L=null),Nt!=ue?new Promise((Ke,Ze)=>{Rr={resolve:Ke,reject:Ze}}):U};(()=>{for(let x of["_OrtAppendExecutionProvider","_OrtCreateSession","_OrtRun","_OrtRunWithBinding","_OrtBindInput"])n[x]=h(n[x],()=>n[x],I=>n[x]=I)})(),d!==void 0&&(n._OrtRun=d(n._OrtRun),n._OrtRunWithBinding=d(n._OrtRunWithBinding)),c=void 0};n.asyncInit=()=>{c==null||c()};var f,_,T=Object.assign({},n),$=(h,x)=>{throw x},w="";(a||l)&&(l?w=self.location.href:typeof document<"u"&&document.currentScript&&(w=document.currentScript.src),$a&&(w=$a),w=w.startsWith("blob:")?"":w.slice(0,w.replace(/[?#].*/,"").lastIndexOf("/")+1),l&&(_=h=>{var x=new XMLHttpRequest;return x.open("GET",h,!1),x.responseType="arraybuffer",x.send(null),new Uint8Array(x.response)}),f=async h=>{if(V(h))return new Promise((I,L)=>{var U=new XMLHttpRequest;U.open("GET",h,!0),U.responseType="arraybuffer",U.onload=()=>{U.status==200||U.status==0&&U.response?I(U.response):L(U.status)},U.onerror=L,U.send(null)});var x=await fetch(h,{credentials:"same-origin"});if(x.ok)return x.arrayBuffer();throw Error(x.status+" : "+x.url)});var g=console.log.bind(console),S=console.error.bind(console),E=g,y=S;Object.assign(n,T),T=null;var M,v,C,A,B,K,G,j,ee,H,Z,X,oe,me=n.wasmBinary,ae=!1,V=h=>h.startsWith("file://");function F(){return M.buffer!=A.buffer&&R(),A}function W(){return M.buffer!=A.buffer&&R(),B}function re(){return M.buffer!=A.buffer&&R(),K}function _e(){return M.buffer!=A.buffer&&R(),G}function se(){return M.buffer!=A.buffer&&R(),j}function ce(){return M.buffer!=A.buffer&&R(),ee}function $e(){return M.buffer!=A.buffer&&R(),H}function Ue(){return M.buffer!=A.buffer&&R(),oe}if(u){let h=function(x){try{var I=x.data,L=I.Bb;if(L==="load"){let U=[];self.onmessage=ue=>U.push(ue),self.startWorker=()=>{postMessage({Bb:"loaded"});for(let ue of U)h(ue);self.onmessage=h};for(let ue of I.Rb)n[ue]&&!n[ue].proxy||(n[ue]=(...Te)=>{postMessage({Bb:"callHandler",Qb:ue,args:Te})},ue=="print"&&(E=n[ue]),ue=="printErr"&&(y=n[ue]));M=I.kc,R(),we(I.lc)}else if(L==="run"){Ir(I.Ab),Sn(I.Ab,0,0,1,0,0),ur(),ve(I.Ab),q||(No(),q=!0);try{js(I.fc,I.Hb)}catch(U){if(U!="unwind")throw U}}else I.target!=="setimmediate"&&(L==="checkMailbox"?q&&je():L&&(y(`worker: received unknown command ${L}`),y(I)))}catch(U){throw Vo(),U}};var we,q=!1;y=function(...x){x=x.join(" "),console.error(x)},self.alert=function(...x){postMessage({Bb:"alert",text:x.join(" "),ic:Xs()})},self.onunhandledrejection=x=>{throw x.reason||x},self.onmessage=h}function R(){var h=M.buffer;n.HEAP8=A=new Int8Array(h),n.HEAP16=K=new Int16Array(h),n.HEAPU8=B=new Uint8Array(h),n.HEAPU16=G=new Uint16Array(h),n.HEAP32=j=new Int32Array(h),n.HEAPU32=ee=new Uint32Array(h),n.HEAPF32=H=new Float32Array(h),n.HEAPF64=oe=new Float64Array(h),n.HEAP64=Z=new BigInt64Array(h),n.HEAPU64=X=new BigUint64Array(h)}function pe(){u?startWorker(n):nt.Ca()}u||(M=new WebAssembly.Memory({initial:256,maximum:65536,shared:!0}),R());var xe,be=0,Se=null;function Ae(){if(--be==0&&Se){var h=Se;Se=null,h()}}function Fe(h){throw y(h="Aborted("+h+")"),ae=!0,h=new WebAssembly.RuntimeError(h+". Build with -sASSERTIONS for more info."),o(h),h}function ze(){return{a:{L:Y,Aa:O,b:Ns,$:us,A:ds,pa:cs,X:De,Z:Qe,qa:tt,na:Rt,ga:zr,ma:Sr,J:ps,Y:hs,V:Kr,oa:ms,W:_s,va:cn,E:pn,Q:hn,O:_n,D:gn,u:wn,r:vs,P:Mn,z:N,R:Q,ja:ie,T:He,aa:Je,M:dt,F:xt,ia:ve,sa:Pt,t:Ht,Ba:br,w:or,o:Zt,l:Ws,c:Is,n:vi,j:Ei,v:Pi,p:Ci,f:Si,s:$i,m:To,e:ki,k:Ii,i:Eo,g:Ai,d:Po,da:Fi,ea:So,fa:Di,ba:Tn,ca:$o,N:ko,xa:zi,ua:Ri,h:ji,C:Io,G:Fs,ta:Bi,x:Ni,ra:pu,U:Vi,q:Li,y:hu,K:Ui,S:Ao,za:Wi,ya:Gi,ka:Do,la:qn,_:Xe,B:Lo,I:zo,ha:Xn,H:Bo,a:M,wa:Ie}}}var Ve={829644:(h,x,I,L,U)=>{if(n===void 0||!n.Eb)return 1;if((h=Ft(Number(h>>>0))).startsWith("./")&&(h=h.substring(2)),!(h=n.Eb.get(h)))return 2;if(x=Number(x>>>0),I=Number(I>>>0),L=Number(L>>>0),x+I>h.byteLength)return 3;try{let ue=h.subarray(x,x+I);switch(U){case 0:W().set(ue,L>>>0);break;case 1:n.mc?n.mc(L,ue):n.bc(L,ue);break;default:return 4}return 0}catch{return 4}},830468:(h,x,I)=>{n.Ob(h,W().subarray(x>>>0,x+I>>>0))},830532:()=>n.nc(),830574:h=>{n.Nb(h)},830611:()=>{n.Vb()},830642:()=>{n.Wb()},830671:()=>{n.$b()},830696:h=>n.Ub(h),830729:h=>n.Yb(h),830761:(h,x,I)=>{n.Kb(Number(h),Number(x),Number(I),!0)},830824:(h,x,I)=>{n.Kb(Number(h),Number(x),Number(I))},830881:()=>typeof wasmOffsetConverter<"u",830938:h=>{n.jb("Abs",h,void 0)},830989:h=>{n.jb("Neg",h,void 0)},831040:h=>{n.jb("Floor",h,void 0)},831093:h=>{n.jb("Ceil",h,void 0)},831145:h=>{n.jb("Reciprocal",h,void 0)},831203:h=>{n.jb("Sqrt",h,void 0)},831255:h=>{n.jb("Exp",h,void 0)},831306:h=>{n.jb("Erf",h,void 0)},831357:h=>{n.jb("Sigmoid",h,void 0)},831412:(h,x,I)=>{n.jb("HardSigmoid",h,{alpha:x,beta:I})},831491:h=>{n.jb("Log",h,void 0)},831542:h=>{n.jb("Sin",h,void 0)},831593:h=>{n.jb("Cos",h,void 0)},831644:h=>{n.jb("Tan",h,void 0)},831695:h=>{n.jb("Asin",h,void 0)},831747:h=>{n.jb("Acos",h,void 0)},831799:h=>{n.jb("Atan",h,void 0)},831851:h=>{n.jb("Sinh",h,void 0)},831903:h=>{n.jb("Cosh",h,void 0)},831955:h=>{n.jb("Asinh",h,void 0)},832008:h=>{n.jb("Acosh",h,void 0)},832061:h=>{n.jb("Atanh",h,void 0)},832114:h=>{n.jb("Tanh",h,void 0)},832166:h=>{n.jb("Not",h,void 0)},832217:(h,x,I)=>{n.jb("Clip",h,{min:x,max:I})},832286:h=>{n.jb("Clip",h,void 0)},832338:(h,x)=>{n.jb("Elu",h,{alpha:x})},832396:h=>{n.jb("Gelu",h,void 0)},832448:h=>{n.jb("Relu",h,void 0)},832500:(h,x)=>{n.jb("LeakyRelu",h,{alpha:x})},832564:(h,x)=>{n.jb("ThresholdedRelu",h,{alpha:x})},832634:(h,x)=>{n.jb("Cast",h,{to:x})},832692:h=>{n.jb("Add",h,void 0)},832743:h=>{n.jb("Sub",h,void 0)},832794:h=>{n.jb("Mul",h,void 0)},832845:h=>{n.jb("Div",h,void 0)},832896:h=>{n.jb("Pow",h,void 0)},832947:h=>{n.jb("Equal",h,void 0)},833e3:h=>{n.jb("Greater",h,void 0)},833055:h=>{n.jb("GreaterOrEqual",h,void 0)},833117:h=>{n.jb("Less",h,void 0)},833169:h=>{n.jb("LessOrEqual",h,void 0)},833228:(h,x,I,L,U)=>{n.jb("ReduceMean",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},833403:(h,x,I,L,U)=>{n.jb("ReduceMax",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},833577:(h,x,I,L,U)=>{n.jb("ReduceMin",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},833751:(h,x,I,L,U)=>{n.jb("ReduceProd",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},833926:(h,x,I,L,U)=>{n.jb("ReduceSum",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},834100:(h,x,I,L,U)=>{n.jb("ReduceL1",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},834273:(h,x,I,L,U)=>{n.jb("ReduceL2",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},834446:(h,x,I,L,U)=>{n.jb("ReduceLogSum",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},834623:(h,x,I,L,U)=>{n.jb("ReduceSumSquare",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},834803:(h,x,I,L,U)=>{n.jb("ReduceLogSumExp",h,{keepDims:!!x,noopWithEmptyAxes:!!I,axes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},834983:h=>{n.jb("Where",h,void 0)},835036:(h,x,I)=>{n.jb("Transpose",h,{perm:x?Array.from(se().subarray(Number(x)>>>0,Number(I)>>>0)):[]})},835160:(h,x,I,L)=>{n.jb("DepthToSpace",h,{blocksize:x,mode:Ft(I),format:L?"NHWC":"NCHW"})},835293:(h,x,I,L)=>{n.jb("DepthToSpace",h,{blocksize:x,mode:Ft(I),format:L?"NHWC":"NCHW"})},835426:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht,Tt,It,sr,Os)=>{n.jb("ConvTranspose",h,{format:Ke?"NHWC":"NCHW",autoPad:x,dilations:[I],group:L,kernelShape:[U],pads:[ue,Te],strides:[Oe],wIsConst:()=>!!F()[Ze>>>0],outputPadding:ht?Array.from(se().subarray(Number(ht)>>>0,Number(Tt)>>>0)):[],outputShape:It?Array.from(se().subarray(Number(It)>>>0,Number(sr)>>>0)):[],activation:Ft(Os)})},835859:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht,Tt,It,sr)=>{n.jb("ConvTranspose",h,{format:Oe?"NHWC":"NCHW",autoPad:x,dilations:Array.from(se().subarray(Number(I)>>>0,2+(Number(I)>>>0)>>>0)),group:L,kernelShape:Array.from(se().subarray(Number(U)>>>0,2+(Number(U)>>>0)>>>0)),pads:Array.from(se().subarray(Number(ue)>>>0,4+(Number(ue)>>>0)>>>0)),strides:Array.from(se().subarray(Number(Te)>>>0,2+(Number(Te)>>>0)>>>0)),wIsConst:()=>!!F()[Ke>>>0],outputPadding:Ze?Array.from(se().subarray(Number(Ze)>>>0,Number(ht)>>>0)):[],outputShape:Tt?Array.from(se().subarray(Number(Tt)>>>0,Number(It)>>>0)):[],activation:Ft(sr)})},836520:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht,Tt,It,sr,Os)=>{n.jb("ConvTranspose",h,{format:Ke?"NHWC":"NCHW",autoPad:x,dilations:[I],group:L,kernelShape:[U],pads:[ue,Te],strides:[Oe],wIsConst:()=>!!F()[Ze>>>0],outputPadding:ht?Array.from(se().subarray(Number(ht)>>>0,Number(Tt)>>>0)):[],outputShape:It?Array.from(se().subarray(Number(It)>>>0,Number(sr)>>>0)):[],activation:Ft(Os)})},836953:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht,Tt,It,sr)=>{n.jb("ConvTranspose",h,{format:Oe?"NHWC":"NCHW",autoPad:x,dilations:Array.from(se().subarray(Number(I)>>>0,2+(Number(I)>>>0)>>>0)),group:L,kernelShape:Array.from(se().subarray(Number(U)>>>0,2+(Number(U)>>>0)>>>0)),pads:Array.from(se().subarray(Number(ue)>>>0,4+(Number(ue)>>>0)>>>0)),strides:Array.from(se().subarray(Number(Te)>>>0,2+(Number(Te)>>>0)>>>0)),wIsConst:()=>!!F()[Ke>>>0],outputPadding:Ze?Array.from(se().subarray(Number(Ze)>>>0,Number(ht)>>>0)):[],outputShape:Tt?Array.from(se().subarray(Number(Tt)>>>0,Number(It)>>>0)):[],activation:Ft(sr)})},837614:(h,x)=>{n.jb("GlobalAveragePool",h,{format:x?"NHWC":"NCHW"})},837705:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht,Tt,It,sr)=>{n.jb("AveragePool",h,{format:sr?"NHWC":"NCHW",auto_pad:x,ceil_mode:I,count_include_pad:L,storage_order:U,dilations:ue?Array.from(se().subarray(Number(ue)>>>0,Number(Te)>>>0)):[],kernel_shape:Oe?Array.from(se().subarray(Number(Oe)>>>0,Number(Ke)>>>0)):[],pads:Ze?Array.from(se().subarray(Number(Ze)>>>0,Number(ht)>>>0)):[],strides:Tt?Array.from(se().subarray(Number(Tt)>>>0,Number(It)>>>0)):[]})},838184:(h,x)=>{n.jb("GlobalAveragePool",h,{format:x?"NHWC":"NCHW"})},838275:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht,Tt,It,sr)=>{n.jb("AveragePool",h,{format:sr?"NHWC":"NCHW",auto_pad:x,ceil_mode:I,count_include_pad:L,storage_order:U,dilations:ue?Array.from(se().subarray(Number(ue)>>>0,Number(Te)>>>0)):[],kernel_shape:Oe?Array.from(se().subarray(Number(Oe)>>>0,Number(Ke)>>>0)):[],pads:Ze?Array.from(se().subarray(Number(Ze)>>>0,Number(ht)>>>0)):[],strides:Tt?Array.from(se().subarray(Number(Tt)>>>0,Number(It)>>>0)):[]})},838754:(h,x)=>{n.jb("GlobalMaxPool",h,{format:x?"NHWC":"NCHW"})},838841:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht,Tt,It,sr)=>{n.jb("MaxPool",h,{format:sr?"NHWC":"NCHW",auto_pad:x,ceil_mode:I,count_include_pad:L,storage_order:U,dilations:ue?Array.from(se().subarray(Number(ue)>>>0,Number(Te)>>>0)):[],kernel_shape:Oe?Array.from(se().subarray(Number(Oe)>>>0,Number(Ke)>>>0)):[],pads:Ze?Array.from(se().subarray(Number(Ze)>>>0,Number(ht)>>>0)):[],strides:Tt?Array.from(se().subarray(Number(Tt)>>>0,Number(It)>>>0)):[]})},839316:(h,x)=>{n.jb("GlobalMaxPool",h,{format:x?"NHWC":"NCHW"})},839403:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht,Tt,It,sr)=>{n.jb("MaxPool",h,{format:sr?"NHWC":"NCHW",auto_pad:x,ceil_mode:I,count_include_pad:L,storage_order:U,dilations:ue?Array.from(se().subarray(Number(ue)>>>0,Number(Te)>>>0)):[],kernel_shape:Oe?Array.from(se().subarray(Number(Oe)>>>0,Number(Ke)>>>0)):[],pads:Ze?Array.from(se().subarray(Number(Ze)>>>0,Number(ht)>>>0)):[],strides:Tt?Array.from(se().subarray(Number(Tt)>>>0,Number(It)>>>0)):[]})},839878:(h,x,I,L,U)=>{n.jb("Gemm",h,{alpha:x,beta:I,transA:L,transB:U})},839982:h=>{n.jb("MatMul",h,void 0)},840036:(h,x,I,L)=>{n.jb("ArgMax",h,{keepDims:!!x,selectLastIndex:!!I,axis:L})},840144:(h,x,I,L)=>{n.jb("ArgMin",h,{keepDims:!!x,selectLastIndex:!!I,axis:L})},840252:(h,x)=>{n.jb("Softmax",h,{axis:x})},840315:(h,x)=>{n.jb("Concat",h,{axis:x})},840375:(h,x,I,L,U)=>{n.jb("Split",h,{axis:x,numOutputs:I,splitSizes:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},840531:h=>{n.jb("Expand",h,void 0)},840585:(h,x)=>{n.jb("Gather",h,{axis:Number(x)})},840656:(h,x)=>{n.jb("GatherElements",h,{axis:Number(x)})},840735:(h,x)=>{n.jb("GatherND",h,{batch_dims:Number(x)})},840814:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht)=>{n.jb("Resize",h,{antialias:x,axes:I?Array.from(se().subarray(Number(I)>>>0,Number(L)>>>0)):[],coordinateTransformMode:Ft(U),cubicCoeffA:ue,excludeOutside:Te,extrapolationValue:Oe,keepAspectRatioPolicy:Ft(Ke),mode:Ft(Ze),nearestMode:Ft(ht)})},841176:(h,x,I,L,U,ue,Te)=>{n.jb("Slice",h,{starts:x?Array.from(se().subarray(Number(x)>>>0,Number(I)>>>0)):[],ends:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[],axes:ue?Array.from(se().subarray(Number(ue)>>>0,Number(Te)>>>0)):[]})},841440:h=>{n.jb("Tile",h,void 0)},841492:(h,x,I)=>{n.jb("InstanceNormalization",h,{epsilon:x,format:I?"NHWC":"NCHW"})},841606:(h,x,I)=>{n.jb("InstanceNormalization",h,{epsilon:x,format:I?"NHWC":"NCHW"})},841720:h=>{n.jb("Range",h,void 0)},841773:(h,x)=>{n.jb("Einsum",h,{equation:Ft(x)})},841854:(h,x,I,L,U)=>{n.jb("Pad",h,{mode:x,value:I,pads:L?Array.from(se().subarray(Number(L)>>>0,Number(U)>>>0)):[]})},841997:(h,x,I,L,U,ue)=>{n.jb("BatchNormalization",h,{epsilon:x,momentum:I,spatial:!!U,trainingMode:!!L,format:ue?"NHWC":"NCHW"})},842166:(h,x,I,L,U,ue)=>{n.jb("BatchNormalization",h,{epsilon:x,momentum:I,spatial:!!U,trainingMode:!!L,format:ue?"NHWC":"NCHW"})},842335:(h,x,I)=>{n.jb("CumSum",h,{exclusive:Number(x),reverse:Number(I)})},842432:(h,x,I)=>{n.jb("DequantizeLinear",h,{axis:x,blockSize:I})},842522:(h,x,I,L,U)=>{n.jb("GridSample",h,{align_corners:x,mode:Ft(I),padding_mode:Ft(L),format:U?"NHWC":"NCHW"})},842692:(h,x,I,L,U)=>{n.jb("GridSample",h,{align_corners:x,mode:Ft(I),padding_mode:Ft(L),format:U?"NHWC":"NCHW"})},842862:(h,x)=>{n.jb("ScatterND",h,{reduction:Ft(x)})},842947:(h,x,I,L,U,ue,Te,Oe,Ke)=>{n.jb("Attention",h,{numHeads:x,isUnidirectional:I,maskFilterValue:L,scale:U,doRotary:ue,qkvHiddenSizes:Te?Array.from(se().subarray(Number(Oe)>>>0,Number(Oe)+Te>>>0)):[],pastPresentShareBuffer:!!Ke})},843219:h=>{n.jb("BiasAdd",h,void 0)},843274:h=>{n.jb("BiasSplitGelu",h,void 0)},843335:h=>{n.jb("FastGelu",h,void 0)},843391:(h,x,I,L,U,ue,Te,Oe,Ke,Ze,ht,Tt,It,sr,Os,Hi)=>{n.jb("Conv",h,{format:Tt?"NHWC":"NCHW",auto_pad:x,dilations:I?Array.from(se().subarray(Number(I)>>>0,Number(L)>>>0)):[],group:U,kernel_shape:ue?Array.from(se().subarray(Number(ue)>>>0,Number(Te)>>>0)):[],pads:Oe?Array.from(se().subarray(Number(Oe)>>>0,Number(Ke)>>>0)):[],strides:Ze?Array.from(se().subarray(Number(Ze)>>>0,Number(ht)>>>0)):[],w_is_const:()=>!!F()[Number(It)>>>0],activation:Ft(sr),activation_params:Os?Array.from($e().subarray(Number(Os)>>>0,Number(Hi)>>>0)):[]})},843975:h=>{n.jb("Gelu",h,void 0)},844027:(h,x,I,L,U,ue,Te,Oe,Ke)=>{n.jb("GroupQueryAttention",h,{numHeads:x,kvNumHeads:I,scale:L,softcap:U,doRotary:ue,rotaryInterleaved:Te,smoothSoftmax:Oe,localWindowSize:Ke})},844244:(h,x,I,L)=>{n.jb("LayerNormalization",h,{axis:x,epsilon:I,simplified:!!L})},844355:(h,x,I,L)=>{n.jb("LayerNormalization",h,{axis:x,epsilon:I,simplified:!!L})},844466:(h,x,I,L,U,ue)=>{n.jb("MatMulNBits",h,{k:x,n:I,accuracyLevel:L,bits:U,blockSize:ue})},844593:(h,x,I,L,U,ue)=>{n.jb("MultiHeadAttention",h,{numHeads:x,isUnidirectional:I,maskFilterValue:L,scale:U,doRotary:ue})},844752:(h,x)=>{n.jb("QuickGelu",h,{alpha:x})},844816:(h,x,I,L,U)=>{n.jb("RotaryEmbedding",h,{interleaved:!!x,numHeads:I,rotaryEmbeddingDim:L,scale:U})},844955:(h,x,I)=>{n.jb("SkipLayerNormalization",h,{epsilon:x,simplified:!!I})},845057:(h,x,I)=>{n.jb("SkipLayerNormalization",h,{epsilon:x,simplified:!!I})},845159:(h,x,I,L)=>{n.jb("GatherBlockQuantized",h,{gatherAxis:x,quantizeAxis:I,blockSize:L})},845280:h=>{n.Zb(h)},845314:(h,x)=>n.ac(Number(h),Number(x),n.Fb.dc,n.Fb.errors)};function O(h,x,I){return jr(async()=>{await n.Xb(Number(h),Number(x),Number(I))})}function Y(){return typeof wasmOffsetConverter<"u"}class z{constructor(x){te(this,"name","ExitStatus");this.message=`Program terminated with exit(${x})`,this.status=x}}var J=h=>{h.terminate(),h.onmessage=()=>{}},le=[],ye=h=>{Ge.length==0&&(Ms(),ls(Ge[0]));var x=Ge.pop();if(!x)return 6;lt.push(x),Gt[h.Ab]=x,x.Ab=h.Ab;var I={Bb:"run",fc:h.ec,Hb:h.Hb,Ab:h.Ab};return x.postMessage(I,h.Mb),0},Ee=0,ke=(h,x,...I)=>{for(var L=2*I.length,U=eo(),ue=kn(8*L),Te=ue>>>3,Oe=0;Oe>>0]=Ke)}return h=Uo(h,0,L,ue,x),$n(U),h};function Ie(h){if(u)return ke(0,1,h);if(C=h,!(0{if(C=h,u)throw Re(h),"unwind";Ie(h)},Ge=[],lt=[],wt=[],Gt={},Ot=h=>{var x=h.Ab;delete Gt[x],Ge.push(h),lt.splice(lt.indexOf(h),1),h.Ab=0,Jn(x)};function ur(){wt.forEach(h=>h())}var ls=h=>new Promise(x=>{h.onmessage=U=>{var ue=(U=U.data).Bb;if(U.Gb&&U.Gb!=Xs()){var Te=Gt[U.Gb];Te?Te.postMessage(U,U.Mb):y(`Internal error! Worker sent a message "${ue}" to target pthread ${U.Gb}, but that thread no longer exists!`)}else ue==="checkMailbox"?je():ue==="spawnThread"?ye(U):ue==="cleanupThread"?Ot(Gt[U.hc]):ue==="loaded"?(h.loaded=!0,x(h)):ue==="alert"?alert(`Thread ${U.ic}: ${U.text}`):U.target==="setimmediate"?h.postMessage(U):ue==="callHandler"?n[U.Qb](...U.args):ue&&y(`worker sent an unknown command ${ue}`)},h.onerror=U=>{throw y(`worker sent an error! ${U.filename}:${U.lineno}: ${U.message}`),U};var I,L=[];for(I of[])n.propertyIsEnumerable(I)&&L.push(I);h.postMessage({Bb:"load",Rb:L,kc:M,lc:v})});function Ms(){var h=new Worker((()=>{let x=URL;return self.location.href>"file:"&&self.location.href<"file;"?new x("ort.bundle.min.mjs",self.location.href):new URL(self.location.href)})(),{type:"module",workerData:"em-pthread",name:"em-pthread"});Ge.push(h)}var Ir=h=>{R();var x=ce()[h+52>>>2>>>0];h=ce()[h+56>>>2>>>0],Go(x,x-h),$n(x)},js=(h,x)=>{Ee=0,h=Ko(h,x),0>>=0);throw x>>>=0,I>>>=0,ce()[L.Ib+16>>>2>>>0]=0,ce()[L.Ib+4>>>2>>>0]=x,ce()[L.Ib+8>>>2>>>0]=I,h}function at(h,x,I,L){return u?ke(2,1,h,x,I,L):us(h,x,I,L)}function us(h,x,I,L){if(h>>>=0,I>>>=0,L>>>=0,p===void 0)return 6;var U=[];return u&&U.length===0?at(h,x>>>=0,I,L):(h={ec:I,Ab:h,Hb:L,Mb:U},u?(h.Bb="spawnThread",postMessage(h,U),0):ye(h))}var Ar=typeof TextDecoder<"u"?new TextDecoder:void 0,bs=(h,x=0,I=NaN)=>{var L=(x>>>=0)+I;for(I=x;h[I]&&!(I>=L);)++I;if(16(U=(240&U)==224?(15&U)<<12|ue<<6|Te:(7&U)<<18|ue<<12|Te<<6|63&h[x++])?L+=String.fromCharCode(U):(U-=65536,L+=String.fromCharCode(55296|U>>10,56320|1023&U))}}else L+=String.fromCharCode(U)}return L},Ft=(h,x)=>(h>>>=0)?bs(W(),h,x):"";function ds(h,x,I){return u?ke(3,1,h,x,I):0}function cs(h,x){if(u)return ke(4,1,h,x)}var ys=h=>{for(var x=0,I=0;I=L?x++:2047>=L?x+=2:55296<=L&&57343>=L?(x+=4,++I):x+=3}return x},Qt=(h,x,I)=>{var L=W();if(x>>>=0,0=Te&&(Te=65536+((1023&Te)<<10)|1023&h.charCodeAt(++ue)),127>=Te){if(x>=I)break;L[x++>>>0]=Te}else{if(2047>=Te){if(x+1>=I)break;L[x++>>>0]=192|Te>>6}else{if(65535>=Te){if(x+2>=I)break;L[x++>>>0]=224|Te>>12}else{if(x+3>=I)break;L[x++>>>0]=240|Te>>18,L[x++>>>0]=128|Te>>12&63}L[x++>>>0]=128|Te>>6&63}L[x++>>>0]=128|63&Te}}L[x>>>0]=0,h=x-U}else h=0;return h};function De(h,x){if(u)return ke(5,1,h,x)}function Qe(h,x,I){if(u)return ke(6,1,h,x,I)}function tt(h,x,I){return u?ke(7,1,h,x,I):0}function Rt(h,x){if(u)return ke(8,1,h,x)}function zr(h,x,I){if(u)return ke(9,1,h,x,I)}function Sr(h,x,I,L){if(u)return ke(10,1,h,x,I,L)}function ps(h,x,I,L){if(u)return ke(11,1,h,x,I,L)}function hs(h,x,I,L){if(u)return ke(12,1,h,x,I,L)}function Kr(h){if(u)return ke(13,1,h)}function ms(h,x){if(u)return ke(14,1,h,x)}function _s(h,x,I){if(u)return ke(15,1,h,x,I)}var Hr,vr,cn=()=>Fe(""),xr=h=>{for(var x="";W()[h>>>0];)x+=Hr[W()[h++>>>0]];return x},$s={},ks={};function fr(h,x,I={}){return function(L,U,ue={}){var Te=U.name;if(!L)throw new vr(`type "${Te}" must have a positive integer typeid pointer`);if(ks.hasOwnProperty(L)){if(ue.Sb)return;throw new vr(`Cannot register type '${Te}' twice`)}ks[L]=U,$s.hasOwnProperty(L)&&(U=$s[L],delete $s[L],U.forEach(Oe=>Oe()))}(h,x,I)}var Vs=(h,x,I)=>{switch(x){case 1:return I?L=>F()[L>>>0]:L=>W()[L>>>0];case 2:return I?L=>re()[L>>>1>>>0]:L=>_e()[L>>>1>>>0];case 4:return I?L=>se()[L>>>2>>>0]:L=>ce()[L>>>2>>>0];case 8:return I?L=>Z[L>>>3]:L=>X[L>>>3];default:throw new TypeError(`invalid integer width (${x}): ${h}`)}};function pn(h,x,I){I>>>=0,fr(h>>>=0,{name:x=xr(x>>>0),fromWireType:L=>L,toWireType:function(L,U){if(typeof U!="bigint"&&typeof U!="number")throw U=U===null?"null":(L=typeof U)=="object"||L==="array"||L==="function"?U.toString():""+U,new TypeError(`Cannot convert "${U}" to ${this.name}`);return typeof U=="number"&&(U=BigInt(U)),U},Cb:Fr,readValueFromPointer:Vs(x,I,x.indexOf("u")==-1),Db:null})}var Fr=8;function hn(h,x,I,L){fr(h>>>=0,{name:x=xr(x>>>0),fromWireType:function(U){return!!U},toWireType:function(U,ue){return ue?I:L},Cb:Fr,readValueFromPointer:function(U){return this.fromWireType(W()[U>>>0])},Db:null})}var qr=[],Tr=[];function Is(h){9<(h>>>=0)&&--Tr[h+1]==0&&(Tr[h]=void 0,qr.push(h))}var dr=h=>{if(!h)throw new vr("Cannot use deleted val. handle = "+h);return Tr[h]},gr=h=>{switch(h){case void 0:return 2;case null:return 4;case!0:return 6;case!1:return 8;default:let x=qr.pop()||Tr.length;return Tr[x]=h,Tr[x+1]=1,x}};function Br(h){return this.fromWireType(ce()[h>>>2>>>0])}var mn={name:"emscripten::val",fromWireType:h=>{var x=dr(h);return Is(h),x},toWireType:(h,x)=>gr(x),Cb:Fr,readValueFromPointer:Br,Db:null};function _n(h){return fr(h>>>0,mn)}var fn=(h,x)=>{switch(x){case 4:return function(I){return this.fromWireType($e()[I>>>2>>>0])};case 8:return function(I){return this.fromWireType(Ue()[I>>>3>>>0])};default:throw new TypeError(`invalid float width (${x}): ${h}`)}};function gn(h,x,I){I>>>=0,fr(h>>>=0,{name:x=xr(x>>>0),fromWireType:L=>L,toWireType:(L,U)=>U,Cb:Fr,readValueFromPointer:fn(x,I),Db:null})}function wn(h,x,I,L,U){if(h>>>=0,I>>>=0,x=xr(x>>>0),U===-1&&(U=4294967295),U=Oe=>Oe,L===0){var ue=32-8*I;U=Oe=>Oe<>>ue}var Te=x.includes("unsigned")?function(Oe,Ke){return Ke>>>0}:function(Oe,Ke){return Ke};fr(h,{name:x,fromWireType:U,toWireType:Te,Cb:Fr,readValueFromPointer:Vs(x,I,L!==0),Db:null})}function vs(h,x,I){function L(ue){var Te=ce()[ue>>>2>>>0];return ue=ce()[ue+4>>>2>>>0],new U(F().buffer,ue,Te)}var U=[Int8Array,Uint8Array,Int16Array,Uint16Array,Int32Array,Uint32Array,Float32Array,Float64Array,BigInt64Array,BigUint64Array][x];fr(h>>>=0,{name:I=xr(I>>>0),fromWireType:L,Cb:Fr,readValueFromPointer:L},{Sb:!0})}function Mn(h,x){fr(h>>>=0,{name:x=xr(x>>>0),fromWireType:function(I){for(var L,U=ce()[I>>>2>>>0],ue=I+4,Te=ue,Oe=0;Oe<=U;++Oe){var Ke=ue+Oe;Oe!=U&&W()[Ke>>>0]!=0||(Te=Ft(Te,Ke-Te),L===void 0?L=Te:(L+="\0",L+=Te),Te=Ke+1)}return Nr(I),L},toWireType:function(I,L){L instanceof ArrayBuffer&&(L=new Uint8Array(L));var U=typeof L=="string";if(!(U||L instanceof Uint8Array||L instanceof Uint8ClampedArray||L instanceof Int8Array))throw new vr("Cannot pass non-string to std::string");var ue=U?ys(L):L.length,Te=Cn(4+ue+1),Oe=Te+4;if(ce()[Te>>>2>>>0]=ue,U)Qt(L,Oe,ue+1);else if(U)for(U=0;U>>0]=Ke}else for(U=0;U>>0]=L[U];return I!==null&&I.push(Nr,Te),Te},Cb:Fr,readValueFromPointer:Br,Db(I){Nr(I)}})}var Us=typeof TextDecoder<"u"?new TextDecoder("utf-16le"):void 0,bn=(h,x)=>{for(var I=h>>1,L=I+x/2;!(I>=L)&&_e()[I>>>0];)++I;if(32<(I<<=1)-h&&Us)return Us.decode(W().slice(h,I));for(I="",L=0;!(L>=x/2);++L){var U=re()[h+2*L>>>1>>>0];if(U==0)break;I+=String.fromCharCode(U)}return I},yn=(h,x,I)=>{if(I??(I=2147483647),2>I)return 0;var L=x;I=(I-=2)<2*h.length?I/2:h.length;for(var U=0;U>>1>>>0]=ue,x+=2}return re()[x>>>1>>>0]=0,x-L},xs=h=>2*h.length,vn=(h,x)=>{for(var I=0,L="";!(I>=x/4);){var U=se()[h+4*I>>>2>>>0];if(U==0)break;++I,65536<=U?(U-=65536,L+=String.fromCharCode(55296|U>>10,56320|1023&U)):L+=String.fromCharCode(U)}return L},he=(h,x,I)=>{if(x>>>=0,I??(I=2147483647),4>I)return 0;var L=x;I=L+I-4;for(var U=0;U=ue&&(ue=65536+((1023&ue)<<10)|1023&h.charCodeAt(++U)),se()[x>>>2>>>0]=ue,(x+=4)+4>I)break}return se()[x>>>2>>>0]=0,x-L},k=h=>{for(var x=0,I=0;I=L&&++I,x+=4}return x};function N(h,x,I){if(h>>>=0,x>>>=0,I=xr(I>>>=0),x===2)var L=bn,U=yn,ue=xs,Te=Oe=>_e()[Oe>>>1>>>0];else x===4&&(L=vn,U=he,ue=k,Te=Oe=>ce()[Oe>>>2>>>0]);fr(h,{name:I,fromWireType:Oe=>{for(var Ke,Ze=ce()[Oe>>>2>>>0],ht=Oe+4,Tt=0;Tt<=Ze;++Tt){var It=Oe+4+Tt*x;Tt!=Ze&&Te(It)!=0||(ht=L(ht,It-ht),Ke===void 0?Ke=ht:(Ke+="\0",Ke+=ht),ht=It+x)}return Nr(Oe),Ke},toWireType:(Oe,Ke)=>{if(typeof Ke!="string")throw new vr(`Cannot pass non-string to C++ string type ${I}`);var Ze=ue(Ke),ht=Cn(4+Ze+x);return ce()[ht>>>2>>>0]=Ze/x,U(Ke,ht+4,Ze+x),Oe!==null&&Oe.push(Nr,ht),ht},Cb:Fr,readValueFromPointer:Br,Db(Oe){Nr(Oe)}})}function Q(h,x){fr(h>>>=0,{Tb:!0,name:x=xr(x>>>0),Cb:0,fromWireType:()=>{},toWireType:()=>{}})}function ie(h){Sn(h>>>0,!l,1,!a,131072,!1),ur()}var de=h=>{if(!ae)try{if(h(),!(0>>=0,typeof Atomics.jc=="function"&&(Atomics.jc(se(),h>>>2,h).value.then(je),h+=128,Atomics.store(se(),h>>>2,1))}var je=()=>{var h=Xs();h&&(ve(h),de(Zn))};function He(h,x){(h>>>=0)==x>>>0?setTimeout(je):u?postMessage({Gb:h,Bb:"checkMailbox"}):(h=Gt[h])&&h.postMessage({Bb:"checkMailbox"})}var We=[];function Je(h,x,I,L,U){for(x>>>=0,L/=2,We.length=L,I=U>>>0>>>3,U=0;U>>0];return(x?Ve[x]:Ro[h])(...We)}var dt=()=>{Ee=0};function xt(h){h>>>=0,u?postMessage({Bb:"cleanupThread",hc:h}):Ot(Gt[h])}function Pt(h){}var jt=(h,x)=>{var I=ks[h];if(I===void 0)throw h=jo(h),I=xr(h),Nr(h),new vr(`${x} has unknown type ${I}`);return I},kt=(h,x,I)=>{var L=[];return h=h.toWireType(L,I),L.length&&(ce()[x>>>2>>>0]=gr(L)),h};function Ht(h,x,I){return x>>>=0,I>>>=0,h=dr(h>>>0),x=jt(x,"emval::as"),kt(x,I,h)}function br(h,x){return x>>>=0,h=dr(h>>>0),(x=jt(x,"emval::as")).toWireType(null,h)}var cr=h=>{try{h()}catch(x){Fe(x)}},pr=0,Nt=null,Xr=0,Dt=[],rr={},wr={},Qr=0,Rr=null,Yt=[];function jr(h){return function(x){if(!ae){if(pr===0){var I=!1,L=!1;x((U=0)=>{if(!ae&&(Xr=U,I=!0,L)){pr=2,cr(()=>qo(Nt)),typeof MainLoop<"u"&&MainLoop.Pb&&MainLoop.resume(),U=!1;try{var ue=function(){var Ke=se()[Nt+8>>>2>>>0];return Ke=nt[wr[Ke]],--Ee,Ke()}()}catch(Ke){ue=Ke,U=!0}var Te=!1;if(!Nt){var Oe=Rr;Oe&&(Rr=null,(U?Oe.reject:Oe.resolve)(ue),Te=!0)}if(U&&!Te)throw ue}}),L=!0,I||(pr=1,Nt=function(){var U=Cn(65548),ue=U+12;ce()[U>>>2>>>0]=ue,ce()[U+4>>>2>>>0]=ue+65536,ue=Dt[0];var Te=rr[ue];return Te===void 0&&(Te=Qr++,rr[ue]=Te,wr[Te]=ue),ue=Te,se()[U+8>>>2>>>0]=ue,U}(),typeof MainLoop<"u"&&MainLoop.Pb&&MainLoop.pause(),cr(()=>to(Nt)))}else pr===2?(pr=0,cr(ro),Nr(Nt),Nt=null,Yt.forEach(de)):Fe(`invalid state: ${pr}`);return Xr}}(x=>{h().then(x)})}function or(h){return h>>>=0,jr(async()=>{var x=await dr(h);return gr(x)})}var Vt=[];function Zt(h,x,I,L){return I>>>=0,L>>>=0,(h=Vt[h>>>0])(null,x=dr(x>>>0),I,L)}var er={},tr=h=>{var x=er[h];return x===void 0?xr(h):x};function Ws(h,x,I,L,U){return I>>>=0,L>>>=0,U>>>=0,(h=Vt[h>>>0])(x=dr(x>>>0),x[I=tr(I)],L,U)}var xn=()=>typeof globalThis=="object"?globalThis:Function("return this")();function vi(h){return(h>>>=0)==0?gr(xn()):(h=tr(h),gr(xn()[h]))}var xi=h=>{var x=Vt.length;return Vt.push(h),x},Ti=(h,x)=>{for(var I=Array(h),L=0;L>>2>>>0],"parameter "+L);return I},As=(h,x)=>Object.defineProperty(x,"name",{value:h});function Ei(h,x,I){var L=(x=Ti(h,x>>>0)).shift();h--;var U=`return function (obj, func, destructorsRef, args) { `,ue=0,Te=[];I===0&&Te.push("obj");for(var Oe=["retType"],Ke=[L],Ze=0;Zeht.name).join(", ")}) => ${L.name}>`,xi(As(I,h))}function Pi(h){return h=tr(h>>>0),gr(n[h])}function Ci(h,x){return x>>>=0,h=dr(h>>>0),x=dr(x),gr(h[x])}function Si(h){9<(h>>>=0)&&(Tr[h+1]+=1)}function $i(){return gr([])}function To(h){h=dr(h>>>0);for(var x=Array(h.length),I=0;I>>0))}function Ii(){return gr({})}function Eo(h){for(var x=dr(h>>>=0);x.length;){var I=x.pop();x.pop()(I)}Is(h)}function Ai(h,x,I){x>>>=0,I>>>=0,h=dr(h>>>0),x=dr(x),I=dr(I),h[x]=I}function Po(h,x){return x>>>=0,h=(h=jt(h>>>0,"_emval_take_value")).readValueFromPointer(x),gr(h)}function Fi(h,x){h=-9007199254740992>h||9007199254740992>>=0,h=new Date(1e3*h),se()[x>>>2>>>0]=h.getUTCSeconds(),se()[x+4>>>2>>>0]=h.getUTCMinutes(),se()[x+8>>>2>>>0]=h.getUTCHours(),se()[x+12>>>2>>>0]=h.getUTCDate(),se()[x+16>>>2>>>0]=h.getUTCMonth(),se()[x+20>>>2>>>0]=h.getUTCFullYear()-1900,se()[x+24>>>2>>>0]=h.getUTCDay(),h=(h.getTime()-Date.UTC(h.getUTCFullYear(),0,1,0,0,0,0))/864e5|0,se()[x+28>>>2>>>0]=h}var Gn=h=>h%4==0&&(h%100!=0||h%400==0),Oi=[0,31,60,91,121,152,182,213,244,274,305,335],Co=[0,31,59,90,120,151,181,212,243,273,304,334];function So(h,x){h=-9007199254740992>h||9007199254740992>>=0,h=new Date(1e3*h),se()[x>>>2>>>0]=h.getSeconds(),se()[x+4>>>2>>>0]=h.getMinutes(),se()[x+8>>>2>>>0]=h.getHours(),se()[x+12>>>2>>>0]=h.getDate(),se()[x+16>>>2>>>0]=h.getMonth(),se()[x+20>>>2>>>0]=h.getFullYear()-1900,se()[x+24>>>2>>>0]=h.getDay();var I=(Gn(h.getFullYear())?Oi:Co)[h.getMonth()]+h.getDate()-1|0;se()[x+28>>>2>>>0]=I,se()[x+36>>>2>>>0]=-60*h.getTimezoneOffset(),I=new Date(h.getFullYear(),6,1).getTimezoneOffset();var L=new Date(h.getFullYear(),0,1).getTimezoneOffset();h=0|(I!=L&&h.getTimezoneOffset()==Math.min(L,I)),se()[x+32>>>2>>>0]=h}function Di(h){h>>>=0;var x=new Date(se()[h+20>>>2>>>0]+1900,se()[h+16>>>2>>>0],se()[h+12>>>2>>>0],se()[h+8>>>2>>>0],se()[h+4>>>2>>>0],se()[h>>>2>>>0],0),I=se()[h+32>>>2>>>0],L=x.getTimezoneOffset(),U=new Date(x.getFullYear(),6,1).getTimezoneOffset(),ue=new Date(x.getFullYear(),0,1).getTimezoneOffset(),Te=Math.min(ue,U);return 0>I?se()[h+32>>>2>>>0]=+(U!=ue&&Te==L):0>>2>>>0]=x.getDay(),I=(Gn(x.getFullYear())?Oi:Co)[x.getMonth()]+x.getDate()-1|0,se()[h+28>>>2>>>0]=I,se()[h>>>2>>>0]=x.getSeconds(),se()[h+4>>>2>>>0]=x.getMinutes(),se()[h+8>>>2>>>0]=x.getHours(),se()[h+12>>>2>>>0]=x.getDate(),se()[h+16>>>2>>>0]=x.getMonth(),se()[h+20>>>2>>>0]=x.getYear(),h=x.getTime(),BigInt(isNaN(h)?-1:h/1e3)}function Tn(h,x,I,L,U,ue,Te){return u?ke(16,1,h,x,I,L,U,ue,Te):-52}function $o(h,x,I,L,U,ue){if(u)return ke(17,1,h,x,I,L,U,ue)}var Gs={},Li=()=>performance.timeOrigin+performance.now();function ko(h,x){if(u)return ke(18,1,h,x);if(Gs[h]&&(clearTimeout(Gs[h].id),delete Gs[h]),!x)return 0;var I=setTimeout(()=>{delete Gs[h],de(()=>Wo(h,performance.timeOrigin+performance.now()))},x);return Gs[h]={id:I,qc:x},0}function zi(h,x,I,L){h>>>=0,x>>>=0,I>>>=0,L>>>=0;var U=new Date().getFullYear(),ue=new Date(U,0,1).getTimezoneOffset();U=new Date(U,6,1).getTimezoneOffset();var Te=Math.max(ue,U);ce()[h>>>2>>>0]=60*Te,se()[x>>>2>>>0]=+(ue!=U),h=(x=Oe=>{var Ke=Math.abs(Oe);return`UTC${0<=Oe?"-":"+"}${String(Math.floor(Ke/60)).padStart(2,"0")}${String(Ke%60).padStart(2,"0")}`})(ue),x=x(U),UDate.now();function Ri(h,x,I){return 0<=h&&3>=h?(h===0?h=Date.now():h=performance.timeOrigin+performance.now(),Z[I>>>0>>>3]=BigInt(Math.round(1e6*h)),0):28}var Ks=[],Kn=(h,x)=>{Ks.length=0;for(var I;I=W()[h++>>>0];){var L=I!=105;x+=(L&=I!=112)&&x%8?4:0,Ks.push(I==112?ce()[x>>>2>>>0]:I==106?Z[x>>>3]:I==105?se()[x>>>2>>>0]:Ue()[x>>>3>>>0]),x+=L?8:4}return Ks};function ji(h,x,I){return h>>>=0,x=Kn(x>>>0,I>>>0),Ve[h](...x)}function Io(h,x,I){return h>>>=0,x=Kn(x>>>0,I>>>0),Ve[h](...x)}var Fs=()=>{};function Ni(h,x){return y(Ft(h>>>0,x>>>0))}var pu=()=>{throw Ee+=1,"unwind"};function Vi(){return 4294901760}var hu=()=>navigator.hardwareConcurrency;function Ui(){return Fe("Cannot use emscripten_pc_get_function without -sUSE_OFFSET_CONVERTER"),0}function Ao(h){h>>>=0;var x=W().length;if(h<=x||4294901760=I;I*=2){var L=x*(1+.2/I);L=Math.min(L,h+100663296);e:{L=(Math.min(4294901760,65536*Math.ceil(Math.max(h,L)/65536))-M.buffer.byteLength+65535)/65536|0;try{M.grow(L),R();var U=1;break e}catch{}U=void 0}if(U)return!0}return!1}var En=()=>(Fe("Cannot use convertFrameToPC (needed by __builtin_return_address) without -sUSE_OFFSET_CONVERTER"),0),Hs={},Fo=h=>{h.forEach(x=>{En()})};function Wi(){var h=Error().stack.toString().split(` `);return h[0]=="Error"&&h.shift(),Fo(h),Hs.Lb=En(),Hs.cc=h,Hs.Lb}function Gi(h,x,I){if(h>>>=0,x>>>=0,Hs.Lb==h)var L=Hs.cc;else(L=Error().stack.toString().split(` `))[0]=="Error"&&L.shift(),Fo(L);for(var U=3;L[U]&&En()!=h;)++U;for(h=0;h>>2>>>0]=En();return h}var qs,Hn={},Oo=()=>{if(!qs){var h,x={USER:"web_user",LOGNAME:"web_user",PATH:"/",PWD:"/",HOME:"/home/web_user",LANG:(typeof navigator=="object"&&navigator.languages&&navigator.languages[0]||"C").replace("-","_")+".UTF-8",_:"./this.program"};for(h in Hn)Hn[h]===void 0?delete x[h]:x[h]=Hn[h];var I=[];for(h in x)I.push(`${h}=${x[h]}`);qs=I}return qs};function Do(h,x){if(u)return ke(19,1,h,x);h>>>=0,x>>>=0;var I=0;return Oo().forEach((L,U)=>{var ue=x+I;for(U=ce()[h+4*U>>>2>>>0]=ue,ue=0;ue>>0]=L.charCodeAt(ue);F()[U>>>0]=0,I+=L.length+1}),0}function qn(h,x){if(u)return ke(20,1,h,x);h>>>=0,x>>>=0;var I=Oo();ce()[h>>>2>>>0]=I.length;var L=0;return I.forEach(U=>L+=U.length+1),ce()[x>>>2>>>0]=L,0}function Lo(h){return u?ke(21,1,h):52}function zo(h,x,I,L){return u?ke(22,1,h,x,I,L):52}function Xn(h,x,I,L){return u?ke(23,1,h,x,I,L):70}var Ki=[null,[],[]];function Bo(h,x,I,L){if(u)return ke(24,1,h,x,I,L);x>>>=0,I>>>=0,L>>>=0;for(var U=0,ue=0;ue>>2>>>0],Oe=ce()[x+4>>>2>>>0];x+=8;for(var Ke=0;Ke>>0],ht=Ki[h];Ze===0||Ze===10?((h===1?E:y)(bs(ht)),ht.length=0):ht.push(Ze)}U+=Oe}return ce()[L>>>2>>>0]=U,0}u||function(){for(var h=n.numThreads-1;h--;)Ms();le.unshift(()=>{be++,function(x){u?x():Promise.all(Ge.map(ls)).then(x)}(()=>Ae())})}();for(var Qn=Array(256),Pn=0;256>Pn;++Pn)Qn[Pn]=String.fromCharCode(Pn);Hr=Qn,vr=n.BindingError=class extends Error{constructor(h){super(h),this.name="BindingError"}},n.InternalError=class extends Error{constructor(h){super(h),this.name="InternalError"}},Tr.push(0,1,void 0,1,null,1,!0,1,!1,1),n.count_emval_handles=()=>Tr.length/2-5-qr.length;var nt,Ro=[Ie,Re,at,ds,cs,De,Qe,tt,Rt,zr,Sr,ps,hs,Kr,ms,_s,Tn,$o,ko,Do,qn,Lo,zo,Xn,Bo];(async function(){function h(L,U){return nt=L.exports,nt=function(){var ue=nt,Te={};for(let[Oe,Ke]of Object.entries(ue))Te[Oe]=typeof Ke=="function"?(...Ze)=>{Dt.push(Oe);try{return Ke(...Ze)}finally{ae||(Dt.pop(),Nt&&pr===1&&Dt.length===0&&(pr=0,Ee+=1,cr(Ho),typeof Fibers<"u"&&Fibers.rc()))}}:Ke;return Te}(),nt=function(){var ue=nt,Te=Ke=>Ze=>Ke(Ze)>>>0,Oe=Ke=>()=>Ke()>>>0;return(ue=Object.assign({},ue)).Da=Te(ue.Da),ue.fb=Oe(ue.fb),ue.hb=Te(ue.hb),ue.tb=Te(ue.tb),ue.ub=Oe(ue.ub),ue.__cxa_get_exception_ptr=Te(ue.__cxa_get_exception_ptr),ue}(),wt.push(nt.ib),v=U,Ae(),nt}be++;var x=ze();if(n.instantiateWasm)return new Promise(L=>{n.instantiateWasm(x,(U,ue)=>{h(U,ue),L(U.exports)})});if(u)return new Promise(L=>{we=U=>{var ue=new WebAssembly.Instance(U,ze());L(h(ue,U))}});xe??(xe=n.locateFile?n.locateFile?n.locateFile("ort-wasm-simd-threaded.jsep.wasm",w):w+"ort-wasm-simd-threaded.jsep.wasm":new URL("/assets/ort-wasm-simd-threaded.jsep-B0T3yYHD.wasm",self.location.href).href);try{var I=await async function(L){var U=xe;if(!me&&typeof WebAssembly.instantiateStreaming=="function"&&!V(U))try{var ue=fetch(U,{credentials:"same-origin"});return await WebAssembly.instantiateStreaming(ue,L)}catch(Te){y(`wasm streaming compile failed: ${Te}`),y("falling back to ArrayBuffer instantiation")}return async function(Te,Oe){try{var Ke=await async function(Ze){if(!me)try{var ht=await f(Ze);return new Uint8Array(ht)}catch{}if(Ze==xe&&me)Ze=new Uint8Array(me);else{if(!_)throw"both async and sync fetching of the wasm failed";Ze=_(Ze)}return Ze}(Te);return await WebAssembly.instantiate(Ke,Oe)}catch(Ze){y(`failed to asynchronously prepare wasm: ${Ze}`),Fe(Ze)}}(U,L)}(x);return h(I.instance,I.module)}catch(L){return o(L),Promise.reject(L)}})();var jo=h=>(jo=nt.Da)(h),No=()=>(No=nt.Ea)();n._OrtInit=(h,x)=>(n._OrtInit=nt.Fa)(h,x),n._OrtGetLastError=(h,x)=>(n._OrtGetLastError=nt.Ga)(h,x),n._OrtCreateSessionOptions=(h,x,I,L,U,ue,Te,Oe,Ke,Ze)=>(n._OrtCreateSessionOptions=nt.Ha)(h,x,I,L,U,ue,Te,Oe,Ke,Ze),n._OrtAppendExecutionProvider=(h,x,I,L,U)=>(n._OrtAppendExecutionProvider=nt.Ia)(h,x,I,L,U),n._OrtAddFreeDimensionOverride=(h,x,I)=>(n._OrtAddFreeDimensionOverride=nt.Ja)(h,x,I),n._OrtAddSessionConfigEntry=(h,x,I)=>(n._OrtAddSessionConfigEntry=nt.Ka)(h,x,I),n._OrtReleaseSessionOptions=h=>(n._OrtReleaseSessionOptions=nt.La)(h),n._OrtCreateSession=(h,x,I)=>(n._OrtCreateSession=nt.Ma)(h,x,I),n._OrtReleaseSession=h=>(n._OrtReleaseSession=nt.Na)(h),n._OrtGetInputOutputCount=(h,x,I)=>(n._OrtGetInputOutputCount=nt.Oa)(h,x,I),n._OrtGetInputOutputMetadata=(h,x,I,L)=>(n._OrtGetInputOutputMetadata=nt.Pa)(h,x,I,L),n._OrtFree=h=>(n._OrtFree=nt.Qa)(h),n._OrtCreateTensor=(h,x,I,L,U,ue)=>(n._OrtCreateTensor=nt.Ra)(h,x,I,L,U,ue),n._OrtGetTensorData=(h,x,I,L,U)=>(n._OrtGetTensorData=nt.Sa)(h,x,I,L,U),n._OrtReleaseTensor=h=>(n._OrtReleaseTensor=nt.Ta)(h),n._OrtCreateRunOptions=(h,x,I,L)=>(n._OrtCreateRunOptions=nt.Ua)(h,x,I,L),n._OrtAddRunConfigEntry=(h,x,I)=>(n._OrtAddRunConfigEntry=nt.Va)(h,x,I),n._OrtReleaseRunOptions=h=>(n._OrtReleaseRunOptions=nt.Wa)(h),n._OrtCreateBinding=h=>(n._OrtCreateBinding=nt.Xa)(h),n._OrtBindInput=(h,x,I)=>(n._OrtBindInput=nt.Ya)(h,x,I),n._OrtBindOutput=(h,x,I,L)=>(n._OrtBindOutput=nt.Za)(h,x,I,L),n._OrtClearBoundOutputs=h=>(n._OrtClearBoundOutputs=nt._a)(h),n._OrtReleaseBinding=h=>(n._OrtReleaseBinding=nt.$a)(h),n._OrtRunWithBinding=(h,x,I,L,U)=>(n._OrtRunWithBinding=nt.ab)(h,x,I,L,U),n._OrtRun=(h,x,I,L,U,ue,Te,Oe)=>(n._OrtRun=nt.bb)(h,x,I,L,U,ue,Te,Oe),n._OrtEndProfiling=h=>(n._OrtEndProfiling=nt.cb)(h),n._JsepOutput=(h,x,I)=>(n._JsepOutput=nt.db)(h,x,I),n._JsepGetNodeName=h=>(n._JsepGetNodeName=nt.eb)(h);var Xs=()=>(Xs=nt.fb)(),Nr=n._free=h=>(Nr=n._free=nt.gb)(h),Cn=n._malloc=h=>(Cn=n._malloc=nt.hb)(h),Sn=(h,x,I,L,U,ue)=>(Sn=nt.kb)(h,x,I,L,U,ue),Vo=()=>(Vo=nt.lb)(),Uo=(h,x,I,L,U)=>(Uo=nt.mb)(h,x,I,L,U),Jn=h=>(Jn=nt.nb)(h),Yn=h=>(Yn=nt.ob)(h),Wo=(h,x)=>(Wo=nt.pb)(h,x),Zn=()=>(Zn=nt.qb)(),Go=(h,x)=>(Go=nt.rb)(h,x),$n=h=>($n=nt.sb)(h),kn=h=>(kn=nt.tb)(h),eo=()=>(eo=nt.ub)(),Ko=n.dynCall_ii=(h,x)=>(Ko=n.dynCall_ii=nt.vb)(h,x),to=h=>(to=nt.wb)(h),Ho=()=>(Ho=nt.xb)(),qo=h=>(qo=nt.yb)(h),ro=()=>(ro=nt.zb)();return n.stackSave=()=>eo(),n.stackRestore=h=>$n(h),n.stackAlloc=h=>kn(h),n.setValue=function(h,x,I="i8"){switch(I.endsWith("*")&&(I="*"),I){case"i1":case"i8":F()[h>>>0]=x;break;case"i16":re()[h>>>1>>>0]=x;break;case"i32":se()[h>>>2>>>0]=x;break;case"i64":Z[h>>>3]=BigInt(x);break;case"float":$e()[h>>>2>>>0]=x;break;case"double":Ue()[h>>>3>>>0]=x;break;case"*":ce()[h>>>2>>>0]=x;break;default:Fe(`invalid type for setValue: ${I}`)}},n.getValue=function(h,x="i8"){switch(x.endsWith("*")&&(x="*"),x){case"i1":case"i8":return F()[h>>>0];case"i16":return re()[h>>>1>>>0];case"i32":return se()[h>>>2>>>0];case"i64":return Z[h>>>3];case"float":return $e()[h>>>2>>>0];case"double":return Ue()[h>>>3>>>0];case"*":return ce()[h>>>2>>>0];default:Fe(`invalid type for getValue: ${x}`)}},n.UTF8ToString=Ft,n.stringToUTF8=Qt,n.lengthBytesUTF8=ys,function h(){if(0{Pa(),Ia=typeof location>"u"?void 0:location.origin,Aa=self.location.href>"file:"&&self.location.href<"file;",Jd=()=>{{if(Aa){let e=URL;return new URL(new e("ort.bundle.min.mjs",self.location.href).href,Ia).href}return self.location.href}},Dr=Jd(),Yd=()=>{if(Dr&&!Dr.startsWith("blob:"))return Dr.substring(0,Dr.lastIndexOf("/")+1)},ei=(e,r)=>{try{let t=r??Dr;return(t?new URL(e,t):new URL(e)).origin===Ia}catch{return!1}},Zd=(e,r)=>{let t=r??Dr;try{return(t?new URL(e,t):new URL(e)).href}catch{return}},ec=(e,r)=>`${r??"./"}${e}`,Fa=async e=>{let r=await(await fetch(e,{credentials:"same-origin"})).blob();return URL.createObjectURL(r)},tc=async e=>(await import(e)).default,Oa=(gv(),io(Kd)).default,rc=async()=>{if(!Dr)throw new Error("Failed to load proxy worker: cannot determine the script source URL.");if(ei(Dr))return[void 0,Oa()];let e=await Fa(Dr);return[e,Oa(e)]},Da=(wv(),io(qd)).default,sc=async(e,r,t)=>{if(!e&&!r&&Da&&Dr&&ei(Dr))return[void 0,Da];{let s="ort-wasm-simd-threaded.jsep.mjs",o=e??Zd(s,r),n=t&&o&&!ei(o,r),i=n?await Fa(o):o??ec(s,r);return[n?i:void 0,await tc(i)]}}}),za,ti,co,Ba,nc,oc,ic,Ra,zt,en=Be(()=>{La(),ti=!1,co=!1,Ba=!1,nc=()=>{if(typeof SharedArrayBuffer>"u")return!1;try{return typeof MessageChannel<"u"&&new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch{return!1}},oc=()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,30,1,28,0,65,0,253,15,253,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,253,186,1,26,11]))}catch{return!1}},ic=()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,5,1,96,0,1,123,3,2,1,0,10,19,1,17,0,65,1,253,15,65,2,253,15,65,3,253,15,253,147,2,11]))}catch{return!1}},Ra=async e=>{if(ti)return Promise.resolve();if(co)throw new Error("multiple calls to 'initializeWebAssembly()' detected.");if(Ba)throw new Error("previous call to 'initializeWebAssembly()' failed.");co=!0;let r=e.initTimeout,t=e.numThreads;if(e.simd!==!1){if(e.simd==="relaxed"){if(!ic())throw new Error("Relaxed WebAssembly SIMD is not supported in the current environment.")}else if(!oc())throw new Error("WebAssembly SIMD is not supported in the current environment.")}let s=nc();t>1&&!s&&(typeof self<"u"&&!self.crossOriginIsolated&&console.warn("env.wasm.numThreads is set to "+t+", but this will not work unless you enable crossOriginIsolated mode. See https://web.dev/cross-origin-isolation-guide/ for more info."),console.warn("WebAssembly multi-threading is not supported in the current environment. Falling back to single-threading."),e.numThreads=t=1);let o=e.wasmPaths,n=typeof o=="string"?o:void 0,i=o==null?void 0:o.mjs,a=(i==null?void 0:i.href)??i,l=o==null?void 0:o.wasm,u=(l==null?void 0:l.href)??l,p=e.wasmBinary,[d,c]=await sc(a,n,t>1),f=!1,_=[];if(r>0&&_.push(new Promise(T=>{setTimeout(()=>{f=!0,T()},r)})),_.push(new Promise((T,$)=>{let w={numThreads:t};if(p)w.wasmBinary=p;else if(u||n)w.locateFile=g=>u??n+g;else if(a&&a.indexOf("blob:")!==0)w.locateFile=g=>new URL(g,a).href;else if(d){let g=Yd();g&&(w.locateFile=S=>g+S)}c(w).then(g=>{co=!1,ti=!0,za=g,T(),d&&URL.revokeObjectURL(d)},g=>{co=!1,Ba=!0,$(g)})})),await Promise.race(_),f)throw new Error(`WebAssembly backend initializing failed due to timeout: ${r}ms`)},zt=()=>{if(ti&&za)return za;throw new Error("WebAssembly is not initialized yet.")}}),rs,ri,At,ja=Be(()=>{en(),rs=(e,r)=>{let t=zt(),s=t.lengthBytesUTF8(e)+1,o=t._malloc(s);return t.stringToUTF8(e,o,s),r.push(o),o},ri=(e,r,t,s)=>{if(typeof e=="object"&&e!==null){if(t.has(e))throw new Error("Circular reference in options");t.add(e)}Object.entries(e).forEach(([o,n])=>{let i=r?r+o:o;if(typeof n=="object")ri(n,i+".",t,s);else if(typeof n=="string"||typeof n=="number")s(i,n.toString());else if(typeof n=="boolean")s(i,n?"1":"0");else throw new Error(`Can't handle extra config type: ${typeof n}`)})},At=e=>{let r=zt(),t=r.stackSave();try{let s=r.PTR_SIZE,o=r.stackAlloc(2*s);r._OrtGetLastError(o,o+s);let n=Number(r.getValue(o,s===4?"i32":"i64")),i=r.getValue(o+s,"*"),a=i?r.UTF8ToString(i):"";throw new Error(`${e} ERROR_CODE: ${n}, ERROR_MESSAGE: ${a}`)}finally{r.stackRestore(t)}}}),ac,Mv=Be(()=>{en(),ja(),ac=e=>{let r=zt(),t=0,s=[],o=e||{};try{if((e==null?void 0:e.logSeverityLevel)===void 0)o.logSeverityLevel=2;else if(typeof e.logSeverityLevel!="number"||!Number.isInteger(e.logSeverityLevel)||e.logSeverityLevel<0||e.logSeverityLevel>4)throw new Error(`log serverity level is not valid: ${e.logSeverityLevel}`);if((e==null?void 0:e.logVerbosityLevel)===void 0)o.logVerbosityLevel=0;else if(typeof e.logVerbosityLevel!="number"||!Number.isInteger(e.logVerbosityLevel))throw new Error(`log verbosity level is not valid: ${e.logVerbosityLevel}`);(e==null?void 0:e.terminate)===void 0&&(o.terminate=!1);let n=0;return(e==null?void 0:e.tag)!==void 0&&(n=rs(e.tag,s)),t=r._OrtCreateRunOptions(o.logSeverityLevel,o.logVerbosityLevel,!!o.terminate,n),t===0&&At("Can't create run options."),(e==null?void 0:e.extra)!==void 0&&ri(e.extra,"",new WeakSet,(i,a)=>{let l=rs(i,s),u=rs(a,s);r._OrtAddRunConfigEntry(t,l,u)!==0&&At(`Can't set a run config entry: ${i} - ${a}.`)}),[t,s]}catch(n){throw t!==0&&r._OrtReleaseRunOptions(t),s.forEach(i=>r._free(i)),n}}}),lc,uc,dc,po,cc,pc,bv=Be(()=>{en(),ja(),lc=e=>{switch(e){case"disabled":return 0;case"basic":return 1;case"extended":return 2;case"all":return 99;default:throw new Error(`unsupported graph optimization level: ${e}`)}},uc=e=>{switch(e){case"sequential":return 0;case"parallel":return 1;default:throw new Error(`unsupported execution mode: ${e}`)}},dc=e=>{e.extra||(e.extra={}),e.extra.session||(e.extra.session={});let r=e.extra.session;r.use_ort_model_bytes_directly||(r.use_ort_model_bytes_directly="1"),e.executionProviders&&e.executionProviders.some(t=>(typeof t=="string"?t:t.name)==="webgpu")&&(e.enableMemPattern=!1)},po=(e,r,t,s)=>{let o=rs(r,s),n=rs(t,s);zt()._OrtAddSessionConfigEntry(e,o,n)!==0&&At(`Can't set a session config entry: ${r} - ${t}.`)},cc=async(e,r,t)=>{for(let s of r){let o=typeof s=="string"?s:s.name,n=[];switch(o){case"webnn":if(o="WEBNN",typeof s!="string"){let p=s==null?void 0:s.deviceType;p&&po(e,"deviceType",p,t)}break;case"webgpu":if(o="JS",typeof s!="string"){let p=s;if(p!=null&&p.preferredLayout){if(p.preferredLayout!=="NCHW"&&p.preferredLayout!=="NHWC")throw new Error(`preferredLayout must be either 'NCHW' or 'NHWC': ${p.preferredLayout}`);po(e,"preferredLayout",p.preferredLayout,t)}}break;case"wasm":case"cpu":continue;default:throw new Error(`not supported execution provider: ${o}`)}let i=rs(o,t),a=n.length,l=0,u=0;if(a>0){l=zt()._malloc(a*zt().PTR_SIZE),t.push(l),u=zt()._malloc(a*zt().PTR_SIZE),t.push(u);for(let p=0;p{let r=zt(),t=0,s=[],o=e||{};dc(o);try{let n=lc(o.graphOptimizationLevel??"all"),i=uc(o.executionMode??"sequential"),a=typeof o.logId=="string"?rs(o.logId,s):0,l=o.logSeverityLevel??2;if(!Number.isInteger(l)||l<0||l>4)throw new Error(`log serverity level is not valid: ${l}`);let u=o.logVerbosityLevel??0;if(!Number.isInteger(u)||u<0||u>4)throw new Error(`log verbosity level is not valid: ${u}`);let p=typeof o.optimizedModelFilePath=="string"?rs(o.optimizedModelFilePath,s):0;if(t=r._OrtCreateSessionOptions(n,!!o.enableCpuMemArena,!!o.enableMemPattern,i,!!o.enableProfiling,0,a,l,u,p),t===0&&At("Can't create session options."),o.executionProviders&&await cc(t,o.executionProviders,s),o.enableGraphCapture!==void 0){if(typeof o.enableGraphCapture!="boolean")throw new Error(`enableGraphCapture must be a boolean value: ${o.enableGraphCapture}`);po(t,"enableGraphCapture",o.enableGraphCapture.toString(),s)}if(o.freeDimensionOverrides)for(let[d,c]of Object.entries(o.freeDimensionOverrides)){if(typeof d!="string")throw new Error(`free dimension override name must be a string: ${d}`);if(typeof c!="number"||!Number.isInteger(c)||c<0)throw new Error(`free dimension override value must be a non-negative integer: ${c}`);let f=rs(d,s);r._OrtAddFreeDimensionOverride(t,f,c)!==0&&At(`Can't set a free dimension override: ${d} - ${c}.`)}return o.extra!==void 0&&ri(o.extra,"",new WeakSet,(d,c)=>{po(t,d,c,s)}),[t,s]}catch(n){throw t!==0&&r._OrtReleaseSessionOptions(t)!==0&&At("Can't release session options."),s.forEach(i=>r._free(i)),n}}}),jn,Ts,tn,Na,si,Va,Ua,Wa,ut=Be(()=>{jn=e=>{switch(e){case"int8":return 3;case"uint8":return 2;case"bool":return 9;case"int16":return 5;case"uint16":return 4;case"int32":return 6;case"uint32":return 12;case"float16":return 10;case"float32":return 1;case"float64":return 11;case"string":return 8;case"int64":return 7;case"uint64":return 13;case"int4":return 22;case"uint4":return 21;default:throw new Error(`unsupported data type: ${e}`)}},Ts=e=>{switch(e){case 3:return"int8";case 2:return"uint8";case 9:return"bool";case 5:return"int16";case 4:return"uint16";case 6:return"int32";case 12:return"uint32";case 10:return"float16";case 1:return"float32";case 11:return"float64";case 8:return"string";case 7:return"int64";case 13:return"uint64";case 22:return"int4";case 21:return"uint4";default:throw new Error(`unsupported data type: ${e}`)}},tn=(e,r)=>{let t=[-1,4,1,1,2,2,4,8,-1,1,2,8,4,8,-1,-1,-1,-1,-1,-1,-1,.5,.5][e],s=typeof r=="number"?r:r.reduce((o,n)=>o*n,1);return t>0?Math.ceil(s*t):void 0},Na=e=>{switch(e){case"float16":return typeof Float16Array<"u"&&Float16Array.from?Float16Array:Uint16Array;case"float32":return Float32Array;case"uint8":return Uint8Array;case"int8":return Int8Array;case"uint16":return Uint16Array;case"int16":return Int16Array;case"int32":return Int32Array;case"bool":return Uint8Array;case"float64":return Float64Array;case"uint32":return Uint32Array;case"int64":return BigInt64Array;case"uint64":return BigUint64Array;default:throw new Error(`unsupported type: ${e}`)}},si=e=>{switch(e){case"verbose":return 0;case"info":return 1;case"warning":return 2;case"error":return 3;case"fatal":return 4;default:throw new Error(`unsupported logging level: ${e}`)}},Va=e=>e==="float32"||e==="float16"||e==="int32"||e==="int64"||e==="uint32"||e==="uint8"||e==="bool"||e==="uint4"||e==="int4",Ua=e=>e==="float32"||e==="float16"||e==="int32"||e==="int64"||e==="uint32"||e==="uint64"||e==="int8"||e==="uint8"||e==="bool"||e==="uint4"||e==="int4",Wa=e=>{switch(e){case"none":return 0;case"cpu":return 1;case"cpu-pinned":return 2;case"texture":return 3;case"gpu-buffer":return 4;case"ml-tensor":return 5;default:throw new Error(`unsupported data location: ${e}`)}}}),Ga,hc=Be(()=>{Pa(),Ga=async e=>{if(typeof e=="string"){let r=await fetch(e);if(!r.ok)throw new Error(`failed to load external data file: ${e}`);let t=r.headers.get("Content-Length"),s=t?parseInt(t,10):0;if(s<1073741824)return new Uint8Array(await r.arrayBuffer());{if(!r.body)throw new Error(`failed to load external data file: ${e}, no response body.`);let o=r.body.getReader(),n;try{n=new ArrayBuffer(s)}catch(a){if(a instanceof RangeError){let l=Math.ceil(s/65536);n=new WebAssembly.Memory({initial:l,maximum:l}).buffer}else throw a}let i=0;for(;;){let{done:a,value:l}=await o.read();if(a)break;let u=l.byteLength;new Uint8Array(n,i,u).set(l),i+=u}return new Uint8Array(n,0,s)}}else return e instanceof Blob?new Uint8Array(await e.arrayBuffer()):e instanceof Uint8Array?e:new Uint8Array(e)}}),mc,_c,fc,gc,Ka,wc,vt,Es=Be(()=>{ut(),mc=["V","I","W","E","F"],_c=(e,r)=>{console.log(`[${mc[e]},${new Date().toISOString()}]${r}`)},Ka=(e,r)=>{fc=e,gc=r},wc=(e,r)=>{let t=si(e),s=si(fc);t>=s&&_c(t,typeof r=="function"?r():r)},vt=(...e)=>{gc&&wc(...e)}}),Mc,Nn,Me,ni,bc,yc,vc,mt=Be(()=>{Mc=class{static calcMatMulShape(e,r){return e[1]!==r[0]?void 0:[e[0],r[1]]}},Nn=class{static calcShape(e,r,t=!1){let s=e.length,o=r.length;if(s===0)return r;if(o===0)return e;let n=Math.max(e.length,r.length),i=new Array(n);if(t){if(s<2||o<2)return;let a=Mc.calcMatMulShape([e[s-2],e[s-1]],[r[o-2],r[o-1]]);if(a===void 0)return;[i[n-2],i[n-1]]=a}for(let a=t?3:1;a<=n;a++){let l=s-a<0?1:e[s-a],u=o-a<0?1:r[o-a];if(l!==u&&l>1&&u>1)return;let p=Math.max(l,u);if(l&&u)i[n-a]=Math.max(l,u);else{if(p>1)return;i[n-a]=0}}return i}static isValidBroadcast(e,r){let t=e.length,s=r.length;if(t>s)return!1;for(let o=1;o<=t;o++)if(e[t-o]!==1&&e[t-o]!==r[s-o])return!1;return!0}},Me=class fa{static size(r){return fa.getSizeFromDimensionRange(r,0,r.length)}static convertShape(r,t=4){let s=r.length;if(s===0)return[];let o=new Array(s),n=s-1;for(;n>=0;){if(r[n]%t===0){o[n]=r[n]/t;break}if(t%r[n]!==0)throw new Error("cannot convert shape");o[n]=1,t/=r[n],n--}for(n--;n>=0;n--)o[n]=r[n];return o}static sizeFromDimension(r,t){if(t<0||t>r.length)throw new Error(`invalid dimension of ${t} for sizeFromDimension as Tensor has ${r.length} dimensions.`);return fa.getSizeFromDimensionRange(r,t,r.length)}static sizeToDimension(r,t){if(t<0||t>r.length)throw new Error(`invalid dimension of ${t} for sizeToDimension as Tensor has ${r.length} dimensions.`);return fa.getSizeFromDimensionRange(r,0,t)}static getSizeFromDimensionRange(r,t,s){let o=1;for(let n=t;n=0;--o)s[o]=s[o+1]*r[o+1];return s}static normalizeAxis(r,t){if(r<-t&&r>=t)throw new Error("unsupported axis for this operation.");return r<0?r+t:r}static normalizeAxes(r,t){return r.map(s=>this.normalizeAxis(s,t??r.length))}static sortBasedOnPerm(r,t){return t?t.map(s=>r[s]):r.slice().reverse()}static padShape(r,t){let s=r.length;return r.map((o,n)=>o+t[n]+t[n+s])}static areEqual(r,t){return r.length!==t.length?!1:r.every((s,o)=>s===t[o])}},ni=class Jo{static adjustPoolAttributes(r,t,s,o,n,i){if(!r&&s.length!==t.length-2)throw new Error("length of specified kernel shapes should be 2 less than length of input dimensions");if(r)for(let a=0;a=s.length?s.push(t[a+2]):s[a]=t[a+2];for(let a=0;a=s[a]||i[a+s.length]>=s[a])throw new Error("pads should be smaller than kernel")}}static adjustPadsBasedOnAutoPad(r,t,s,o,n,i,a){if(a){if(n.length!==2*(r.length-2))throw new Error("length of pads should be twice the length of data dimensions");if(t.length!==r.length-2)throw new Error("length of strides should be the length of data dimensions");if(o.length!==r.length-2)throw new Error("length of kernel shapes should be the length of data dimensions");for(let l=0;l{ut(),Ha=(e,r)=>new(Na(r))(e)}),qa,Xa,Tc,Qa,Ec,Ja,Ya,Za,Pc,Cc,yv=Be(()=>{Es(),qa=(e,r=!0)=>{if(e.byteLength%8!==0)throw new Error("Invalid Uint8Array length - must be a multiple of 8 (BigInt).");let t=e.byteLength/8,s=new BigInt64Array(e.buffer,e.byteOffset,t),o=new Int32Array(t);for(let n=0;n2147483647n||i<-2147483648n)throw new Error(`Overflow occurred when converting BigInt to Int32 at index ${n}: ${i}`);o[n]=Number(i)}return r?new Uint8Array(o.buffer):o},Xa=(e,r=!0)=>{if(e.byteLength%4!==0)throw new Error("Invalid Uint8Array length - must be a multiple of 4 (Int32).");let t=e.byteLength/4,s=new Int32Array(e.buffer,e.byteOffset,t),o=BigInt64Array.from(s,BigInt);return r?new Uint8Array(o.buffer):o},Tc=1,Qa=()=>Tc++,Ec=new Map([["float32",32],["float16",16],["int32",32],["uint32",32],["int64",64],["uint64",64],["int8",8],["uint8",8],["int4",4],["uint4",4]]),Ja=(e,r)=>{let t=Ec.get(e);if(!t)throw new Error("Unsupported data type.");return r.length>0?Math.ceil(r.reduce((s,o)=>s*o)*t/8):0},Ya=class{constructor(e){this.shouldConvertInt64toInt32=!1,this.isInt64ToInt32Converted=!1;let{sessionId:r,context:t,tensor:s,dataType:o,shape:n,shouldConvertInt64toInt32:i=!1}=e;this.sessionId=r,this.mlContext=t,this.mlTensor=s,this.dataType=o,this.tensorShape=n,this.shouldConvertInt64toInt32=i}get tensor(){return this.mlTensor}get type(){return this.dataType}get shape(){return this.tensorShape}get byteLength(){return Ja(this.dataType,this.tensorShape)}destroy(){vt("verbose",()=>"[WebNN] TensorWrapper.destroy"),this.mlTensor.destroy()}write(e){this.mlContext.writeTensor(this.mlTensor,e)}async read(e,r){if(e){let t=await this.mlContext.readTensor(this.mlTensor),s=Xa(new Uint8Array(t));if(r){(r instanceof ArrayBuffer?new Uint8Array(r):new Uint8Array(r.buffer,r.byteOffset,r.byteLength)).set(s);return}else return s.buffer}else return r?this.mlContext.readTensor(this.mlTensor,r):this.mlContext.readTensor(this.mlTensor)}canReuseTensor(e,r,t){return this.mlContext===e&&this.dataType===r&&this.tensorShape.length===t.length&&this.tensorShape.every((s,o)=>s===t[o])}setIsInt64ToInt32Converted(e){this.isInt64ToInt32Converted=e}},Za=class{constructor(e,r){this.tensorManager=e,this.wrapper=r}get tensorWrapper(){return this.wrapper}releaseTensor(){this.tensorWrapper&&(this.tensorManager.releaseTensor(this.tensorWrapper),this.wrapper=void 0)}async ensureTensor(e,r,t,s){let o=r,n=this.tensorManager.getMLContext(e),i=o==="int64"&&!n.opSupportLimits().input.dataTypes.includes("int64");if(i&&(o="int32",vt("verbose",()=>"[WebNN] TensorIdTracker.ensureTensor: convert dataType from int64 to int32")),this.wrapper){if(this.wrapper.canReuseTensor(n,o,t))return this.wrapper.tensor;if(s){if(this.wrapper.byteLength!==Ja(o,t))throw new Error("Unable to copy data to tensor with different size.");this.activeUpload=new Uint8Array(await this.wrapper.read())}this.tensorManager.releaseTensor(this.wrapper)}let a=typeof MLTensorUsage>"u"?void 0:MLTensorUsage.READ|MLTensorUsage.WRITE;return this.wrapper=await this.tensorManager.getCachedTensor(e,o,t,a,!0,!0,i),s&&this.activeUpload&&(this.wrapper.write(this.activeUpload),this.activeUpload=void 0),this.wrapper.tensor}upload(e){let r=e;if(this.wrapper)if(this.wrapper.shouldConvertInt64toInt32&&(r=qa(e,!0),this.wrapper.setIsInt64ToInt32Converted(!0)),r.byteLength===this.wrapper.byteLength){this.wrapper.write(r);return}else vt("verbose",()=>"Data size does not match tensor size. Releasing tensor."),this.releaseTensor();this.activeUpload?this.activeUpload.set(r):this.activeUpload=new Uint8Array(r)}async download(e){var r,t,s;if(this.activeUpload){let o=(r=this.wrapper)!=null&&r.isInt64ToInt32Converted?Xa(this.activeUpload):this.activeUpload;if(e){e instanceof ArrayBuffer?new Uint8Array(e).set(o):new Uint8Array(e.buffer,e.byteOffset,e.byteLength).set(o);return}else return o.buffer}if(!this.wrapper)throw new Error("Tensor has not been created.");return e?this.wrapper.read((t=this.wrapper)==null?void 0:t.shouldConvertInt64toInt32,e):this.wrapper.read((s=this.wrapper)==null?void 0:s.shouldConvertInt64toInt32)}},Pc=class{constructor(e){this.backend=e,this.tensorTrackersById=new Map,this.freeTensors=[],this.externalTensors=new Set}getMLContext(e){let r=this.backend.getMLContext(e);if(!r)throw new Error("MLContext not found for session.");return r}reserveTensorId(){let e=Qa();return this.tensorTrackersById.set(e,new Za(this)),e}releaseTensorId(e){let r=this.tensorTrackersById.get(e);r&&(this.tensorTrackersById.delete(e),r.tensorWrapper&&this.releaseTensor(r.tensorWrapper))}async ensureTensor(e,r,t,s,o){vt("verbose",()=>`[WebNN] TensorManager.ensureTensor {tensorId: ${r}, dataType: ${t}, shape: ${s}, copyOld: ${o}}`);let n=this.tensorTrackersById.get(r);if(!n)throw new Error("Tensor not found.");return n.ensureTensor(e,t,s,o)}upload(e,r){let t=this.tensorTrackersById.get(e);if(!t)throw new Error("Tensor not found.");t.upload(r)}async download(e,r){vt("verbose",()=>`[WebNN] TensorManager.download {tensorId: ${e}, dstBuffer: ${r==null?void 0:r.byteLength}}`);let t=this.tensorTrackersById.get(e);if(!t)throw new Error("Tensor not found.");return t.download(r)}releaseTensorsForSession(e){for(let r of this.freeTensors)r.sessionId===e&&r.destroy();this.freeTensors=this.freeTensors.filter(r=>r.sessionId!==e)}registerTensor(e,r,t,s){let o=this.getMLContext(e),n=Qa(),i=new Ya({sessionId:e,context:o,tensor:r,dataType:t,shape:s});return this.tensorTrackersById.set(n,new Za(this,i)),this.externalTensors.add(i),n}async getCachedTensor(e,r,t,s,o,n,i=!1){let a=this.getMLContext(e);for(let[u,p]of this.freeTensors.entries())if(p.canReuseTensor(a,r,t)){vt("verbose",()=>`[WebNN] Reusing tensor {dataType: ${r}, shape: ${t}}`);let d=this.freeTensors.splice(u,1)[0];return d.sessionId=e,d}vt("verbose",()=>`[WebNN] MLContext.createTensor {dataType: ${r}, shape: ${t}}`);let l=await a.createTensor({dataType:r,shape:t,dimensions:t,usage:s,writable:o,readable:n});return new Ya({sessionId:e,context:a,tensor:l,dataType:r,shape:t,shouldConvertInt64toInt32:i})}releaseTensor(e){this.externalTensors.has(e)&&this.externalTensors.delete(e),this.freeTensors.push(e)}},Cc=(...e)=>new Pc(...e)}),oi,Sc,$c,vv=Be(()=>{ut(),en(),xc(),yv(),Es(),oi=new Map([[1,"float32"],[10,"float16"],[6,"int32"],[12,"uint32"],[7,"int64"],[13,"uint64"],[22,"int4"],[21,"uint4"],[3,"int8"],[2,"uint8"],[9,"uint8"]]),Sc=(e,r)=>{if(e===r)return!0;if(e===void 0||r===void 0)return!1;let t=Object.keys(e).sort(),s=Object.keys(r).sort();return t.length===s.length&&t.every((o,n)=>o===s[n]&&e[o]===r[o])},$c=class{constructor(e){this.tensorManager=Cc(this),this.mlContextBySessionId=new Map,this.sessionIdsByMLContext=new Map,this.mlContextCache=[],this.sessionGraphInputs=new Map,this.temporaryGraphInputs=[],this.temporarySessionTensorIds=new Map,Ka(e.logLevel,!!e.debug)}get currentSessionId(){if(this.activeSessionId===void 0)throw new Error("No active session");return this.activeSessionId}onRunStart(e){vt("verbose",()=>`[WebNN] onRunStart {sessionId: ${e}}`),this.activeSessionId=e}onRunEnd(e){vt("verbose",()=>`[WebNN] onRunEnd {sessionId: ${e}}`);let r=this.temporarySessionTensorIds.get(e);if(r){for(let t of r)vt("verbose",()=>`[WebNN] releasing temporary tensor {tensorId: ${t}}`),this.tensorManager.releaseTensorId(t);this.temporarySessionTensorIds.delete(e),this.activeSessionId=void 0}}async createMLContext(e){if(e instanceof GPUDevice){let t=this.mlContextCache.findIndex(s=>s.gpuDevice===e);if(t!==-1)return this.mlContextCache[t].mlContext;{let s=await navigator.ml.createContext(e);return this.mlContextCache.push({gpuDevice:e,mlContext:s}),s}}else if(e===void 0){let t=this.mlContextCache.findIndex(s=>s.options===void 0&&s.gpuDevice===void 0);if(t!==-1)return this.mlContextCache[t].mlContext;{let s=await navigator.ml.createContext();return this.mlContextCache.push({mlContext:s}),s}}let r=this.mlContextCache.findIndex(t=>Sc(t.options,e));if(r!==-1)return this.mlContextCache[r].mlContext;{let t=await navigator.ml.createContext(e);return this.mlContextCache.push({options:e,mlContext:t}),t}}registerMLContext(e,r){this.mlContextBySessionId.set(e,r);let t=this.sessionIdsByMLContext.get(r);t||(t=new Set,this.sessionIdsByMLContext.set(r,t)),t.add(e),this.temporaryGraphInputs.length>0&&(this.sessionGraphInputs.set(e,this.temporaryGraphInputs),this.temporaryGraphInputs=[])}onReleaseSession(e){this.sessionGraphInputs.delete(e);let r=this.mlContextBySessionId.get(e);if(!r)return;this.tensorManager.releaseTensorsForSession(e),this.mlContextBySessionId.delete(e);let t=this.sessionIdsByMLContext.get(r);if(t.delete(e),t.size===0){this.sessionIdsByMLContext.delete(r);let s=this.mlContextCache.findIndex(o=>o.mlContext===r);s!==-1&&this.mlContextCache.splice(s,1)}}getMLContext(e){return this.mlContextBySessionId.get(e)}reserveTensorId(){return this.tensorManager.reserveTensorId()}releaseTensorId(e){vt("verbose",()=>`[WebNN] releaseTensorId {tensorId: ${e}}`),this.tensorManager.releaseTensorId(e)}async ensureTensor(e,r,t,s,o){let n=oi.get(t);if(!n)throw new Error(`Unsupported ONNX data type: ${t}`);return this.tensorManager.ensureTensor(e??this.currentSessionId,r,n,s,o)}async createTemporaryTensor(e,r,t){vt("verbose",()=>`[WebNN] createTemporaryTensor {onnxDataType: ${r}, shape: ${t}}`);let s=oi.get(r);if(!s)throw new Error(`Unsupported ONNX data type: ${r}`);let o=this.tensorManager.reserveTensorId();await this.tensorManager.ensureTensor(e,o,s,t,!1);let n=this.temporarySessionTensorIds.get(e);return n?n.push(o):this.temporarySessionTensorIds.set(e,[o]),o}uploadTensor(e,r){if(!zt().shouldTransferToMLTensor)throw new Error("Trying to upload to a MLTensor while shouldTransferToMLTensor is false");vt("verbose",()=>`[WebNN] uploadTensor {tensorId: ${e}, data: ${r.byteLength}}`),this.tensorManager.upload(e,r)}async downloadTensor(e,r){return this.tensorManager.download(e,r)}createMLTensorDownloader(e,r){return async()=>{let t=await this.tensorManager.download(e);return Ha(t,r)}}registerMLTensor(e,r,t,s){let o=oi.get(t);if(!o)throw new Error(`Unsupported ONNX data type: ${t}`);let n=this.tensorManager.registerTensor(e,r,o,s);return vt("verbose",()=>`[WebNN] registerMLTensor {tensor: ${r}, dataType: ${o}, dimensions: ${s}} -> {tensorId: ${n}}`),n}registerMLConstant(e,r,t,s,o,n,i=!1){if(!n)throw new Error("External mounted files are not available.");let a=e;e.startsWith("./")&&(a=e.substring(2));let l=n.get(a);if(!l)throw new Error(`File with name ${a} not found in preloaded files.`);if(r+t>l.byteLength)throw new Error("Out of bounds: data offset and length exceed the external file data size.");let u=l.slice(r,r+t).buffer,p;switch(o.dataType){case"float32":p=new Float32Array(u);break;case"float16":p=typeof Float16Array<"u"&&Float16Array.from?new Float16Array(u):new Uint16Array(u);break;case"int32":p=new Int32Array(u);break;case"uint32":p=new Uint32Array(u);break;case"int64":i?(p=qa(new Uint8Array(u),!1),o.dataType="int32"):p=new BigInt64Array(u);break;case"uint64":p=new BigUint64Array(u);break;case"int8":p=new Int8Array(u);break;case"int4":case"uint4":case"uint8":p=new Uint8Array(u);break;default:throw new Error(`Unsupported data type: ${o.dataType} in creating WebNN Constant from external data.`)}return vt("verbose",()=>`[WebNN] registerMLConstant {dataType: ${o.dataType}, shape: ${o.shape}}} ${i?"(Note: it was int64 data type and registered to int32 as workaround)":""}`),s.constant(o,p)}registerGraphInput(e){this.temporaryGraphInputs.push(e)}isGraphInput(e,r){let t=this.sessionGraphInputs.get(e);return t?t.includes(r):!1}isInt64Supported(e){var r;return!!((r=this.mlContextBySessionId.get(e))!=null&&r.opSupportLimits().input.dataTypes.includes("int64"))}flush(){}}}),el=Be(()=>{}),tl,ii,ai,kc,Ic,rl,sl,Ac,Fc,xv=Be(()=>{Es(),el(),tl=new Map([[64,250],[128,200],[256,200],[512,200],[2048,230],[4096,200],[8192,50],[16384,50],[32768,50],[65536,50],[131072,50],[262144,50],[524288,50],[1048576,50],[2097152,30],[4194304,20],[8388608,10],[12582912,10],[16777216,10],[26214400,15],[33554432,22],[44236800,2],[58982400,6],[67108864,6],[134217728,6],[167772160,6]]),ii=[],ai=e=>Math.ceil(Number(e)/16)*16,kc=e=>{for(let r=0;rIc++,sl=async(e,r,t,s)=>{let o=ai(t),n=e.device.createBuffer({size:o,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ});try{let i=e.getCommandEncoder();e.endComputePass(),i.copyBufferToBuffer(r,0,n,0,o),e.flush(),await n.mapAsync(GPUMapMode.READ);let a=n.getMappedRange();if(s){let l=s();return l.set(new Uint8Array(a,0,t)),l}else return new Uint8Array(a.slice(0,t))}finally{n.destroy()}},Ac=class{constructor(e){this.backend=e,this.storageCache=new Map,this.freeBuffers=new Map,this.freeUniformBuffers=new Map,this.buffersPending=[],this.capturedPendingBuffers=new Map;for(let[r]of tl)ii.push(r),this.freeBuffers.set(r,[]),this.freeUniformBuffers.set(r,[]);this.sessionCount=0}upload(e,r){let t=r.buffer,s=r.byteOffset,o=r.byteLength,n=ai(o),i=this.storageCache.get(e);if(!i)throw new Error("gpu data for uploading does not exist");if(Number(i.originalSize)!==o)throw new Error(`inconsistent data size. gpu data size=${i.originalSize}, data size=${o}`);let a=this.backend.device.createBuffer({mappedAtCreation:!0,size:n,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC}),l=a.getMappedRange();new Uint8Array(l).set(new Uint8Array(t,s,o)),a.unmap();let u=this.backend.device.createCommandEncoder();u.copyBufferToBuffer(a,0,i.gpuData.buffer,0,n),this.backend.device.queue.submit([u.finish()]),a.destroy(),vt("verbose",()=>`[WebGPU] GpuDataManager.upload(id=${e})`)}memcpy(e,r){let t=this.storageCache.get(e);if(!t)throw new Error("source gpu data for memcpy does not exist");let s=this.storageCache.get(r);if(!s)throw new Error("destination gpu data for memcpy does not exist");if(t.originalSize!==s.originalSize)throw new Error("inconsistent source and destination gpu data size");let o=ai(t.originalSize),n=this.backend.getCommandEncoder();this.backend.endComputePass(),n.copyBufferToBuffer(t.gpuData.buffer,0,s.gpuData.buffer,0,o)}registerExternalBuffer(e,r,t){let s;if(t){if(s=t[0],e===t[1])return vt("verbose",()=>`[WebGPU] GpuDataManager.registerExternalBuffer(size=${r}) => id=${s}, buffer is the same, skip.`),s;if(this.backend.capturedCommandList.has(this.backend.currentSessionId))throw new Error(`Registering a different external buffer under graph capture mode is not supported yet. Please use the previous external buffer!`)}else s=rl();return this.storageCache.set(s,{gpuData:{id:s,type:0,buffer:e},originalSize:r}),vt("verbose",()=>`[WebGPU] GpuDataManager.registerExternalBuffer(size=${r}) => id=${s}, registered.`),s}unregisterExternalBuffer(e){e!==void 0&&(this.storageCache.delete(e),vt("verbose",()=>`[WebGPU] GpuDataManager.unregisterExternalBuffer() => id=${e}`))}create(e,r=GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST){let t=kc(e),s,o=(r&GPUBufferUsage.STORAGE)===GPUBufferUsage.STORAGE,n=(r&GPUBufferUsage.UNIFORM)===GPUBufferUsage.UNIFORM;if(o||n){let a=(o?this.freeBuffers:this.freeUniformBuffers).get(t);a?a.length>0?s=a.pop():s=this.backend.device.createBuffer({size:t,usage:r}):s=this.backend.device.createBuffer({size:t,usage:r})}else s=this.backend.device.createBuffer({size:t,usage:r});let i={id:rl(),type:0,buffer:s};return this.storageCache.set(i.id,{gpuData:i,originalSize:Number(e)}),vt("verbose",()=>`[WebGPU] GpuDataManager.create(size=${e}) => id=${i.id}`),i}get(e){var r;return(r=this.storageCache.get(e))==null?void 0:r.gpuData}release(e){let r=typeof e=="bigint"?Number(e):e,t=this.storageCache.get(r);if(!t){if(this.storageCache.size===0)return 0;throw new Error("releasing data does not exist")}return vt("verbose",()=>`[WebGPU] GpuDataManager.release(id=${r}), gpuDataId=${t.gpuData.id}`),this.storageCache.delete(r),this.buffersPending.push(t.gpuData.buffer),t.originalSize}async download(e,r){let t=this.storageCache.get(Number(e));if(!t)throw new Error("data does not exist");await sl(this.backend,t.gpuData.buffer,t.originalSize,r)}refreshPendingBuffers(){if(this.buffersPending.length!==0)if(this.backend.sessionStatus==="default"){for(let e of this.buffersPending){let r=tl.get(e.size);if((e.usage&GPUBufferUsage.STORAGE)===GPUBufferUsage.STORAGE){let t=this.freeBuffers.get(e.size)||[];r===void 0||t.length>=r?e.destroy():t.push(e)}else if((e.usage&GPUBufferUsage.UNIFORM)===GPUBufferUsage.UNIFORM){let t=this.freeUniformBuffers.get(e.size)||[];r===void 0||t.length>=r?e.destroy():t.push(e)}else e.destroy()}this.buffersPending=[]}else{let e=this.capturedPendingBuffers.get(this.backend.currentSessionId);e||(e=[],this.capturedPendingBuffers.set(this.backend.currentSessionId,e));for(let r of this.buffersPending)e.push(r);this.buffersPending=[]}}dispose(){this.freeBuffers.forEach(e=>{e.forEach(r=>{r.destroy()})}),this.freeUniformBuffers.forEach(e=>{e.forEach(r=>{r.destroy()})}),this.storageCache.forEach(e=>{e.gpuData.buffer.destroy()}),this.capturedPendingBuffers.forEach(e=>{e.forEach(r=>{r.destroy()})}),this.storageCache=new Map,this.freeBuffers=new Map,this.freeUniformBuffers=new Map,this.capturedPendingBuffers=new Map}onCreateSession(){this.sessionCount+=1}onReleaseSession(e){let r=this.capturedPendingBuffers.get(e);r&&(r.forEach(t=>{t.destroy()}),this.capturedPendingBuffers.delete(e)),this.sessionCount-=1,this.sessionCount===0&&(vt("warning",()=>"[WebGPU] Clearing webgpu buffer cache"),this.storageCache.forEach(t=>{t.gpuData.buffer.destroy()}),this.storageCache=new Map)}},Fc=(...e)=>new Ac(...e)}),Oc,St,Xt=Be(()=>{Oc=class{constructor(e){Object.assign(this,e)}get cacheKey(){return this.key||(this.key=Object.getOwnPropertyNames(this).sort().map(e=>`${this[e]}`).join(";")),this.key}},St=e=>new Oc(e)}),Vn,li,lr,yr,st,Kt,nl,Un,Ls,et,ho,Pe,Ye,Dc,ol,Lc,zc,ft=Be(()=>{ut(),mt(),Vn=64,li=(e,r)=>{if(r===3)throw new Error("vec3 has same alignment as vec4, use vec4 instead");switch(Number(e)){case 10:return r>1?`vec${r}`:"f16";case 1:return r>1?`vec${r}`:"f32";case 6:return r>1?`vec${r}`:"i32";case 12:return r>1?`vec${r}`:"u32";case 7:if(r>1)throw new Error("currently not supported vecX of uint64 yet");return["vec2","i32"];case 13:if(r>1)throw new Error("currently not supported vecX of uint64 yet");return["vec2","u32"];case 9:if(r!==4)throw new Error("bool must be vec4");return["u32","vec4"];case 22:return"i32";case 21:return"u32";default:throw new Error(`Unknown data type: ${e}`)}},lr=(e,r=1)=>{let t=li(e,r);return typeof t=="string"?t:t[0]},yr=(e,r=1)=>{let t=li(e,r);return typeof t=="string"?t:t[1]},st=(...e)=>{let r=[];return e.forEach(t=>{t.length!==0&&r.push({type:12,data:t},{type:12,data:Me.computeStrides(t)})}),r},Kt=e=>e%4===0?4:e%2===0?2:1,nl=(e="f32",r,t="0")=>!r||r===1?`${e}(${t})`:`vec${r}<${e}>(${t})`,Un=(e,r,t)=>e==="f32"?t:r===1?`f32(${t})`:`vec${r}(${t})`,Ls=(e,r)=>r===4?`(${e}.x + ${e}.y + ${e}.z + ${e}.w)`:r===2?`(${e}.x + ${e}.y)`:r===3?`(${e}.x + ${e}.y + ${e}.z)`:e,et=(e,r,t,s)=>e.startsWith("uniforms.")&&t>4?typeof r=="string"?s==="f16"?`${e}[(${r}) / 8][(${r}) % 8 / 4][(${r}) % 8 % 4]`:`${e}[(${r}) / 4][(${r}) % 4]`:s==="f16"?`${e}[${Math.floor(r/8)}][${Math.floor(r%8/4)}][${r%8%4}]`:`${e}[${Math.floor(r/4)}][${r%4}]`:t>1?`${e}[${r}]`:e,ho=(e,r,t,s,o)=>{let n=typeof t=="number",i=n?t:t.length,a=[...new Array(i).keys()],l=i<2?"u32":i<=4?`vec${i}`:`array`,u=li(r,o),p=typeof u=="string"?u:u[1],d=typeof u=="string"?u:u[0],c={indices:l,value:p,storage:d,tensor:r},f=V=>typeof V=="string"?V:`${V}u`,_={offsetToIndices:!1,indicesToOffset:!1,broadcastedIndicesToOffset:!1,set:!1,setByIndices:!1,get:!1,getByIndices:!1},T=n?"uniforms.":"",$=`${T}${e}_shape`,w=`${T}${e}_strides`,g="";for(let V=0;V ${c.indices} { var indices: ${c.indices}; var current = offset; ${g} return indices; }`,E=V=>(_.offsetToIndices=!0,i<2?V:`o2i_${e}(${V})`),y=[];if(i>=2)for(let V=i-1;V>=0;V--)y.push(`${et(w,V,i)} * (indices[${V}])`);let M=i<2?"":` fn i2o_${e}(indices: ${c.indices}) -> u32 { return ${y.join("+")}; }`,v=V=>(_.indicesToOffset=!0,i<2?V:`i2o_${e}(${V})`),C=(...V)=>i===0?"0u":`${c.indices}(${V.map(f).join(",")})`,A=(V,F)=>i<2?`${V}`:`${et(V,F,i)}`,B=(V,F,W)=>i<2?`${V}=${W};`:`${et(V,F,i)}=${W};`,K={},G=(V,F)=>{_.broadcastedIndicesToOffset=!0;let W=`${F.name}broadcastedIndicesTo${e}Offset`;if(W in K)return`${W}(${V})`;let re=[];for(let _e=i-1;_e>=0;_e--){let se=F.indicesGet("outputIndices",_e+F.rank-i);re.push(`${A(w,_e)} * (${se} % ${A($,_e)})`)}return K[W]=`fn ${W}(outputIndices: ${F.type.indices}) -> u32 { return ${re.length>0?re.join("+"):"0u"}; }`,`${W}(${V})`},j=(V,F)=>(()=>{if(c.storage===c.value)return`${e}[${V}]=${F};`;if(c.storage==="vec2"&&c.value==="i32")return`${e}[${V}]=vec2(u32(${F}), select(0u, 0xFFFFFFFFu, ${F} < 0));`;if(c.storage==="vec2"&&c.value==="u32")return`${e}[${V}]=vec2(u32(${F}), 0u);`;if(c.storage==="u32"&&c.value==="vec4")return`${e}[${V}]=dot(vec4(0x1, 0x100, 0x10000, 0x1000000), vec4(${F}));`;throw new Error(`not supported combination of storage type ${c.storage} and value type ${c.value} yet`)})(),ee=V=>(()=>{if(c.storage===c.value)return`${e}[${V}]`;if(c.storage==="vec2"&&c.value==="i32")return`i32(${e}[${V}].x)`;if(c.storage==="vec2"&&c.value==="u32")return`u32(${e}[${V}].x)`;if(c.storage==="u32"&&c.value==="vec4")return`vec4(bool(${e}[${V}] & 0xFFu), bool(${e}[${V}] & 0xFF00u), bool(${e}[${V}] & 0xFF0000u), bool(${e}[${V}] & 0xFF000000u))`;throw new Error(`not supported combination of storage type ${c.storage} and value type ${c.value} yet`)})(),H=i<2?"":` fn get_${e}ByIndices(indices: ${c.indices}) -> ${p} { return ${ee(`i2o_${e}(indices)`)}; }`,Z=i<2?"":(()=>{let V=a.map(W=>`d${W}: u32`).join(", "),F=a.map(W=>`d${W}`).join(", ");return` fn get_${e}(${V}) -> ${p} { return get_${e}ByIndices(${C(F)}); }`})(),X=(...V)=>{if(V.length!==i)throw new Error(`indices length must be ${i}`);let F=V.map(f).join(",");return i===0?ee("0u"):i===1?ee(F[0]):(_.get=!0,_.getByIndices=!0,_.indicesToOffset=!0,`get_${e}(${F})`)},oe=V=>i<2?ee(V):(_.getByIndices=!0,_.indicesToOffset=!0,`get_${e}ByIndices(${V})`),me=i<2?"":` fn set_${e}ByIndices(indices: ${c.indices}, value: ${p}) { ${j(`i2o_${e}(indices)`,"value")} }`,ae=i<2?"":(()=>{let V=a.map(W=>`d${W}: u32`).join(", "),F=a.map(W=>`d${W}`).join(", ");return` fn set_${e}(${V}, value: ${p}) { set_${e}ByIndices(${C(F)}, value); }`})();return{impl:()=>{let V=[],F=!1;return _.offsetToIndices&&(V.push(S),F=!0),_.indicesToOffset&&(V.push(M),F=!0),_.broadcastedIndicesToOffset&&(Object.values(K).forEach(W=>V.push(W)),F=!0),_.set&&(V.push(ae),F=!0),_.setByIndices&&(V.push(me),F=!0),_.get&&(V.push(Z),F=!0),_.getByIndices&&(V.push(H),F=!0),!n&&F&&V.unshift(`const ${$} = ${c.indices}(${t.join(",")});`,`const ${w} = ${c.indices}(${Me.computeStrides(t).join(",")});`),V.join(` `)},type:c,offsetToIndices:E,indicesToOffset:v,broadcastedIndicesToOffset:G,indices:C,indicesGet:A,indicesSet:B,set:(...V)=>{if(V.length!==i+1)throw new Error(`indices length must be ${i}`);let F=V[i];if(typeof F!="string")throw new Error("value must be string");let W=V.slice(0,i).map(f).join(",");return i===0?j("0u",F):i===1?j(W[0],F):(_.set=!0,_.setByIndices=!0,_.indicesToOffset=!0,`set_${e}(${W}, ${F})`)},setByOffset:j,setByIndices:(V,F)=>i<2?j(V,F):(_.setByIndices=!0,_.indicesToOffset=!0,`set_${e}ByIndices(${V}, ${F});`),get:X,getByOffset:ee,getByIndices:oe,usage:s,name:e,strides:w,shape:$,rank:i}},Pe=(e,r,t,s=1)=>ho(e,r,t,"input",s),Ye=(e,r,t,s=1)=>ho(e,r,t,"output",s),Dc=(e,r,t)=>ho(e,r,t,"atomicOutput",1),ol=(e,r,t,s=1)=>ho(e,r,t,"internal",s),Lc=class{constructor(e,r){this.normalizedDispatchGroup=e,this.limits=r,this.internalVariables=[],this.variables=[],this.uniforms=[],this.variableIndex=0}guardAgainstOutOfBoundsWorkgroupSizes(e){return`if (global_idx >= ${typeof e=="number"?`${e}u`:e}) { return; }`}mainStart(e=Vn){let r=typeof e=="number"?e:e[0],t=typeof e=="number"?1:e[1],s=typeof e=="number"?1:e[2];if(r>this.limits.maxComputeWorkgroupSizeX||t>this.limits.maxComputeWorkgroupSizeY||s>this.limits.maxComputeWorkgroupSizeZ)throw new Error(`workgroup size [${r}, ${t}, ${s}] exceeds the maximum workgroup size [${this.limits.maxComputeWorkgroupSizeX}, ${this.limits.maxComputeWorkgroupSizeY}, ${this.limits.maxComputeWorkgroupSizeZ}].`);if(r*t*s>this.limits.maxComputeInvocationsPerWorkgroup)throw new Error(`workgroup size [${r}, ${t}, ${s}] exceeds the maximum workgroup invocations ${this.limits.maxComputeInvocationsPerWorkgroup}.`);let o=this.normalizedDispatchGroup[1]===1&&this.normalizedDispatchGroup[2]===1,n=o?`@builtin(global_invocation_id) global_id : vec3, @builtin(workgroup_id) workgroup_id : vec3, @builtin(local_invocation_index) local_idx : u32, @builtin(local_invocation_id) local_id : vec3`:`@builtin(global_invocation_id) global_id : vec3, @builtin(local_invocation_id) local_id : vec3, @builtin(local_invocation_index) local_idx : u32, @builtin(workgroup_id) workgroup_id : vec3, @builtin(num_workgroups) num_workgroups : vec3`,i=o?`let global_idx = global_id.x; let workgroup_index = workgroup_id.x;`:`let workgroup_index = workgroup_id.z * num_workgroups[0] * num_workgroups[1] + workgroup_id.y * num_workgroups[0] + workgroup_id.x; let global_idx = workgroup_index * ${r*t*s}u + local_idx;`;return`@compute @workgroup_size(${r}, ${t}, ${s}) fn main(${n}) { ${i} `}appendVariableUniforms(e){e.rank!==0&&(e.shape.startsWith("uniforms.")&&this.uniforms.push({name:e.shape.replace("uniforms.",""),type:"u32",length:e.rank}),e.strides.startsWith("uniforms.")&&this.uniforms.push({name:e.strides.replace("uniforms.",""),type:"u32",length:e.rank}))}declareVariable(e,r){if(e.usage==="internal")throw new Error("cannot use internal variable with declareVariable(). use registerInternalVariables() instead.");this.variables.push(e),this.appendVariableUniforms(e);let t=e.usage==="input"?"read":"read_write",s=e.usage==="atomicOutput"?"atomic":e.type.storage;return`@group(0) @binding(${r}) var ${e.name}: array<${s}>;`}declareVariables(...e){return e.map(r=>this.declareVariable(r,this.variableIndex++)).join(` `)}registerInternalVariable(e){if(e.usage!=="internal")throw new Error("cannot use input or output variable with registerInternalVariable(). use declareVariables() instead.");this.internalVariables.push(e),this.appendVariableUniforms(e)}registerInternalVariables(...e){return e.forEach(r=>this.registerInternalVariable(r)),this}registerUniform(e,r,t=1){return this.uniforms.push({name:e,type:r,length:t}),this}registerUniforms(e){return this.uniforms=this.uniforms.concat(e),this}uniformDeclaration(){if(this.uniforms.length===0)return"";let e=[];for(let{name:r,type:t,length:s}of this.uniforms)if(s&&s>4)t==="f16"?e.push(`@align(16) ${r}:array, ${Math.ceil(s/8)}>`):e.push(`${r}:array, ${Math.ceil(s/4)}>`);else{let o=s==null||s===1?t:`vec${s}<${t}>`;e.push(`${r}:${o}`)}return` struct Uniforms { ${e.join(", ")} }; @group(0) @binding(${this.variableIndex}) var uniforms: Uniforms;`}get additionalImplementations(){return this.uniformDeclaration()+this.variables.map(e=>e.impl()).join(` `)+this.internalVariables.map(e=>e.impl()).join(` `)}get variablesInfo(){if(this.uniforms.length===0)return;let e=r=>[12,10,1,6][["u32","f16","f32","i32"].indexOf(r)];return this.uniforms.map(r=>[e(r.type),r.length??1])}},zc=(e,r)=>new Lc(e,r)}),Bc,il,Rc,jc,Nc,Vc,Lr,Uc,Wc,zs=Be(()=>{ut(),mt(),Xt(),ft(),Bc=(e,r)=>{if(!e||e.length!==1)throw new Error("Transpose requires 1 input.");if(r.length!==0&&r.length!==e[0].dims.length)throw new Error(`perm size ${r.length} does not match input rank ${e[0].dims.length}`)},il=(e,r)=>r.length!==0?r:[...new Array(e).keys()].reverse(),Rc=(e,r)=>Me.sortBasedOnPerm(e,il(e.length,r)),jc=(e,r,t,s)=>{let o=`fn perm(i: ${s.type.indices}) -> ${t.type.indices} { var a: ${t.type.indices};`;for(let n=0;n{let t=[],s=[];for(let o=0;o{let t=0;for(let s=0;s{let t=e.dataType,s=e.dims.length,o=il(s,r),n=Rc(e.dims,o),i=e.dims,a=n,l=s<2||Vc(o,e.dims),u;if(l)return u=_=>{let T=Pe("input",t,i,4),$=Ye("output",t,a,4);return` ${_.registerUniform("output_size","u32").declareVariables(T,$)} ${_.mainStart()} ${_.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} output[global_idx] = input[global_idx]; }`},{name:"TransposeCopy",shaderCache:{inputDependencies:["type"]},getRunData:()=>{let _=Me.size(n);return{outputs:[{dims:n,dataType:e.dataType}],dispatchGroup:{x:Math.ceil(_/64/4)},programUniforms:[{type:12,data:Math.ceil(_/4)}]}},getShaderSource:u};let{newShape:p,newPerm:d}=Nc(e.dims,o),c=Me.areEqual(d,[2,3,1]),f=Me.areEqual(d,[3,1,2]);if(p.length===2||c||f){i=c?[p[0],p[1]*p[2]]:f?[p[0]*p[1],p[2]]:p,a=[i[1],i[0]];let _=16;return u=T=>{let $=Pe("a",t,i.length),w=Ye("output",t,a.length);return` ${T.registerUniform("output_size","u32").declareVariables($,w)} var tile : array, ${_}>; ${T.mainStart([_,_,1])} let stride = (uniforms.output_shape[1] - 1) / ${_} + 1; let workgroup_id_x = workgroup_index % stride; let workgroup_id_y = workgroup_index / stride; let input_col = workgroup_id_y * ${_}u + local_id.x; let input_row = workgroup_id_x * ${_}u + local_id.y; if (input_row < uniforms.a_shape[0] && input_col < uniforms.a_shape[1]) { tile[local_id.y][local_id.x] = ${$.getByIndices(`${$.type.indices}(input_row, input_col)`)}; } workgroupBarrier(); let output_col = workgroup_id_x * ${_}u + local_id.x; let output_row = workgroup_id_y * ${_}u + local_id.y; if (output_row < uniforms.output_shape[0] && output_col < uniforms.output_shape[1]) { ${w.setByIndices(`${w.type.indices}(output_row, output_col)`,"tile[local_id.x][local_id.y]")} } }`},{name:"TransposeShared",shaderCache:{inputDependencies:["type"]},getRunData:()=>{let T=Me.size(n);return{outputs:[{dims:n,dataType:e.dataType}],dispatchGroup:{x:Math.ceil(a[1]/_),y:Math.ceil(a[0]/_)},programUniforms:[{type:12,data:T},...st(i,a)]}},getShaderSource:u}}return u=_=>{let T=Pe("a",t,i.length),$=Ye("output",t,a.length);return` ${_.registerUniform("output_size","u32").declareVariables(T,$)} ${jc(o,s,T,$)} ${_.mainStart()} ${_.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let indices = ${$.offsetToIndices("global_idx")}; let aIndices = perm(indices); ${$.setByOffset("global_idx",T.getByIndices("aIndices"))} }`},{name:"Transpose",shaderCache:{hint:`${r}`,inputDependencies:["rank"]},getRunData:()=>{let _=Me.size(n);return{outputs:[{dims:n,dataType:e.dataType}],dispatchGroup:{x:Math.ceil(_/64)},programUniforms:[{type:12,data:_},...st(i,a)]}},getShaderSource:u}},Uc=(e,r)=>{Bc(e.inputs,r.perm),e.compute(Lr(e.inputs[0],r.perm))},Wc=e=>St({perm:e.perm})}),Gc,Kc,Hc,qc,Xc,Qc,Jc,Yc,Zc,ep,ss,tp,rp,sp,np,op,ip,ap,lp,up,dp,Tv=Be(()=>{ut(),mt(),ft(),ll(),zs(),Gc={max:"select(bestValue, candidate, candidate > bestValue)",min:"select(bestValue, candidate, candidate < bestValue)",mean:"bestValue + candidate",sum:"bestValue + candidate",prod:"bestValue * candidate",sumSquare:"bestValue + candidate * candidate",logSumExp:"bestValue + exp(candidate)",l1:"bestValue + abs(candidate)",l2:"bestValue + candidate * candidate",logSum:"bestValue + candidate"},Kc={max:"select(bestValue, candidate, candidate > bestValue)",min:"select(bestValue, candidate, candidate < bestValue)",mean:"bestValue + candidate",sum:"bestValue + candidate",prod:"bestValue * candidate",sumSquare:"bestValue + candidate",logSumExp:"bestValue + candidate",l1:"bestValue + candidate",l2:"bestValue + candidate",logSum:"bestValue + candidate"},Hc={max:"_A[offset]",min:"_A[offset]",mean:"0",sum:"0",prod:"1",sumSquare:"0",logSumExp:"0",l1:"0",l2:"0",logSum:"0"},qc={max:"bestValue",min:"bestValue",sum:"bestValue",prod:"bestValue",sumSquare:"bestValue",logSumExp:"log(bestValue)",l1:"bestValue",l2:"sqrt(bestValue)",logSum:"log(bestValue)"},Xc=(e,r)=>{let t=[];for(let s=r-e;s{let t=[],s=e.length;for(let n=0;ne[n]);return[t,o]},Jc=(e,r)=>{let t=e.length+r.length,s=[],o=0;for(let n=0;n{for(let t=0;t{let t=[];if(!Yc(e,r)){for(let s=0;st.push(s))}return t},ep=(e,r,t,s,o,n,i)=>{let a=t[0].dims,l=Me.size(n),u=Me.size(i),p=Pe("_A",t[0].dataType,a),d=Ye("output",o,n),c=64;l===1&&(c=256);let f=` var aBestValues : array; `,_=T=>` ${T.registerUniform("reduceSize","u32").declareVariables(p,d)} ${f} fn DIV_CEIL(a : u32, b : u32) -> u32 { return ((a - 1u) / b + 1u); } ${T.mainStart(c)} let outputIndex = global_idx / ${c}; let offset = outputIndex * uniforms.reduceSize; var bestValue = f32(${Hc[s]}); let Length = uniforms.reduceSize; for (var k = local_idx; k < Length; k = k + ${c}) { let candidate = f32(${p.getByOffset("offset + k")}); bestValue = ${Gc[s]}; } aBestValues[local_idx] = bestValue; workgroupBarrier(); var reduceSize = min(Length, ${c}u); for (var currentSize = reduceSize / 2u; reduceSize > 1u; currentSize = reduceSize / 2u) { let interval = DIV_CEIL(reduceSize, 2u); if (local_idx < currentSize) { let candidate = aBestValues[local_idx + interval]; bestValue = ${Kc[s]}; aBestValues[local_idx] = bestValue; } reduceSize = interval; workgroupBarrier(); } if (local_idx == 0u) { ${d.setByOffset("outputIndex",`${s==="mean"?`${d.type.storage}(bestValue / f32(uniforms.reduceSize))`:`${d.type.storage}(${qc[s]})`}`)}; } }`;return{name:e,shaderCache:{hint:`${r};${c}`,inputDependencies:["type"]},getShaderSource:_,getRunData:()=>({outputs:[{dims:n,dataType:o}],dispatchGroup:{x:l},programUniforms:[{type:12,data:u}]})}},ss=(e,r,t,s)=>{let o=e.inputs.length===1?t:al(e.inputs,t),n=o.axes;n.length===0&&!o.noopWithEmptyAxes&&(n=e.inputs[0].dims.map((f,_)=>_));let i=Me.normalizeAxes(n,e.inputs[0].dims.length),a=i,l=e.inputs[0],u=Zc(a,e.inputs[0].dims.length);u.length>0&&(l=e.compute(Lr(e.inputs[0],u),{inputs:[0],outputs:[-1]})[0],a=Xc(a.length,l.dims.length));let[p,d]=Qc(l.dims,a),c=p;o.keepDims&&(c=Jc(p,i)),e.compute(ep(r,o.cacheKey,[l],s,e.inputs[0].dataType,c,d),{inputs:[l]})},tp=(e,r)=>{ss(e,"ReduceMeanShared",r,"mean")},rp=(e,r)=>{ss(e,"ReduceL1Shared",r,"l1")},sp=(e,r)=>{ss(e,"ReduceL2Shared",r,"l2")},np=(e,r)=>{ss(e,"ReduceLogSumExpShared",r,"logSumExp")},op=(e,r)=>{ss(e,"ReduceMaxShared",r,"max")},ip=(e,r)=>{ss(e,"ReduceMinShared",r,"min")},ap=(e,r)=>{ss(e,"ReduceProdShared",r,"prod")},lp=(e,r)=>{ss(e,"ReduceSumShared",r,"sum")},up=(e,r)=>{ss(e,"ReduceSumSquareShared",r,"sumSquare")},dp=(e,r)=>{ss(e,"ReduceLogSumShared",r,"logSum")}}),ns,cp,ui,al,os,pp,hp,mp,_p,fp,gp,wp,Mp,bp,yp,is,vp,xp,Tp,Ep,Pp,Cp,Sp,$p,kp,Ip,ll=Be(()=>{ut(),mt(),Xt(),ft(),Tv(),ns=e=>{if(!e||e.length===0||e.length>2)throw new Error("Reduce op requires 1 or 2 inputs.");if(e.length===2&&e[1].dims.length!==1)throw new Error("Invalid axes input dims.")},cp=e=>["","",`var value = ${e.getByIndices("input_indices")};`,""],ui=(e,r,t,s,o,n,i=!1,a=!1)=>{let l=[],u=t[0].dims,p=u.length,d=Me.normalizeAxes(o,p),c=!a&&d.length===0;u.forEach((T,$)=>{c||d.indexOf($)>=0?i&&l.push(1):l.push(T)});let f=l.length,_=Me.size(l);return{name:e,shaderCache:r,getShaderSource:T=>{let $=[],w=Pe("_A",t[0].dataType,p),g=Ye("output",n,f),S=s(w,g,d),E=S[2];for(let y=0,M=0;y=0?(i&&M++,E=`for(var j${y}: u32 = 0; j${y} < ${u[y]}; j${y}++) { ${S[2].includes("last_index")?`let last_index = j${y};`:""} ${w.indicesSet("input_indices",y,`j${y}`)} ${E} }`):($.push(`${w.indicesSet("input_indices",y,g.indicesGet("output_indices",M))};`),M++);return` ${T.registerUniform("output_size","u32").declareVariables(w,g)} ${T.mainStart()} ${T.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} var input_indices: ${w.type.indices}; let output_indices = ${g.offsetToIndices("global_idx")}; ${$.join(` `)} ${S[0]} // init ops for reduce max/min ${S[1]} ${E} ${S[3]} ${S.length===4?g.setByOffset("global_idx","value"):S.slice(4).join(` `)} }`},getRunData:()=>({outputs:[{dims:l,dataType:n}],dispatchGroup:{x:Math.ceil(_/64)},programUniforms:[{type:12,data:_},...st(u,l)]})}},al=(e,r)=>{let t=[];return e[1].dims[0]>0&&e[1].getBigInt64Array().forEach(s=>t.push(Number(s))),St({axes:t,keepDims:r.keepDims,noopWithEmptyAxes:r.noopWithEmptyAxes})},os=(e,r,t,s)=>{let o=e.inputs,n=o.length===1?t:al(o,t);e.compute(ui(r,{hint:n.cacheKey,inputDependencies:["rank"]},[o[0]],n.noopWithEmptyAxes&&n.axes.length===0?cp:s,n.axes,o[0].dataType,n.keepDims,n.noopWithEmptyAxes),{inputs:[0]})},pp=(e,r)=>{ns(e.inputs),os(e,"ReduceLogSum",r,(t,s)=>[`var value = ${s.type.storage}(0);`,"",`value += ${t.getByIndices("input_indices")};`,"value = log(value);"])},hp=(e,r)=>{ns(e.inputs),os(e,"ReduceL1",r,(t,s)=>[`var value = ${s.type.storage}(0);`,"",`value += abs(${t.getByIndices("input_indices")});`,""])},mp=(e,r)=>{ns(e.inputs),os(e,"ReduceL2",r,(t,s)=>[`var t = ${s.type.value}(0); var value = ${s.type.value}(0);`,"",`t = ${t.getByIndices("input_indices")}; value += (t * t);`,"value = sqrt(value);"])},_p=(e,r)=>{ns(e.inputs),os(e,"ReduceLogSumExp",r,(t,s)=>[`var value = ${s.type.storage}(0);`,"",`value += exp(${t.getByIndices("input_indices")});`,"value = log(value);"])},fp=(e,r)=>{ns(e.inputs),os(e,"ReduceMax",r,(t,s,o)=>{let n=[];for(let i=0;i=0||o.length===0)&&n.push(t.indicesSet("input_indices",i,0));return[`${n.join(` `)}`,`var value = ${t.getByIndices("input_indices")};`,`value = max(value, ${t.getByIndices("input_indices")});`,""]})},gp=(e,r)=>{ns(e.inputs),os(e,"ReduceMean",r,(t,s,o)=>{let n=1;for(let i=0;i=0||o.length===0)&&(n*=e.inputs[0].dims[i]);return["var sum = f32(0);","",`sum += f32(${t.getByIndices("input_indices")});`,`let value = ${s.type.value}(sum / ${n});`]})},wp=(e,r)=>{ns(e.inputs),os(e,"ReduceMin",r,(t,s,o)=>{let n=[];for(let i=0;i=0||o.length===0)&&n.push(`input_indices[${i}] = 0;`);return[`${n.join(` `)}`,`var value = ${t.getByIndices("input_indices")};`,`value = min(value, ${t.getByIndices("input_indices")});`,""]})},Mp=(e,r)=>{ns(e.inputs),os(e,"ReduceProd",r,(t,s)=>[`var value = ${s.type.storage}(1);`,"",`value *= ${t.getByIndices("input_indices")};`,""])},bp=(e,r)=>{ns(e.inputs),os(e,"ReduceSum",r,(t,s)=>[`var value = ${s.type.storage}(0);`,"",`value += ${t.getByIndices("input_indices")};`,""])},yp=(e,r)=>{ns(e.inputs),os(e,"ReduceSumSquare",r,(t,s)=>[`var t = ${s.type.value}(0); var value = ${s.type.value}(0);`,"",`t = ${t.getByIndices("input_indices")}; value += t * t;`,""])},is=(e,r,t)=>{if(r.length===0)return t;let s=1,o=1;for(let n=0;n1024},vp=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?gp(e,r):tp(e,r)},xp=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?hp(e,r):rp(e,r)},Tp=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?mp(e,r):sp(e,r)},Ep=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?_p(e,r):np(e,r)},Pp=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?fp(e,r):op(e,r)},Cp=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?wp(e,r):ip(e,r)},Sp=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?Mp(e,r):ap(e,r)},$p=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?bp(e,r):lp(e,r)},kp=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?yp(e,r):up(e,r)},Ip=(e,r)=>{is(e.inputs[0].dims,r.axes,r.noopWithEmptyAxes)?pp(e,r):dp(e,r)}}),ul,Ap,Fp,dl,Ev=Be(()=>{ut(),Xt(),ll(),ul=e=>{if(!e||e.length===0||e.length>2)throw new Error("ArgMinMaxOp op requires 1 or 2 inputs.");if(e[0].dataType!==1)throw new Error("Invalid input type.")},Ap=(e,r)=>{ul(e.inputs);let t=(s,o,n)=>{let i=[];for(let a=0;a=0||n.length===0)&&i.push(`input_indices[${a}] = 0;`);return[`${i.join(` `)}`,`var value = ${s.getByIndices("input_indices")}; var best_index : i32 = 0;`,`if (${s.getByIndices("input_indices")} ${r.selectLastIndex>0?"<=":"<"} value) { value = ${s.getByIndices("input_indices")}; best_index = i32(last_index); }`,"",o.setByOffset("global_idx","best_index")]};e.compute(ui("ArgMin",{hint:r.cacheKey,inputDependencies:["rank"]},[e.inputs[0]],t,[r.axis],7,r.keepDims),{inputs:[0]})},Fp=(e,r)=>{ul(e.inputs);let t=(s,o,n)=>{let i=[];for(let a=0;a=0||n.length===0)&&i.push(`input_indices[${a}] = 0;`);return[`${i.join(` `)}`,`var value = ${s.getByIndices("input_indices")}; var best_index : i32 = 0;`,`if (${s.getByIndices("input_indices")} ${r.selectLastIndex>0?">=":">"} value) { value = ${s.getByIndices("input_indices")}; best_index = i32(last_index); }`,"",o.setByOffset("global_idx","best_index")]};e.compute(ui("argMax",{hint:r.cacheKey,inputDependencies:["rank"]},[e.inputs[0]],t,[r.axis],7,r.keepDims),{inputs:[0]})},dl=e=>St(e)}),Op,di,Dp,Lp,zp,mo,Bp,Rp,cl=Be(()=>{ut(),mt(),el(),ft(),Op=(e,r)=>{let t=e[0],s=e[1],o=e[2],n=e[3],i=e[4],a=e[5];if(i&&a)throw new Error("Attention cannot have both past and attention_bias");if(t.dims.length!==3)throw new Error('Input "input" must have 3 dimensions');let l=t.dims[0],u=t.dims[1],p=t.dims[2];if(o.dims.length!==1)throw new Error('Input "bias" is expected to have 1 dimensions');if(s.dims.length!==2)throw new Error('Input "weights" is expected to have 2 dimensions');if(s.dims[0]!==p)throw new Error("Input 1 dimension 0 should have same length as dimension 2 of input 0");if(o.dims[0]!==s.dims[1])throw new Error('Input "bias" dimension 0 should have same length as dimension 1 of input "weights"');let d=o.dims[0]/3,c=d,f=c;if(r.qkvHiddenSizes.length>0){if(r.qkvHiddenSizes.length!==3)throw new Error("qkv_hidden_sizes attribute should have 3 elements");for(let S of r.qkvHiddenSizes)if(S%r.numHeads!==0)throw new Error("qkv_hidden_sizes should be divisible by num_heads");d=r.qkvHiddenSizes[0],c=r.qkvHiddenSizes[1],f=r.qkvHiddenSizes[2]}let _=u;if(d!==c)throw new Error("qkv_hidden_sizes first element should be same as the second");if(o.dims[0]!==d+c+f)throw new Error('Input "bias" dimension 0 should have same length as sum of Q/K/V hidden sizes');let T=0;if(i){if(c!==f)throw new Error('Input "past" expect k_hidden_size == v_hidden_size');if(i.dims.length!==5)throw new Error('Input "past" must have 5 dimensions');if(i.dims[0]!==2)throw new Error('Input "past" first dimension must be 2');if(i.dims[1]!==l)throw new Error('Input "past" second dimension must be batch_size');if(i.dims[2]!==r.numHeads)throw new Error('Input "past" third dimension must be num_heads');if(i.dims[4]!==c/r.numHeads)throw new Error('Input "past" fifth dimension must be k_hidden_size / num_heads');r.pastPresentShareBuffer||(T=i.dims[3])}let $=_+T,w=-1,g=0;if(n)throw new Error("Mask not supported");if(i)throw new Error("past is not supported");if(a){if(a.dims.length!==4)throw new Error('Input "attention_bias" must have 4 dimensions');if(a.dims[0]!==l||a.dims[1]!==r.numHeads||a.dims[2]!==u||a.dims[3]!==$)throw new Error('Expect "attention_bias" shape (batch_size, num_heads, sequence_length, total_sequence_length)')}return{batchSize:l,sequenceLength:u,pastSequenceLength:T,kvSequenceLength:_,totalSequenceLength:$,maxSequenceLength:w,inputHiddenSize:p,hiddenSize:d,vHiddenSize:f,headSize:Math.floor(d/r.numHeads),vHeadSize:Math.floor(f/r.numHeads),numHeads:r.numHeads,isUnidirectional:!1,pastPresentShareBuffer:!1,maskFilterValue:r.maskFilterValue,maskType:g,scale:r.scale,broadcastResPosBias:!1,passPastInKv:!1,qkvFormat:1}},di=(e,r,t)=>r&&e?` let total_sequence_length_input = u32(${r.getByOffset("0")}); let present_sequence_length = max(total_sequence_length_input, uniforms.past_sequence_length); let is_subsequent_prompt: bool = sequence_length > 1 && sequence_length != total_sequence_length_input; let is_first_prompt: bool = is_subsequent_prompt == false && sequence_length == total_sequence_length_input; total_sequence_length = u32(${e==null?void 0:e.getByOffset("batchIdx")}) + 1; var past_sequence_length: u32 = 0; if (is_first_prompt == false) { past_sequence_length = total_sequence_length - sequence_length; } `:` ${t?"let past_sequence_length = uniforms.past_sequence_length":""}; let present_sequence_length = total_sequence_length; `,Dp=(e,r,t,s,o,n,i,a)=>{let l=Kt(i?1:n),u=64,p=n/l;p{let g=Ye("x",e.dataType,e.dims,l),S=[g],E=i?Pe("seq_lens",i.dataType,i.dims):void 0;E&&S.push(E);let y=a?Pe("total_sequence_length_input",a.dataType,a.dims):void 0;y&&S.push(y);let M=yr(e.dataType),v=[{name:"batch_size",type:"u32"},{name:"num_heads",type:"u32"},{name:"past_sequence_length",type:"u32"},{name:"sequence_length",type:"u32"},{name:"total_sequence_length",type:"u32"},{name:"elements_per_thread",type:"u32"}];return` var thread_max: array; var thread_sum: array; ${w.registerUniforms(v).declareVariables(...S)} ${w.mainStart([u,1,1])} let batchIdx = workgroup_id.z / uniforms.num_heads; let headIdx = workgroup_id.z % uniforms.num_heads; let sequence_length = uniforms.sequence_length; var total_sequence_length = uniforms.total_sequence_length; ${di(E,y,!1)} let local_offset = local_idx * uniforms.elements_per_thread; let offset = (global_idx / ${u}) * uniforms.total_sequence_length + local_offset; let seq_causal_length = ${i?"u32(past_sequence_length + workgroup_id.y + 1)":"total_sequence_length"}; var thread_max_vector = ${_}(-3.402823e+38f); for (var i: u32 = 0; i < uniforms.elements_per_thread && i + local_offset < seq_causal_length; i++) { thread_max_vector = max(${_}(x[offset + i]), thread_max_vector); } thread_max[local_idx] = ${(()=>{switch(l){case 1:return"thread_max_vector";case 2:return"max(thread_max_vector.x, thread_max_vector.y)";case 4:return"max(max(thread_max_vector.x, thread_max_vector.y), max(thread_max_vector.z, thread_max_vector.w))";default:throw new Error(`Unsupported components: ${l}`)}})()}; workgroupBarrier(); var max_value = f32(-3.402823e+38f); for (var i = 0u; i < ${u}; i++) { max_value = max(thread_max[i], max_value); } var sum_vector = ${_}(0); for (var i: u32 = 0; i < uniforms.elements_per_thread && i + local_offset < seq_causal_length; i++) { sum_vector += exp(${_}(x[offset + i]) - max_value); } thread_sum[local_idx] = ${(()=>{switch(l){case 1:return"sum_vector";case 2:return"sum_vector.x + sum_vector.y";case 4:return"sum_vector.x + sum_vector.y + sum_vector.z + sum_vector.w";default:throw new Error(`Unsupported components: ${l}`)}})()}; workgroupBarrier(); var sum: f32 = 0; for (var i = 0u; i < ${u}; i++) { sum += thread_sum[i]; } if (sum == 0) { for (var i: u32 = 0; i < uniforms.elements_per_thread && i + local_offset < seq_causal_length; i++) { x[offset + i] = ${g.type.value}(${M}(1.0) / ${M}(seq_causal_length)); } } else { for (var i: u32 = 0; i < uniforms.elements_per_thread && i + local_offset < seq_causal_length; i++) { var f32input = ${_}(x[offset + i]); x[offset + i] = ${g.type.value}(exp(f32input - max_value) / sum); } } ${i?` for (var total_seq_id: u32 = seq_causal_length; total_seq_id + local_offset < uniforms.total_sequence_length; total_seq_id++) { x[offset + total_seq_id] = ${g.type.value}(${M}(0)); }`:""}; }`};return{name:"AttentionProbsSoftmax",shaderCache:{hint:`${u};${f};${l}`,inputDependencies:T},getShaderSource:$,getRunData:()=>({outputs:[],dispatchGroup:{x:1,y:o,z:r*t},programUniforms:c})}},Lp=(e,r,t,s,o,n,i,a,l)=>{let u=i+n.kvSequenceLength,p=[n.batchSize,n.numHeads,n.sequenceLength,u],d=e>1&&s,c=n.kvNumHeads?n.kvNumHeads:n.numHeads,f=d?[n.batchSize,c,u,n.headSize]:void 0,_=n.nReps?n.nReps:1,T=n.scale===0?1/Math.sqrt(n.headSize):n.scale,$=Kt(n.headSize),w=n.headSize/$,g=12,S={x:Math.ceil(u/g),y:Math.ceil(n.sequenceLength/g),z:n.batchSize*n.numHeads},E=[{type:12,data:n.sequenceLength},{type:12,data:w},{type:12,data:u},{type:12,data:n.numHeads},{type:12,data:n.headSize},{type:1,data:T},{type:12,data:i},{type:12,data:n.kvSequenceLength},{type:12,data:_}],y=d&&s&&Me.size(s.dims)>0,M=["type","type"];y&&M.push("type"),o&&M.push("type"),a&&M.push("type"),l&&M.push("type");let v=[{dims:p,dataType:r.dataType,gpuDataType:0}];d&&v.push({dims:f,dataType:r.dataType,gpuDataType:0});let C=A=>{let B=Pe("q",r.dataType,r.dims,$),K=Pe("key",t.dataType,t.dims,$),G=[B,K];if(y){let me=Pe("past_key",s.dataType,s.dims,$);G.push(me)}o&&G.push(Pe("attention_bias",o.dataType,o.dims));let j=a?Pe("seq_lens",a.dataType,a.dims):void 0;j&&G.push(j);let ee=l?Pe("total_sequence_length_input",l.dataType,l.dims):void 0;ee&&G.push(ee);let H=Ye("output",r.dataType,p),Z=[H];d&&Z.push(Ye("present_key",r.dataType,f,$));let X=yr(1,$),oe=[{name:"M",type:"u32"},{name:"K",type:"u32"},{name:"N",type:"u32"},{name:"num_heads",type:"u32"},{name:"head_size",type:"u32"},{name:"alpha",type:"f32"},{name:"past_sequence_length",type:"u32"},{name:"kv_sequence_length",type:"u32"},{name:"n_reps",type:"u32"}];return` const TILE_SIZE = ${g}u; var tileQ: array<${B.type.storage}, ${g*g}>; var tileK: array<${B.type.storage}, ${g*g}>; ${A.registerUniforms(oe).declareVariables(...G,...Z)} ${A.mainStart([g,g,1])} // x holds the N and y holds the M let headIdx = workgroup_id.z % uniforms.num_heads; let kvHeadIdx = ${_===1?"headIdx":"headIdx / uniforms.n_reps"}; let kv_num_heads = ${_===1?"uniforms.num_heads":"uniforms.num_heads / uniforms.n_reps"}; let batchIdx = workgroup_id.z / uniforms.num_heads; let m = workgroup_id.y * TILE_SIZE; let n = workgroup_id.x * TILE_SIZE; let sequence_length = uniforms.M; var total_sequence_length = uniforms.N; ${di(j,ee,!0)} let absKvHeadIdx = batchIdx * kv_num_heads + kvHeadIdx; let qOffset = workgroup_id.z * uniforms.M * uniforms.K + m * uniforms.K; ${y&&d?"let pastKeyOffset = absKvHeadIdx * uniforms.past_sequence_length * uniforms.K;":""}; let kOffset = absKvHeadIdx * uniforms.kv_sequence_length * uniforms.K; ${d?"let presentKeyOffset = absKvHeadIdx * uniforms.N * uniforms.K;":""} var value = ${X}(0); for (var w: u32 = 0u; w < uniforms.K; w += TILE_SIZE) { if (global_id.y < uniforms.M && w + local_id.x < uniforms.K) { tileQ[TILE_SIZE * local_id.y + local_id.x] = q[qOffset + local_id.y * uniforms.K + w + local_id.x]; } if (n + local_id.y < uniforms.N && w + local_id.x < uniforms.K) { var idx = TILE_SIZE * local_id.y + local_id.x; ${y&&d?` if (n + local_id.y < past_sequence_length) { tileK[idx] = past_key[pastKeyOffset + (n + local_id.y) * uniforms.K + w + local_id.x]; } else if (n + local_id.y - past_sequence_length < uniforms.kv_sequence_length) { tileK[idx] = key[kOffset + (n + local_id.y - past_sequence_length) * uniforms.K + w + local_id.x]; }`:` if (n + local_id.y < uniforms.kv_sequence_length) { tileK[idx] = key[kOffset + (n + local_id.y) * uniforms.K + w + local_id.x]; }`} ${d?`if (n + local_id.y < present_sequence_length) { present_key[presentKeyOffset + (n + local_id.y) * uniforms.K + w + local_id.x] = tileK[idx]; }`:""} } workgroupBarrier(); for (var k: u32 = 0u; k < TILE_SIZE && w+k < uniforms.K; k++) { value += ${X}(tileQ[TILE_SIZE * local_id.y + k] * tileK[TILE_SIZE * local_id.x + k]); } workgroupBarrier(); } if (global_id.y < uniforms.M && global_id.x < total_sequence_length) { let headOffset = workgroup_id.z * uniforms.M * uniforms.N; let outputIdx = headOffset + global_id.y * uniforms.N + global_id.x; var sum: f32 = ${(()=>{switch($){case 1:return"value";case 2:return"value.x + value.y";case 4:return"value.x + value.y + value.z + value.w";default:throw new Error(`Unsupported components: ${$}`)}})()}; output[outputIdx] = ${H.type.value} (sum * uniforms.alpha) + ${o?"attention_bias[outputIdx]":"0.0"}; } }`};return{name:"AttentionProbs",shaderCache:{hint:`${$};${o!==void 0};${s!==void 0};${e}`,inputDependencies:M},getRunData:()=>({outputs:v,dispatchGroup:S,programUniforms:E}),getShaderSource:C}},zp=(e,r,t,s,o,n,i=void 0,a=void 0)=>{let l=n+o.kvSequenceLength,u=o.nReps?o.nReps:1,p=o.vHiddenSize*u,d=e>1&&s,c=o.kvNumHeads?o.kvNumHeads:o.numHeads,f=d?[o.batchSize,c,l,o.headSize]:void 0,_=[o.batchSize,o.sequenceLength,p],T=12,$={x:Math.ceil(o.vHeadSize/T),y:Math.ceil(o.sequenceLength/T),z:o.batchSize*o.numHeads},w=[{type:12,data:o.sequenceLength},{type:12,data:l},{type:12,data:o.vHeadSize},{type:12,data:o.numHeads},{type:12,data:o.headSize},{type:12,data:p},{type:12,data:n},{type:12,data:o.kvSequenceLength},{type:12,data:u}],g=d&&s&&Me.size(s.dims)>0,S=["type","type"];g&&S.push("type"),i&&S.push("type"),a&&S.push("type");let E=[{dims:_,dataType:r.dataType,gpuDataType:0}];d&&E.push({dims:f,dataType:r.dataType,gpuDataType:0});let y=M=>{let v=Pe("probs",r.dataType,r.dims),C=Pe("v",t.dataType,t.dims),A=[v,C];g&&A.push(Pe("past_value",s.dataType,s.dims));let B=i?Pe("seq_lens",i.dataType,i.dims):void 0;i&&A.push(B);let K=a?Pe("total_sequence_length_input",a.dataType,a.dims):void 0;a&&A.push(K);let G=[Ye("output",r.dataType,_)];d&&G.push(Ye("present_value",r.dataType,f));let j=[{name:"M",type:"u32"},{name:"K",type:"u32"},{name:"N",type:"u32"},{name:"num_heads",type:"u32"},{name:"head_size",type:"u32"},{name:"v_hidden_size",type:"u32"},{name:"past_sequence_length",type:"u32"},{name:"kv_sequence_length",type:"u32"},{name:"n_reps",type:"u32"}];return` const TILE_SIZE = ${T}u; var tileQ: array<${v.type.value}, ${T*T}>; var tileV: array<${v.type.value}, ${T*T}>; ${M.registerUniforms(j).declareVariables(...A,...G)} ${M.mainStart([T,T,1])} let headIdx = workgroup_id.z % uniforms.num_heads; let batchIdx = workgroup_id.z / uniforms.num_heads; let kvHeadIdx = ${u===1?"headIdx":"headIdx / uniforms.n_reps"}; let kv_num_heads = ${u===1?"uniforms.num_heads":"uniforms.num_heads / uniforms.n_reps"}; let m = global_id.y; let n = global_id.x; let sequence_length = uniforms.M; var total_sequence_length = uniforms.K; ${di(B,K,!0)} let offsetA = workgroup_id.z * uniforms.M * uniforms.K + m * uniforms.K; let absKvHeadIdx = batchIdx * kv_num_heads + kvHeadIdx; // kvHeadIdx is relative to the batch ${g&&d?"let pastValueOffset = absKvHeadIdx * uniforms.N * uniforms.past_sequence_length + n;":""}; let vOffset = absKvHeadIdx * uniforms.N * uniforms.kv_sequence_length + n; ${d?"let presentValueOffset = absKvHeadIdx * uniforms.N * uniforms.K + n;":""} var value = ${v.type.storage}(0); for (var w: u32 = 0u; w < uniforms.K; w += TILE_SIZE) { if (m < uniforms.M && w + local_id.x < uniforms.K) { tileQ[TILE_SIZE * local_id.y + local_id.x] = probs[offsetA + w + local_id.x]; } if (n < uniforms.N && w + local_id.y < uniforms.K) { var idx = TILE_SIZE * local_id.y + local_id.x; ${g&&d?` if (w + local_id.y < past_sequence_length) { tileV[idx] = past_value[pastValueOffset + (w + local_id.y) * uniforms.N]; } else if (w + local_id.y - past_sequence_length < uniforms.kv_sequence_length) { tileV[idx] = v[vOffset + (w + local_id.y - past_sequence_length) * uniforms.N]; } `:` if (w + local_id.y < uniforms.kv_sequence_length) { tileV[idx] = v[vOffset + (w + local_id.y) * uniforms.N]; }`} ${d?` if (w + local_id.y < present_sequence_length) { present_value[presentValueOffset + (w + local_id.y) * uniforms.N] = tileV[idx]; }`:""} } workgroupBarrier(); for (var k: u32 = 0u; k < TILE_SIZE && w+k < total_sequence_length; k++) { value += tileQ[TILE_SIZE * local_id.y + k] * tileV[TILE_SIZE * k + local_id.x]; } workgroupBarrier(); } // we need to transpose output from BNSH_v to BSND_v if (m < uniforms.M && n < uniforms.N) { let outputIdx = batchIdx * uniforms.M * uniforms.v_hidden_size + m * uniforms.v_hidden_size + headIdx * uniforms.N + n; output[outputIdx] = value; } }`};return{name:"AttentionScore",shaderCache:{hint:`${s!==void 0};${e}`,inputDependencies:S},getRunData:()=>({outputs:E,dispatchGroup:$,programUniforms:w}),getShaderSource:y}},mo=(e,r,t,s,o,n,i,a,l,u,p=void 0,d=void 0)=>{let c=Math.min(e.outputCount,1+(i?1:0)+(a?1:0)),f=c>1?u.pastSequenceLength:0,_=f+u.kvSequenceLength,T=l&&Me.size(l.dims)>0?l:void 0,$=[r,t];c>1&&i&&Me.size(i.dims)>0&&$.push(i),T&&$.push(T),p&&$.push(p),d&&$.push(d);let w=e.compute(Lp(c,r,t,i,T,u,f,p,d),{inputs:$,outputs:c>1?[-1,1]:[-1]})[0];e.compute(Dp(w,u.batchSize,u.numHeads,f,u.sequenceLength,_,p,d),{inputs:p&&d?[w,p,d]:[w],outputs:[]});let g=[w,s];c>1&&a&&Me.size(a.dims)>0&&g.push(a),p&&g.push(p),d&&g.push(d),e.compute(zp(c,w,s,a,u,f,p,d),{inputs:g,outputs:c>1?[0,2]:[0]})},Bp=(e,r)=>{let t=[r.batchSize,r.numHeads,r.sequenceLength,r.headSize],s=r.sequenceLength,o=r.inputHiddenSize,n=r.headSize,i=12,a={x:Math.ceil(r.headSize/i),y:Math.ceil(r.sequenceLength/i),z:r.batchSize*r.numHeads},l=[e.inputs[0],e.inputs[1],e.inputs[2]],u=[{type:12,data:s},{type:12,data:o},{type:12,data:n},{type:12,data:r.numHeads},{type:12,data:r.headSize},{type:12,data:r.hiddenSize},{type:12,data:r.hiddenSize+r.hiddenSize+r.vHiddenSize}],p=d=>{let c=Ye("output_q",l[0].dataType,t),f=Ye("output_k",l[0].dataType,t),_=Ye("output_v",l[0].dataType,t),T=Pe("input",l[0].dataType,l[0].dims),$=Pe("weight",l[1].dataType,l[1].dims),w=Pe("bias",l[2].dataType,l[2].dims),g=T.type.storage,S=[{name:"M",type:"u32"},{name:"K",type:"u32"},{name:"N",type:"u32"},{name:"num_heads",type:"u32"},{name:"head_size",type:"u32"},{name:"hidden_size",type:"u32"},{name:"ldb",type:"u32"}];return` const TILE_SIZE = ${i}u; var tileInput: array<${g}, ${i*i}>; var tileWeightQ: array<${g}, ${i*i}>; var tileWeightK: array<${g}, ${i*i}>; var tileWeightV: array<${g}, ${i*i}>; ${d.registerUniforms(S).declareVariables(T,$,w,c,f,_)} ${d.mainStart([i,i,1])} let batchIndex = workgroup_id.z / uniforms.num_heads; let headNumber = workgroup_id.z % uniforms.num_heads; let m = global_id.y; let n = global_id.x; let inputOffset = batchIndex * (uniforms.M * uniforms.K) + m * uniforms.K; let biasOffsetQ = headNumber * uniforms.head_size; let biasOffsetK = uniforms.hidden_size + biasOffsetQ; let biasOffsetV = uniforms.hidden_size + biasOffsetK; var valueQ = ${g}(0); var valueK = ${g}(0); var valueV = ${g}(0); for (var w: u32 = 0u; w < uniforms.K; w += TILE_SIZE) { if (m < uniforms.M && w + local_id.x < uniforms.K) { tileInput[TILE_SIZE * local_id.y + local_id.x] = input[inputOffset + w + local_id.x]; } if (n < uniforms.N && w + local_id.y < uniforms.K) { let offset = n + (w + local_id.y) * uniforms.ldb; tileWeightQ[TILE_SIZE * local_id.y + local_id.x] = weight[biasOffsetQ + offset]; tileWeightK[TILE_SIZE * local_id.y + local_id.x] = weight[biasOffsetK + offset]; tileWeightV[TILE_SIZE * local_id.y + local_id.x] = weight[biasOffsetV + offset]; } workgroupBarrier(); for (var k: u32 = 0u; k({outputs:[{dims:t,dataType:e.inputs[0].dataType,gpuDataType:0},{dims:t,dataType:e.inputs[0].dataType,gpuDataType:0},{dims:t,dataType:e.inputs[0].dataType,gpuDataType:0}],dispatchGroup:a,programUniforms:u}),getShaderSource:p},{inputs:l,outputs:[-1,-1,-1]})},Rp=(e,r)=>{let t=Op(e.inputs,r),[s,o,n]=Bp(e,t);return mo(e,s,o,n,e.inputs[4],void 0,void 0,void 0,e.inputs[5],t)}}),jp,Np,Vp,Up,Pv=Be(()=>{ts(),ut(),mt(),Xt(),ft(),jp=(e,r)=>{if(!e||e.length!==5)throw new Error("BatchNormalization requires 5 inputs");let t=(s,o,n)=>{let i=o.length;if(i!==s.length)throw new Error(`${n}: num dimensions != ${i}`);o.forEach((a,l)=>{if(a!==s[l])throw new Error(`${n}: dim[${l}] do not match`)})};if(e[0].dims.length>1){let s=r.format==="NHWC"?r.spatial?e[0].dims.slice(-1):e[0].dims.slice(-1).concat(e[0].dims.slice(1,e[0].dims.length-1)):e[0].dims.slice(1,r.spatial?2:void 0);t(e[1].dims,s,"Invalid input scale"),t(e[2].dims,s,"Invalid input B"),t(e[3].dims,s,"Invalid input mean"),t(e[4].dims,s,"Invalid input var")}else t(e[1].dims,[1],"Invalid input scale"),t(e[2].dims,[1],"Invalid input B"),t(e[3].dims,[1],"Invalid input mean"),t(e[4].dims,[1],"Invalid input var")},Np=(e,r)=>{let{epsilon:t,spatial:s,format:o}=r,n=e[0].dims,i=s?Kt(n[n.length-1]):1,a=o==="NHWC"&&n.length>1?i:1,l=Me.size(n)/i,u=s,p=u?n.length:n,d=Pe("x",e[0].dataType,e[0].dims,i),c=Pe("scale",e[1].dataType,e[1].dims,a),f=Pe("bias",e[2].dataType,e[2].dims,a),_=Pe("inputMean",e[3].dataType,e[3].dims,a),T=Pe("inputVar",e[4].dataType,e[4].dims,a),$=Ye("y",e[0].dataType,p,i),w=()=>{let S="";if(s)S=`let cOffset = ${n.length===1?"0u":o==="NHWC"?`outputIndices[${n.length-1}] / ${i}`:"outputIndices[1]"};`;else if(o==="NCHW")S=` ${$.indicesSet("outputIndices","0","0")} let cOffset = ${$.indicesToOffset("outputIndices")};`;else{S=`var cIndices = ${c.type.indices}(0); cIndices[0] = outputIndices[${n.length-1}];`;for(let E=1;E` const epsilon = ${t}; ${S.registerUniform("outputSize","u32").declareVariables(d,c,f,_,T,$)} ${S.mainStart()} ${S.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.outputSize")} var outputIndices = ${$.offsetToIndices(`global_idx * ${i}`)}; ${w()} let scale = ${c.getByOffset("cOffset")}; let bias = ${f.getByOffset("cOffset")}; let inputMean = ${_.getByOffset("cOffset")}; let inputVar = ${T.getByOffset("cOffset")}; let x = ${d.getByOffset("global_idx")}; let value = (x - inputMean) * inverseSqrt(inputVar + epsilon) * scale + bias; ${$.setByOffset("global_idx","value")} }`;return{name:"BatchNormalization",shaderCache:{hint:`${r.epsilon}_${r.format}_${s}_${i}`,inputDependencies:u?["rank","type","type","type","type"]:void 0},getShaderSource:g,getRunData:()=>({outputs:[{dims:e[0].dims,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(l/64)},programUniforms:u?[{type:12,data:l},...st(n)]:[{type:12,data:l}]})}},Vp=e=>St(e),Up=(e,r)=>{let{inputs:t,outputCount:s}=e,o=Vp({...r,outputCount:s});if(Bt.webgpu.validateInputContent&&jp(t,o),r.trainingMode)throw new Error("BatchNormalization trainingMode is not supported yet.");e.compute(Np(t,o))}}),Wp,Gp,Kp,Cv=Be(()=>{mt(),ft(),Wp=e=>{if(e[0].dims.length!==3)throw new Error("input should have 3 dimensions");if(![320,640,1280].includes(e[0].dims[2]))throw new Error("number of channels should be 320, 640 or 1280");if(e[1].dims.length!==1)throw new Error("bias is expected to have 1 dimensions");if(e[0].dims[2]!==e[1].dims[0])throw new Error("last dimension of input and bias are not the same")},Gp=e=>{let r=e[0].dims,t=e[0].dims[2],s=Me.size(r)/4,o=e[0].dataType,n=Pe("input",o,r,4),i=Pe("bias",o,[t],4),a=Pe("residual",o,r,4),l=Ye("output",o,r,4);return{name:"BiasAdd",getRunData:()=>({outputs:[{dims:r,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(s/64)}}),getShaderSource:u=>` const channels = ${t}u / 4; ${u.declareVariables(n,i,a,l)} ${u.mainStart()} ${u.guardAgainstOutOfBoundsWorkgroupSizes(s)} let value = ${n.getByOffset("global_idx")} + ${i.getByOffset("global_idx % channels")} + ${a.getByOffset("global_idx")}; ${l.setByOffset("global_idx","value")} }`}},Kp=e=>{Wp(e.inputs),e.compute(Gp(e.inputs))}}),Hp,Et,qp,Xp,Qp,Jp,Yp,Zp,eh,th,rh,sh,nh,oh,ih,ah,_o,lh,ci,uh,dh,ch,ph,hh,mh,_h,fh,gh,wh,Mh,bh,yh,vh,xh,Th,pl,Eh,hl,ml,Ph,Ch,Sh,$h,kh,Ih,_l=Be(()=>{ut(),mt(),Xt(),ft(),Hp=(e,r,t,s,o,n,i)=>{let a=Math.ceil(r/4),l="";typeof o=="string"?l=`${o}(a)`:l=o("a");let u=Pe("inputData",t,[a],4),p=Ye("outputData",s,[a],4),d=[{name:"vec_size",type:"u32"}];return i&&d.push(...i),` ${e.registerUniforms(d).declareVariables(u,p)} ${n??""} ${e.mainStart()} ${e.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.vec_size")} let a = ${u.getByOffset("global_idx")}; ${p.setByOffset("global_idx",l)} }`},Et=(e,r,t,s,o,n=e.dataType,i,a)=>{let l=[{type:12,data:Math.ceil(Me.size(e.dims)/4)}];return i&&l.push(...i),{name:r,shaderCache:{hint:o,inputDependencies:["type"]},getShaderSource:u=>Hp(u,Me.size(e.dims),e.dataType,n,t,s,a),getRunData:u=>({outputs:[{dims:e.dims,dataType:n}],dispatchGroup:{x:Math.ceil(Me.size(u[0].dims)/64/4)},programUniforms:l})}},qp=e=>{e.compute(Et(e.inputs[0],"Abs","abs"))},Xp=e=>{e.compute(Et(e.inputs[0],"Acos","acos"))},Qp=e=>{e.compute(Et(e.inputs[0],"Acosh","acosh"))},Jp=e=>{e.compute(Et(e.inputs[0],"Asin","asin"))},Yp=e=>{e.compute(Et(e.inputs[0],"Asinh","asinh"))},Zp=e=>{e.compute(Et(e.inputs[0],"Atan","atan"))},eh=e=>{e.compute(Et(e.inputs[0],"Atanh","atanh"))},th=e=>St(e),rh=(e,r)=>{let t;switch(r.to){case 10:t="vec4";break;case 1:t="vec4";break;case 12:t="vec4";break;case 6:t="vec4";break;case 9:t="vec4";break;default:throw new RangeError(`not supported type (specified in attribute 'to' from 'Cast' operator): ${r.to}`)}e.compute(Et(e.inputs[0],"Cast",t,void 0,r.cacheKey,r.to))},sh=e=>{let r,t,s=e.length>=2&&e[1].data!==0,o=e.length>=3&&e[2].data!==0;switch(e[0].dataType){case 1:r=s?e[1].getFloat32Array()[0]:-34028234663852886e22,t=o?e[2].getFloat32Array()[0]:34028234663852886e22;break;case 10:r=s?e[1].getUint16Array()[0]:64511,t=o?e[2].getUint16Array()[0]:31743;break;default:throw new Error("Unsupport data type")}return St({min:r,max:t})},nh=(e,r)=>{let t=r||sh(e.inputs),s=yr(e.inputs[0].dataType);e.compute(Et(e.inputs[0],"Clip",o=>`clamp(${o}, vec4<${s}>(uniforms.min), vec4<${s}>(uniforms.max))`,void 0,t.cacheKey,void 0,[{type:e.inputs[0].dataType,data:t.min},{type:e.inputs[0].dataType,data:t.max}],[{name:"min",type:s},{name:"max",type:s}]),{inputs:[0]})},oh=e=>{e.compute(Et(e.inputs[0],"Ceil","ceil"))},ih=e=>{e.compute(Et(e.inputs[0],"Cos","cos"))},ah=e=>{e.compute(Et(e.inputs[0],"Cosh","cosh"))},_o=e=>St(e),lh=(e,r)=>{let t=yr(e.inputs[0].dataType);e.compute(Et(e.inputs[0],"Elu",s=>`elu_vf32(${s})`,` const elu_alpha_ = ${t}(${r.alpha}); fn elu_f32(a: ${t}) -> ${t} { return select((exp(a) - 1.0) * elu_alpha_, a, a >= 0.0); } fn elu_vf32(v: vec4<${t}>) -> vec4<${t}> { return vec4(elu_f32(v.x), elu_f32(v.y), elu_f32(v.z), elu_f32(v.w)); }`,r.cacheKey))},ci=(e="f32")=>` const r0: ${e} = 0.3275911; const r1: ${e} = 0.254829592; const r2: ${e} = -0.284496736; const r3: ${e} = 1.421413741; const r4: ${e} = -1.453152027; const r5: ${e} = 1.061405429; fn erf_vf32(v: vec4<${e}>) -> vec4<${e}> { let absv = abs(v); let x = 1.0 / (1.0 + r0 * absv); return sign(v) * (1.0 - ((((r5 * x + r4) * x + r3) * x + r2) * x + r1) * x * exp(-absv * absv)); }`,uh=e=>{let r=yr(e.inputs[0].dataType);e.compute(Et(e.inputs[0],"Erf",t=>`erf_vf32(${t})`,ci(r)))},dh=e=>{e.compute(Et(e.inputs[0],"Exp","exp"))},ch=e=>{e.compute(Et(e.inputs[0],"Floor","floor"))},ph=e=>{let r=yr(e.inputs[0].dataType);e.compute(Et(e.inputs[0],"Gelu",t=>`0.5 * ${t} * (1.0 + erf_vf32(${t} * 0.7071067811865475))`,ci(r)))},hh=(e,r)=>{let t=yr(e.inputs[0].dataType);e.compute(Et(e.inputs[0],"LeakyRelu",s=>`select(leaky_relu_alpha_ * ${s}, ${s}, ${s} >= vec4<${t}>(0.0))`,`const leaky_relu_alpha_ = ${t}(${r.alpha});`,r.cacheKey))},mh=e=>{e.compute(Et(e.inputs[0],"Not",r=>`!${r}`))},_h=e=>{e.compute(Et(e.inputs[0],"Neg",r=>`-${r}`))},fh=e=>{e.compute(Et(e.inputs[0],"Reciprocal",r=>`1.0/${r}`))},gh=e=>{let r=yr(e.inputs[0].dataType);e.compute(Et(e.inputs[0],"Relu",t=>`select(vec4<${r}>(0.0), ${t}, ${t} > vec4<${r}>(0.0))`))},wh=e=>{e.compute(Et(e.inputs[0],"Sigmoid",r=>`(1.0 / (1.0 + exp(-${r})))`))},Mh=e=>St(e),bh=(e,r)=>{let t=yr(e.inputs[0].dataType);e.compute(Et(e.inputs[0],"HardSigmoid",s=>`max(vec4<${t}>(0.0), min(vec4<${t}>(1.0), ${r.alpha} * ${s} + vec4<${t}>(${r.beta})))`,void 0,r.cacheKey))},yh=e=>{e.compute(Et(e.inputs[0],"Sin","sin"))},vh=e=>{e.compute(Et(e.inputs[0],"Sinh","sinh"))},xh=e=>{e.compute(Et(e.inputs[0],"Sqrt","sqrt"))},Th=e=>{e.compute(Et(e.inputs[0],"Tan","tan"))},pl=e=>`sign(${e}) * (1 - exp(-2 * abs(${e}))) / (1 + exp(-2 * abs(${e})))`,Eh=e=>{e.compute(Et(e.inputs[0],"Tanh",pl))},hl=(e="f32")=>` const fast_gelu_a: ${e} = 0.5; const fast_gelu_b: ${e} = 0.7978845608028654; const fast_gelu_c: ${e} = 0.035677408136300125; fn tanh_v(v: vec4<${e}>) -> vec4<${e}> { return ${pl("v")}; } `,ml=e=>`(fast_gelu_a + fast_gelu_a * tanh_v(${e} * (fast_gelu_c * ${e} * ${e} + fast_gelu_b))) * ${e}`,Ph=e=>{let r=yr(e.inputs[0].dataType);e.compute(Et(e.inputs[0],"FastGelu",ml,hl(r),void 0,e.inputs[0].dataType))},Ch=(e,r)=>{let t=yr(e.inputs[0].dataType);return e.compute(Et(e.inputs[0],"ThresholdedRelu",s=>`select(vec4<${t}>(0.0), ${s}, ${s} > thresholded_relu_alpha_)`,`const thresholded_relu_alpha_ = vec4<${t}>(${r.alpha});`,r.cacheKey)),0},Sh=e=>{e.compute(Et(e.inputs[0],"Log","log"))},$h=(e,r)=>` const alpha = vec4<${e}>(${r}); const one = ${e}(1.0); const zero = ${e}(0.0); fn quick_gelu_impl(x: vec4<${e}>) -> vec4<${e}> { let v = x *alpha; var x1 : vec4<${e}>; for (var i = 0; i < 4; i = i + 1) { if (v[i] >= zero) { x1[i] = one / (one + exp(-v[i])); } else { x1[i] = one - one / (one + exp(v[i])); } } return x * x1; } `,kh=e=>`quick_gelu_impl(${e})`,Ih=(e,r)=>{let t=yr(e.inputs[0].dataType);e.compute(Et(e.inputs[0],"QuickGelu",kh,$h(t,r.alpha),r.cacheKey,e.inputs[0].dataType))}}),Ah,Fh,Oh,Sv=Be(()=>{mt(),ft(),_l(),Ah=e=>{if(e[0].dims.length!==3)throw new Error("input should have 3 dimensions");if(![2560,5120,10240].includes(e[0].dims[2]))throw new Error("hidden state should be 2560, 5120 or 10240");if(e[1].dims.length!==1)throw new Error("bias is expected to have 1 dimensions");if(e[0].dims[2]!==e[1].dims[0])throw new Error("last dimension of input and bias are not the same")},Fh=e=>{let r=e[0].dims.slice();r[2]=r[2]/2;let t=Pe("input",e[0].dataType,e[0].dims,4),s=Pe("bias",e[0].dataType,[e[0].dims[2]],4),o=Ye("output",e[0].dataType,r,4),n=Me.size(r)/4,i=lr(e[0].dataType);return{name:"BiasSplitGelu",getRunData:()=>({outputs:[{dims:r,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(n/64)}}),getShaderSource:a=>` const M_SQRT2 = sqrt(2.0); const halfChannels = ${e[0].dims[2]/4/2}u; ${a.declareVariables(t,s,o)} ${ci(i)} ${a.mainStart()} ${a.guardAgainstOutOfBoundsWorkgroupSizes(n)} let biasIdx = global_idx % halfChannels; let batchIndex = global_idx / halfChannels; let inputOffset = biasIdx + batchIndex * halfChannels * 2; let valueLeft = input[inputOffset] + bias[biasIdx]; let valueRight = input[inputOffset + halfChannels] + bias[biasIdx + halfChannels]; let geluRight = valueRight * 0.5 * (erf_vf32(valueRight / M_SQRT2) + 1); ${o.setByOffset("global_idx","valueLeft * geluRight")} }`}},Oh=e=>{Ah(e.inputs),e.compute(Fh(e.inputs))}}),Dh,Lh,as,zh,Bh,Rh,jh,Nh,Vh,Uh,Wh,Gh,Kh,$v=Be(()=>{ut(),mt(),ft(),Dh=(e,r,t,s,o,n,i,a,l,u,p,d)=>{let c,f;typeof a=="string"?c=f=(g,S)=>`${a}((${g}),(${S}))`:typeof a=="function"?c=f=a:(c=a.scalar,f=a.vector);let _=Ye("outputData",p,s.length,4),T=Pe("aData",l,r.length,4),$=Pe("bData",u,t.length,4),w;if(o)if(n){let g=Me.size(r)===1,S=Me.size(t)===1,E=r.length>0&&r[r.length-1]%4===0,y=t.length>0&&t[t.length-1]%4===0;g||S?w=_.setByOffset("global_idx",f(g?`${T.type.value}(${T.getByOffset("0")}.x)`:T.getByOffset("global_idx"),S?`${$.type.value}(${$.getByOffset("0")}.x)`:$.getByOffset("global_idx"))):w=` let outputIndices = ${_.offsetToIndices("global_idx * 4u")}; let offsetA = ${T.broadcastedIndicesToOffset("outputIndices",_)}; let offsetB = ${$.broadcastedIndicesToOffset("outputIndices",_)}; ${_.setByOffset("global_idx",f(i||E?T.getByOffset("offsetA / 4u"):`${T.type.value}(${T.getByOffset("offsetA / 4u")}[offsetA % 4u])`,i||y?$.getByOffset("offsetB / 4u"):`${$.type.value}(${$.getByOffset("offsetB / 4u")}[offsetB % 4u])`))} `}else w=_.setByOffset("global_idx",f(T.getByOffset("global_idx"),$.getByOffset("global_idx")));else{if(!n)throw new Error("no necessary to use scalar implementation for element-wise binary op implementation.");let g=(S,E,y="")=>{let M=`aData[indexA${E}][componentA${E}]`,v=`bData[indexB${E}][componentB${E}]`;return` let outputIndices${E} = ${_.offsetToIndices(`global_idx * 4u + ${E}u`)}; let offsetA${E} = ${T.broadcastedIndicesToOffset(`outputIndices${E}`,_)}; let offsetB${E} = ${$.broadcastedIndicesToOffset(`outputIndices${E}`,_)}; let indexA${E} = offsetA${E} / 4u; let indexB${E} = offsetB${E} / 4u; let componentA${E} = offsetA${E} % 4u; let componentB${E} = offsetB${E} % 4u; ${S}[${E}] = ${y}(${c(M,v)}); `};p===9?w=` var data = vec4(0); ${g("data",0,"u32")} ${g("data",1,"u32")} ${g("data",2,"u32")} ${g("data",3,"u32")} outputData[global_idx] = dot(vec4(0x1, 0x100, 0x10000, 0x1000000), vec4(data));`:w=` ${g("outputData[global_idx]",0)} ${g("outputData[global_idx]",1)} ${g("outputData[global_idx]",2)} ${g("outputData[global_idx]",3)} `}return` ${e.registerUniform("vec_size","u32").declareVariables(T,$,_)} ${d??""} ${e.mainStart()} ${e.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.vec_size")} ${w} }`},Lh=(e,r,t,s,o,n,i=t.dataType)=>{let a=t.dims.map(T=>Number(T)??1),l=s.dims.map(T=>Number(T)??1),u=!Me.areEqual(a,l),p=a,d=Me.size(a),c=!1,f=!1,_=[u];if(u){let T=Nn.calcShape(a,l,!1);if(!T)throw new Error("Can't perform binary op on the given tensors");p=T.slice(),d=Me.size(p);let $=Me.size(a)===1,w=Me.size(l)===1,g=a.length>0&&a[a.length-1]%4===0,S=l.length>0&&l[l.length-1]%4===0;_.push($),_.push(w),_.push(g),_.push(S);let E=1;for(let y=1;yT.toString()).join("_"),inputDependencies:["rank","rank"]},getShaderSource:T=>Dh(T,a,l,p,c,u,f,o,t.dataType,s.dataType,i,n),getRunData:()=>({outputs:[{dims:p,dataType:i}],dispatchGroup:{x:Math.ceil(d/64/4)},programUniforms:[{type:12,data:Math.ceil(Me.size(p)/4)},...st(a,l,p)]})}},as=(e,r,t,s,o,n)=>{e.compute(Lh(r,o??"",e.inputs[0],e.inputs[1],t,s,n))},zh=e=>{as(e,"Add",(r,t)=>`${r}+${t}`)},Bh=e=>{as(e,"Div",(r,t)=>`${r}/${t}`)},Rh=e=>{as(e,"Equal",{scalar:(r,t)=>`u32(${r}==${t})`,vector:(r,t)=>`vec4(${r}==${t})`},void 0,void 0,9)},jh=e=>{as(e,"Mul",(r,t)=>`${r}*${t}`)},Nh=e=>{let r=Pe("input",e.inputs[0].dataType,e.inputs[0].dims).type.value;as(e,"Pow",{scalar:(t,s)=>`pow_custom(${t},${s})`,vector:(t,s)=>`pow_vector_custom(${t},${s})`},` fn pow_custom(a : ${r}, b : ${r}) -> ${r} { if (b == ${r}(0.0)) { return ${r}(1.0); } else if (a < ${r}(0.0) && f32(b) != floor(f32(b))) { return ${r}(pow(f32(a), f32(b))); // NaN } return select(sign(a), ${r}(1.0), round(f32(abs(b) % ${r}(2.0))) != 1.0) * ${r}(${r==="i32"?"round":""}(pow(f32(abs(a)), f32(b)))); } fn pow_vector_custom(a : vec4<${r}>, b : vec4<${r}>) -> vec4<${r}> { // TODO: implement vectorized pow return vec4<${r}>(pow_custom(a.x, b.x), pow_custom(a.y, b.y), pow_custom(a.z, b.z), pow_custom(a.w, b.w)); } `)},Vh=e=>{as(e,"Sub",(r,t)=>`${r}-${t}`)},Uh=e=>{as(e,"Greater",{scalar:(r,t)=>`u32(${r}>${t})`,vector:(r,t)=>`vec4(${r}>${t})`},void 0,void 0,9)},Wh=e=>{as(e,"Less",{scalar:(r,t)=>`u32(${r}<${t})`,vector:(r,t)=>`vec4(${r}<${t})`},void 0,void 0,9)},Gh=e=>{as(e,"GreaterOrEqual",{scalar:(r,t)=>`u32(${r}>=${t})`,vector:(r,t)=>`vec4(${r}>=${t})`},void 0,void 0,9)},Kh=e=>{as(e,"LessOrEqual",{scalar:(r,t)=>`u32(${r}<=${t})`,vector:(r,t)=>`vec4(${r}<=${t})`},void 0,void 0,9)}}),Hh,qh,Xh,Qh,Jh,Yh,kv=Be(()=>{ut(),mt(),Xt(),ft(),Hh=(e,r)=>{if(!e||e.length<1)throw new Error("too few inputs");let t=0,s=e[t],o=s.dataType,n=s.dims.length;e.forEach((i,a)=>{if(a!==t){if(i.dataType!==o)throw new Error("input tensors should be one type");if(i.dims.length!==n)throw new Error("input tensors should have the same shape");i.dims.forEach((l,u)=>{if(u!==r&&l!==s.dims[u])throw new Error("non concat dimensions must match")})}})},qh=(e,r)=>` fn calculateInputIndex(index: u32) -> u32 { let sizeInConcatAxis = array(${r}); for (var i: u32 = 0u; i < ${e}; i += 1u ) { if (index < sizeInConcatAxis[i]) { return i; } } return ${e}u; }`,Xh=(e,r)=>{let t=e.length,s=[];for(let o=0;o{let o=Me.size(t),n=new Array(e.length),i=new Array(e.length),a=0,l=[],u=[],p=[{type:12,data:o}];for(let T=0;T`uniforms.sizeInConcatAxis${T}`).join(","),_=T=>` ${(()=>{T.registerUniform("outputSize","u32");for(let $=0;$(${f}); ${c} -= sizeInConcatAxis[inputIndex - 1u]; } ${Xh(i,d)} }`;return{name:"Concat",shaderCache:{hint:`${r}`,inputDependencies:l},getRunData:()=>({outputs:[{dims:t,dataType:s}],dispatchGroup:{x:Math.ceil(o/64)},programUniforms:p}),getShaderSource:_}},Jh=(e,r)=>{let t=e.inputs,s=t[0].dims,o=Me.normalizeAxis(r.axis,s.length);Hh(t,o);let n=s.slice();n[o]=t.reduce((a,l)=>a+(l.dims.length>o?l.dims[o]:0),0);let i=t.filter(a=>Me.size(a.dims)>0);e.compute(Qh(i,o,n,t[0].dataType),{inputs:i})},Yh=e=>St({axis:e.axis})}),rn,sn,nn,fl,on=Be(()=>{ut(),mt(),rn=(e,r,t="f32")=>{switch(e.activation){case"Relu":return`value = max(value, ${r}(0.0));`;case"Sigmoid":return`value = (${r}(1.0) / (${r}(1.0) + exp(-value)));`;case"Clip":return`value = clamp(value, ${r}(${t}(uniforms.clip_min)), ${r}(${t}(uniforms.clip_max)));`;case"HardSigmoid":return`value = max(${r}(0.0), min(${r}(1.0), ${t}(uniforms.alpha) * value + ${t}(uniforms.beta)));`;case"LeakyRelu":return`value = select(${t}(uniforms.alpha) * value, value, value >= ${r}(0.0));`;case"Tanh":return`let e2x = exp(-2.0 * abs(value)); value = sign(value) * (1.0 - e2x) / (1.0 + e2x); `;case"":return"";default:throw new Error(`Unsupported activation ${e.activation}`)}},sn=(e,r)=>{e.activation==="Clip"?r.push({type:1,data:e.clipMax},{type:1,data:e.clipMin}):e.activation==="HardSigmoid"?r.push({type:1,data:e.alpha},{type:1,data:e.beta}):e.activation==="LeakyRelu"&&r.push({type:1,data:e.alpha})},nn=(e,r)=>{e.activation==="Clip"?r.push({name:"clip_max",type:"f32"},{name:"clip_min",type:"f32"}):e.activation==="HardSigmoid"?r.push({name:"alpha",type:"f32"},{name:"beta",type:"f32"}):e.activation==="LeakyRelu"&&r.push({name:"alpha",type:"f32"})},fl=e=>{let r=(e==null?void 0:e.activation)||"";if(r==="HardSigmoid"){let[t,s]=(e==null?void 0:e.activation_params)||[.2,.5];return{activation:r,alpha:t,beta:s}}else if(r==="Clip"){let[t,s]=(e==null?void 0:e.activation_params)||[yc,vc];return{activation:r,clipMax:s,clipMin:t}}else if(r==="LeakyRelu"){let[t]=(e==null?void 0:e.activation_params)||[.01];return{activation:r,alpha:t}}return{activation:r}}}),_r,Zh,gl=Be(()=>{_r=(e,r)=>{switch(e){case 1:return r;case 2:return`vec2<${r}>`;case 3:return`vec3<${r}>`;case 4:return`vec4<${r}>`;default:throw new Error(`${e}-component is not supported.`)}},Zh=e=>` ${e?"value = value + getBiasByOutputCoords(coords);":""} `}),em,Iv=Be(()=>{em=e=>` fn getIndexFromCoords4D(coords : vec4, shape : vec4) -> i32 { return dot(coords, vec4( shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1)); } fn getOutputIndexFromCoords(coords : vec4) -> i32 { return dot(coords, vec4( i32(${e}.x), i32(${e}.y), i32(${e}.z), 1)); } `}),fo,wl,Ml=Be(()=>{ut(),mt(),ft(),on(),fo=(e,r,t,s,o)=>{let n=s-t;return` ${Array.from({length:t}).map((i,a)=>` if (${et(r.shape,a,r.rank)} != 1) { ${r.indicesSet(e,a,et(o,a+n,s))} } else { ${r.indicesSet(e,a,0)} }`).join("")} `},wl=(e,r,t,s,o=!1,n)=>{let i=e[0].dims,a=e[1].dims,l=i[i.length-2],u=a[a.length-1],p=i[i.length-1],d=Kt(u),c=Kt(p),f=Kt(l),_=Me.size(t)/d/f,T=e.length>2,$=s?s.slice(0,-2):t.slice(0,-2),w=[Me.size($),l,u],g=[{type:12,data:_},{type:12,data:l},{type:12,data:u},{type:12,data:p}];sn(r,g),g.push(...st($,i,a)),T&&g.push(...st(e[2].dims)),g.push(...st(w));let S=E=>{let y=ol("batch_dims",e[0].dataType,$.length),M=Pe("a",e[0].dataType,i.length,c),v=Pe("b",e[1].dataType,a.length,d),C=Ye("output",e[0].dataType,w.length,d),A=lr(C.type.tensor),B=rn(r,C.type.value,A),K=[M,v],G="";if(T){let H=o?d:1;K.push(Pe("bias",e[2].dataType,e[2].dims.length,H)),G=`${o?`value += bias[col / ${H}];`:`value += ${C.type.value}(bias[row + i]);`}`}let j=[{name:"output_size",type:"u32"},{name:"M",type:"u32"},{name:"N",type:"u32"},{name:"K",type:"u32"}];nn(r,j);let ee=()=>{let H=`var a_data: ${M.type.value};`;for(let Z=0;Z; for (var k: u32 = 0u; k < uniforms.K; k = k + ${c}) { ${ee()} } for (var i = 0u; i < ${f}u; i++) { var value = values[i]; ${G} ${B} let cur_indices = ${C.type.indices}(batch, row + i, col); let offset = ${C.indicesToOffset("cur_indices")}; ${C.setByOffset(`offset / ${d}`,"value")}; } } `};return{name:"MatMulNaive",shaderCache:{hint:`${r.activation};${d};${c};${f};${o}`,inputDependencies:T?["rank","rank","rank"]:["rank","rank"]},getRunData:()=>({outputs:[{dims:n?n(t):t,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(_/64)},programUniforms:g}),getShaderSource:S}}}),tm,rm,bl,yl,sm,vl,nm,pi,xl=Be(()=>{ut(),mt(),ft(),on(),Ml(),gl(),tm=(e,r)=>e?` mm_Asub[inputRow][inputCol] = mm_readA(batch, kStart + inputRow, globalRowStart / innerElementSize + inputCol${r?", batchIndices":""}); `:` mm_Asub[inputRow][inputCol] = mm_readA(batch, globalRow + innerRow, kStart / innerElementSize + inputCol${r?", batchIndices":""}); `,rm=(e,r)=>e?` let ACached0 = mm_Asub[k * innerElementSize][localRow]; let ACached1 = mm_Asub[k * innerElementSize + 1][localRow]; let ACached2 = mm_Asub[k * innerElementSize + 2][localRow]; ${r===3?"":"let ACached3 = mm_Asub[k * innerElementSize + 3][localRow];"} for (var i = 0; i < rowPerThread; i = i + 1) { acc[i] = BCached0 * ACached0[i] + acc[i]; acc[i] = BCached1 * ACached1[i] + acc[i]; acc[i] = BCached2 * ACached2[i] + acc[i]; ${r===3?"":"acc[i] = BCached3 * ACached3[i] + acc[i];"} }`:` for (var i = 0; i < rowPerThread; i = i + 1) { let ACached = mm_Asub[tileRow + i][k]; acc[i] = BCached0 * ACached.x + acc[i]; acc[i] = BCached1 * ACached.y + acc[i]; acc[i] = BCached2 * ACached.z + acc[i]; ${r===3?"":"acc[i] = BCached3 * ACached.w + acc[i];"} }`,bl=(e,r,t="f32",s,o=!1,n=32,i=!1,a=32)=>{let l=r[1]*e[1],u=r[0]*e[0],p=o?l:n,d=o?n:l,c=p/r[0],f=n/r[1];if(!((o&&c===4&&e[1]===4||!o&&(c===3||c===4))&&p%r[0]===0&&n%r[1]===0&&e[0]===4))throw new Error(`If transposeA ${o} is true, innerElementSize ${c} and workPerThread[1] ${e[1]} must be 4. Otherwise, innerElementSize ${c} must be 3 or 4. tileAWidth ${p} must be divisible by workgroupSize[0]${r[0]}. tileInner ${n} must be divisible by workgroupSize[1] ${r[1]}. colPerThread ${e[0]} must be 4.`);return` var mm_Asub: array, ${p/c}>, ${d}>; var mm_Bsub: array, ${u/e[0]}>, ${n}>; const rowPerThread = ${e[1]}; const colPerThread = ${e[0]}; const innerElementSize = ${c}; const tileInner = ${n}; @compute @workgroup_size(${r[0]}, ${r[1]}, ${r[2]}) fn main(@builtin(local_invocation_id) localId : vec3, @builtin(global_invocation_id) globalId : vec3, @builtin(workgroup_id) workgroupId : vec3) { let localRow = i32(localId.y); let tileRow = localRow * rowPerThread; let tileCol = i32(localId.x); let globalRow =i32(globalId.y) * rowPerThread; let globalCol = i32(globalId.x); let batch = ${i?"0":"i32(globalId.z)"}; ${s?`let batchIndices = ${s.offsetToIndices("u32(batch)")};`:""} let globalRowStart = i32(workgroupId.y) * ${l}; let num_tiles = ${i?`${Math.ceil(a/n)}`:"(uniforms.dim_inner - 1) / tileInner + 1"}; var kStart = ${i?`i32(globalId.z) * ${a}`:"0"}; var acc: array, rowPerThread>; // Loop over shared dimension. let tileRowB = localRow * ${f}; for (var t = 0; t < num_tiles; t = t + 1) { // Load one tile of A into local memory. for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) { let inputRow = tileRow + innerRow; let inputCol = tileCol; ${tm(o,s)} } // Load one tile of B into local memory. for (var innerRow = 0; innerRow < ${f}; innerRow = innerRow + 1) { let inputRow = tileRowB + innerRow; let inputCol = tileCol; mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalCol${s?", batchIndices":""}); } kStart = kStart + tileInner; workgroupBarrier(); // Compute acc values for a single thread. for (var k = 0; k < tileInner / innerElementSize; k = k + 1) { let BCached0 = mm_Bsub[k * innerElementSize][tileCol]; let BCached1 = mm_Bsub[k * innerElementSize + 1][tileCol]; let BCached2 = mm_Bsub[k * innerElementSize + 2][tileCol]; ${c===3?"":"let BCached3 = mm_Bsub[k * innerElementSize + 3][tileCol];"} ${rm(o,c)} } workgroupBarrier(); } for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) { mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]); } }`},yl=(e,r)=>e?` mm_Asub[inputRow][inputCol] = mm_readA(batch, kStart + inputRow, globalRowStart + inputCol${r?", batchIndices":""}); `:` mm_Asub[inputRow][inputCol] = mm_readA(batch, globalRowStart + inputRow, kStart + inputCol${r?", batchIndices":""}); `,sm=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];",vl=(e,r,t="f32",s,o=!1,n=32,i=!1,a=32,l=!1)=>{let u=e[1]*r[1],p=e[0]*r[0],d=o?u:n,c=o?n:u;if(!(c%r[1]===0&&d%r[0]===0&&n%r[1]===0))throw new Error(`tileAHight ${c} must be divisible by workgroupSize[1]${r[1]}, tileAWidth ${d} must be divisible by workgroupSize[0]${r[0]}, tileInner ${n} must be divisible by workgroupSize[1]${r[1]}`);let f=c/r[1],_=d/r[0],T=n/r[1],$=l?` let localRow = i32(localId.y); let localCol = i32(localId.x); let globalRowStart = i32(workgroupId.y) * ${u}; let globalColStart = i32(workgroupId.x) * ${p}; // Loop over shared dimension. for (var t = 0; t < num_tiles; t = t + 1) { // Load one tile of A into local memory. for (var inputRow = localRow; inputRow < ${c}; inputRow = inputRow + ${r[1]}) { for (var inputCol = localCol; inputCol < ${d}; inputCol = inputCol + ${r[0]}) { ${yl(o,s)} } } // Load one tile of B into local memory. for (var inputRow = localRow; inputRow < ${n}; inputRow = inputRow + ${r[1]}) { for (var inputCol = localCol; inputCol < ${p}; inputCol = inputCol + ${r[0]}) { mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalColStart + inputCol${s?", batchIndices":""}); } } kStart = kStart + tileInner; workgroupBarrier(); // Compute acc values for a single thread. var BCached : array<${t}, colPerThread>; for (var k = 0; k < tileInner; k = k + 1) { for (var inner = 0; inner < colPerThread; inner = inner + 1) { BCached[inner] = mm_Bsub[k][localCol + inner * ${r[0]}]; } for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) { let ACached = ${o?`mm_Asub[k][localRow + innerRow * ${r[1]}];`:`mm_Asub[localRow + innerRow * ${r[1]}][k];`} for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) { acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; } } } workgroupBarrier(); } for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) { let gRow = globalRowStart + localRow + innerRow * ${r[1]}; for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) { let gCol = globalColStart + localCol + innerCol * ${r[0]}; mm_write(batch, gRow, gCol, acc[innerRow][innerCol]); } } `:` let tileRow = i32(localId.y) * rowPerThread; let tileCol = i32(localId.x) * colPerThread; let globalRow = i32(globalId.y) * rowPerThread; let globalCol = i32(globalId.x) * colPerThread; let globalRowStart = i32(workgroupId.y) * ${u}; let tileRowA = i32(localId.y) * ${f}; let tileColA = i32(localId.x) * ${_}; let tileRowB = i32(localId.y) * ${T}; // Loop over shared dimension. for (var t = 0; t < num_tiles; t = t + 1) { // Load one tile of A into local memory. for (var innerRow = 0; innerRow < ${f}; innerRow = innerRow + 1) { for (var innerCol = 0; innerCol < ${_}; innerCol = innerCol + 1) { let inputRow = tileRowA + innerRow; let inputCol = tileColA + innerCol; ${yl(o,s)} } } // Load one tile of B into local memory. for (var innerRow = 0; innerRow < ${T}; innerRow = innerRow + 1) { for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) { let inputRow = tileRowB + innerRow; let inputCol = tileCol + innerCol; mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalCol + innerCol${s?", batchIndices":""}); } } kStart = kStart + tileInner; workgroupBarrier(); // Compute acc values for a single thread. var BCached : array<${t}, colPerThread>; for (var k = 0; k < tileInner; k = k + 1) { for (var inner = 0; inner < colPerThread; inner = inner + 1) { BCached[inner] = mm_Bsub[k][tileCol + inner]; } for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) { ${sm(o)} for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) { acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; } } } workgroupBarrier(); } for (var innerRow = 0; innerRow < rowPerThread; innerRow = innerRow + 1) { for (var innerCol = 0; innerCol < colPerThread; innerCol = innerCol + 1) { mm_write(batch, globalRow + innerRow, globalCol + innerCol, acc[innerRow][innerCol]); } } `;return` var mm_Asub : array, ${c}>; var mm_Bsub : array, ${n}>; const rowPerThread = ${e[1]}; const colPerThread = ${e[0]}; const tileInner = ${n}; @compute @workgroup_size(${r[0]}, ${r[1]}, ${r[2]}) fn main(@builtin(local_invocation_id) localId : vec3, @builtin(global_invocation_id) globalId : vec3, @builtin(workgroup_id) workgroupId : vec3) { let batch = ${i?"0":"i32(globalId.z)"}; ${s?`let batchIndices = ${s.offsetToIndices("u32(batch)")};`:""} let num_tiles = ${i?`${Math.ceil(a/n)}`:"(uniforms.dim_inner - 1) / tileInner + 1"}; var kStart = ${i?`i32(globalId.z) * ${a}`:"0"}; var acc : array, rowPerThread>; ${$} } `},nm=(e,r,t,s,o=!1)=>{let[n,i,a,l]=s,u=lr(s[0].type.tensor);return` fn mm_readA(batch: i32, row: i32, colIn: i32, batchIndices: ${n.type.indices}) -> ${_r(e,u)} { var value = ${_r(e,u)}(0.0); let col = colIn * ${e}; if(row < uniforms.dim_a_outer && col < uniforms.dim_inner) { var aIndices: ${i.type.indices}; ${fo("aIndices",i,i.rank-2,n.rank,"batchIndices")} ${i.indicesSet("aIndices",i.rank-2,"u32(row)")} ${i.indicesSet("aIndices",i.rank-1,"u32(colIn)")} value = ${i.getByIndices("aIndices")}; } return value; } fn mm_readB(batch: i32, row: i32, colIn: i32, batchIndices: ${n.type.indices}) -> ${_r(e,u)} { var value = ${_r(e,u)}(0.0); let col = colIn * ${e}; if(row < uniforms.dim_inner && col < uniforms.dim_b_outer) { var bIndices: ${a.type.indices}; ${fo("bIndices",a,a.rank-2,n.rank,"batchIndices")} ${a.indicesSet("bIndices",a.rank-2,"u32(row)")} ${a.indicesSet("bIndices",a.rank-1,"u32(colIn)")} value = ${a.getByIndices("bIndices")}; } return value; } fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${_r(e,u)}) { let col = colIn * ${e}; if (row < uniforms.dim_a_outer && col < uniforms.dim_b_outer) { var value = valueIn; let coords = vec3(batch, row, colIn); ${r?`value = value + ${o?"bias[colIn]":`${_r(e,u)}(bias[row])`};`:""} ${t} ${l.setByIndices("vec3(coords)","value")} } } `},pi=(e,r,t,s,o=!1,n)=>{let i=e[0].dims,a=e[1].dims,l=i.slice(0,-2),u=a.slice(0,-2),p=s?s.slice(0,-2):t.slice(0,-2),d=Me.size(p),c=i[i.length-2],f=i[i.length-1],_=a[a.length-1],T=f%4===0&&_%4===0,$=c<=8?[4,1,1]:[4,4,1],w=[8,8,1],g=[Math.ceil(_/w[0]/$[0]),Math.ceil(c/w[1]/$[1]),Math.ceil(d/w[2]/$[2])],S=T?4:1,E=[...l,c,f/S],y=E.length,M=[...u,f,_/S],v=M.length,C=[d,c,_/S],A=[{type:6,data:c},{type:6,data:_},{type:6,data:f}];sn(r,A),A.push(...st(p,E,M));let B=["rank","rank"],K=e.length>2;K&&(A.push(...st(e[2].dims)),B.push("rank")),A.push(...st(C));let G=j=>{let ee=p.length,H=ol("batchDims",e[0].dataType,ee,1),Z=lr(e[0].dataType),X=Pe("a",e[0].dataType,y,S),oe=Pe("b",e[1].dataType,v,S),me=Ye("result",e[0].dataType,C.length,S),ae=[X,oe];if(K){let _e=o?S:1;ae.push(Pe("bias",e[2].dataType,e[2].dims.length,_e))}let V=[{name:"dim_a_outer",type:"i32"},{name:"dim_b_outer",type:"i32"},{name:"dim_inner",type:"i32"}];nn(r,V);let F=lr(me.type.tensor),W=rn(r,me.type.value,F),re=nm(S,K,W,[H,X,oe,me],o);return` ${j.registerUniforms(V).registerInternalVariables(H).declareVariables(...ae,me)} ${re} ${T?bl($,w,Z,H):vl($,w,Z,H)} `};return{name:"MatMul",shaderCache:{hint:`${$};${r.activation};${T};${o}`,inputDependencies:B},getRunData:()=>({outputs:[{dims:n?n(t):t,dataType:e[0].dataType}],dispatchGroup:{x:g[0],y:g[1],z:g[2]},programUniforms:A}),getShaderSource:G}}}),om,im,Av=Be(()=>{ut(),Es(),ft(),on(),gl(),Iv(),xl(),om=(e,r,t,s,o=!1,n,i=4,a=4,l=4,u="f32")=>{let p=A=>{switch(A){case 1:return"resData = x[xIndex];";case 3:return`resData = vec3<${u}>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);`;case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${A} is not supported.`)}},d=A=>{switch(A){case 1:return"return w[row * i32(uniforms.w_shape[3]) + colIn];";case 4:return"return w[row * i32(uniforms.w_shape[3]) / 4 + colIn];";default:throw new Error(`innerElementSize ${A} is not supported.`)}},c=e?` let coord = vec4(batch, xRow, xCol, xCh); `:` let coord = vec4(batch, xCh, xRow, xCol); `,f=e?` let coords = vec4( batch, row / outWidth, row % outWidth, col); `:` let coords = vec4( batch, row, col / outWidth, col % outWidth); `,_=e?"i32(uniforms.x_shape[1])":"i32(uniforms.x_shape[2])",T=e?"i32(uniforms.x_shape[2])":"i32(uniforms.x_shape[3])",$=e?"row":"col",w=e?"col":"row",g=` let inChannels = i32(uniforms.w_shape[2]); let outWidth = ${e?"i32(uniforms.result_shape[2])":"i32(uniforms.result_shape[3])"}; let outRow = ${$} / outWidth; let outCol = ${$} % outWidth; let WRow = ${w} / (i32(uniforms.w_shape[1]) * inChannels); let WCol = ${w} / inChannels % i32(uniforms.w_shape[1]); let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0]; let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1]; let xCh = ${w} % inChannels; var resData = ${_r(i,u)}(0.0); // The bounds checking is always needed since we use it to pad zero for // the 'same' padding type. if (xRow >= 0 && xRow < ${_} && xCol >= 0 && xCol < ${T}) { ${c} let xIndex = getIndexFromCoords4D(coord, vec4(uniforms.x_shape)); ${p(i)} } return resData;`,S=e?r&&s?` let col = colIn * ${i}; ${g}`:` let col = colIn * ${i}; if (row < uniforms.dim_a_outer && col < uniforms.dim_inner) { ${g} } return ${_r(i,u)}(0.0);`:s&&t?` let col = colIn * ${i}; ${g}`:` let col = colIn * ${i}; if (row < uniforms.dim_inner && col < uniforms.dim_b_outer) { ${g} } return ${_r(i,u)}(0.0);`,E=e?s&&t?d(a):` let col = colIn * ${a}; if (row < uniforms.dim_inner && col < uniforms.dim_b_outer) { ${d(a)} } return ${_r(a,u)}(0.0);`:` let col = colIn * ${a}; if (row < uniforms.dim_inner && col < uniforms.dim_a_outer) { ${d(a)} } return ${_r(a,u)}(0.0);`,y=_r(l,u),M=_r(e?i:a,u),v=_r(e?a:i,u),C=rn(n,y,u);return` fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${M} { ${e?S:E} } fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${v} { ${e?E:S} } fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${y}) { let col = colIn * ${l}; if (row < uniforms.dim_a_outer && col < uniforms.dim_b_outer) { var value = valueIn; let outWidth = ${e?"i32(uniforms.result_shape[2])":"i32(uniforms.result_shape[3])"}; ${f} ${Zh(o)} ${C} setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); } }`},im=(e,r,t,s,o,n,i,a,l)=>{let u=r.format==="NHWC",p=u?e[0].dims[3]:e[0].dims[1],d=t[0],c=u?t[2]:t[3],f=u?t[1]:t[2],_=u?t[3]:t[1],T=u&&(p%4===0||p%3===0)&&_%4===0,$=u?_:c*f,w=u?c*f:_,g=[8,8,1],S=s<=8?[4,1,1]:[4,4,1],E=[Math.ceil($/g[0]/S[0]),Math.ceil(w/g[1]/S[1]),Math.ceil(d/g[2]/S[2])];vt("verbose",()=>`[conv2d_mm_webgpu] dispatch = ${E}`);let y=T?u&&p%4!==0?3:4:1,M=g[1]*S[1],v=g[0]*S[0],C=Math.max(g[0]*y,g[1]),A=s%M===0,B=o%v===0,K=n%C===0,G=T?[y,4,4]:[1,1,1],j=[{type:6,data:s},{type:6,data:o},{type:6,data:n},{type:6,data:[r.pads[0],r.pads[1]]},{type:6,data:r.strides},{type:6,data:r.dilations}];sn(r,j),j.push(...st(e[0].dims,e[1].dims));let ee=["rank","rank"];i&&(j.push(...st(e[2].dims)),ee.push("rank")),j.push(...st(t));let H=Z=>{let X=[{name:"dim_a_outer",type:"i32"},{name:"dim_b_outer",type:"i32"},{name:"dim_inner",type:"i32"},{name:"pad",type:"i32",length:2},{name:"stride",type:"i32",length:2},{name:"dilation",type:"i32",length:2}];nn(r,X);let oe=T?4:1,me=lr(e[0].dataType),ae=` fn setOutputAtIndex(flatIndex : i32, value : ${T?`vec4<${me}>`:me}) { result[flatIndex] = ${T?`vec4<${me}>`:me}(value); } fn setOutputAtCoords(d0 : i32, d1 : i32, d2 : i32, d3 : i32, value : ${T?`vec4<${me}>`:me}) { let flatIndex = getOutputIndexFromCoords(vec4(d0, d1, d2, d3)); setOutputAtIndex(flatIndex ${T?"/ 4":""}, value); }`,V=Pe("x",e[0].dataType,e[0].dims.length,y===3?1:y),F=Pe("w",e[1].dataType,e[1].dims.length,oe),W=[V,F],re=Ye("result",e[0].dataType,t.length,oe);if(i){let _e=Pe("bias",e[2].dataType,e[2].dims.length,oe);W.push(_e),ae+=` fn getBiasByOutputCoords(coords : vec4) -> ${T?`vec4<${me}>`:me} { return bias[coords.${u?"w":"y"}${T?"/ 4":""}]; }`}return` ${em("uniforms.result_strides")} //struct Uniforms { xShape : vec4, wShape : vec4, outShape : vec4, // outShapeStrides: vec3, filterDims : vec2, pad : vec2, stride : vec2, // dilation : vec2, dimAOuter : i32, dimBOuter : i32, dimInner : i32 }; ${Z.registerUniforms(X).declareVariables(...W,re)} ${ae} ${om(u,A,B,K,i,r,G[0],G[1],G[2],me)} ${T?bl(S,g,me,void 0,!u,C):vl(S,g,me,void 0,!u,C,!1,void 0,a)}`};return{name:"Conv2DMatMul",shaderCache:{hint:`${r.cacheKey};${y};${T};${A};${B};${K};${M};${v};${C}`,inputDependencies:ee},getRunData:()=>({outputs:[{dims:l?l(t):t,dataType:e[0].dataType}],dispatchGroup:{x:E[0],y:E[1],z:E[2]},programUniforms:j}),getShaderSource:H}}}),am,Tl,go,lm,El,um,dm,cm,Fv=Be(()=>{ut(),Es(),mt(),ft(),on(),gl(),am=e=>{let r=1;for(let t=0;ttypeof e=="number"?[e,e,e]:e,go=(e,r)=>r<=1?e:e+(e-1)*(r-1),lm=(e,r,t,s=1)=>{let o=go(r,s);return Math.floor((e[0]*(t-1)-t+o)/2)},El=(e,r,t,s,o)=>{o==null&&(o=lm(e,r[0],s[0]));let n=[0,0,0,t];for(let i=0;i<3;i++)e[i]+2*o>=r[i]&&(n[i]=Math.trunc((e[i]-r[i]+2*o)/s[i]+1));return n},um=(e,r,t,s,o,n,i,a,l,u)=>{let p,d,c,f;if(e==="VALID"&&(e=0),typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e};let _=El([r,t,s,1],[a,l,u],1,[o,n,i],e);d=_[0],c=_[1],f=_[2]}else if(Array.isArray(e)){if(!e.every((T,$,w)=>T===w[0]))throw Error(`Unsupported padding parameter: ${e}`);p={top:e[0],bottom:e[1],left:e[2],right:e[3],front:e[4],back:e[5]};let _=El([r,t,s,1],[a,l,u],1,[o,n,i],e[0]);d=_[0],c=_[1],f=_[2]}else if(e==="SAME_UPPER"){d=Math.ceil(r/o),c=Math.ceil(t/n),f=Math.ceil(s/i);let _=(d-1)*o+a-r,T=(c-1)*n+l-t,$=(f-1)*i+u-s,w=Math.floor(_/2),g=_-w,S=Math.floor(T/2),E=T-S,y=Math.floor($/2),M=$-y;p={top:S,bottom:E,left:y,right:M,front:w,back:g}}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:c,outWidth:f}},dm=(e,r,t,s,o,n=!1,i="channelsLast")=>{let a,l,u,p,d;if(i==="channelsLast")[a,l,u,p,d]=e;else if(i==="channelsFirst")[a,d,l,u,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[c,,f,_,T]=r,[$,w,g]=Tl(t),[S,E,y]=Tl(s),M=go(f,S),v=go(_,E),C=go(T,y),{padInfo:A,outDepth:B,outHeight:K,outWidth:G}=um(o,l,u,p,$,w,g,M,v,C),j=n?c*d:c,ee=[0,0,0,0,0];return i==="channelsFirst"?ee=[a,j,B,K,G]:i==="channelsLast"&&(ee=[a,B,K,G,j]),{batchSize:a,dataFormat:i,inDepth:l,inHeight:u,inWidth:p,inChannels:d,outDepth:B,outHeight:K,outWidth:G,outChannels:j,padInfo:A,strideDepth:$,strideHeight:w,strideWidth:g,filterDepth:f,filterHeight:_,filterWidth:T,effectiveFilterDepth:M,effectiveFilterHeight:v,effectiveFilterWidth:C,dilationDepth:S,dilationHeight:E,dilationWidth:y,inShape:e,outShape:ee,filterShape:r}},cm=(e,r,t,s,o,n)=>{let i=n==="channelsLast";i?e[0].dims[3]:e[0].dims[1];let a=[64,1,1],l={x:t.map(($,w)=>w)},u=[Math.ceil(am(l.x.map($=>t[$]))/a[0]),1,1];vt("verbose",()=>`[conv3d_naive_webgpu] dispatch = ${u}`);let p=1,d=Me.size(t),c=[{type:12,data:d},{type:12,data:s},{type:12,data:o},{type:12,data:r.strides},{type:12,data:r.dilations}];sn(r,c),c.push(...st(e[0].dims,e[1].dims));let f=["rank","rank"],_=e.length===3;_&&(c.push(...st(e[2].dims)),f.push("rank")),c.push(...st(t));let T=$=>{let w=[{name:"output_size",type:"u32"},{name:"filter_dims",type:"u32",length:s.length},{name:"pads",type:"u32",length:o.length},{name:"strides",type:"u32",length:r.strides.length},{name:"dilations",type:"u32",length:r.dilations.length}];nn(r,w);let g=1,S=lr(e[0].dataType),E=Pe("x",e[0].dataType,e[0].dims.length,p),y=Pe("W",e[1].dataType,e[1].dims.length,g),M=[E,y],v=Ye("result",e[0].dataType,t.length,g),C="";if(_){let K=Pe("bias",e[2].dataType,e[2].dims.length,g);M.push(K),C+=` fn getBiasByOutputCoords(coords : array) -> ${S} { return bias[${i?et("coords",4,5):et("coords",1,5)}]; }`}let A=_r(p,S),B=rn(r,A,S);return` ${C} fn getX(d0 : u32, d1 : u32, d2 : u32, d3 : u32, d4 : u32) -> f32 { let aIndices = array(d0, d1, d2, d3, d4); return ${E.getByIndices("aIndices")}; } fn getW(d0 : u32, d1 : u32, d2 : u32, d3 : u32, d4 : u32) -> f32 { let aIndices = array(d0, d1, d2, d3, d4); return ${y.getByIndices("aIndices")}; } ${$.registerUniforms(w).declareVariables(...M,v)} ${$.mainStart()} ${$.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let coords = ${v.offsetToIndices("global_idx")}; let batch = ${et("coords",0,E.rank)}; let d2 = ${i?et("coords",E.rank-1,E.rank):et("coords",1,E.rank)}; let xFRCCorner = vec3(${i?et("coords",1,E.rank):et("coords",2,E.rank)}, ${i?et("coords",2,E.rank):et("coords",3,E.rank)}, ${i?et("coords",3,E.rank):et("coords",4,E.rank)}) * uniforms.strides - uniforms.pads; let xFCorner = xFRCCorner.x; let xRCorner = xFRCCorner.y; let xCCorner = xFRCCorner.z; let xShapeY = ${i?et("uniforms.x_shape",1,E.rank):et("uniforms.x_shape",2,E.rank)}; let xShapeZ = ${i?et("uniforms.x_shape",2,E.rank):et("uniforms.x_shape",3,E.rank)}; let xShapeW = ${i?et("uniforms.x_shape",3,E.rank):et("uniforms.x_shape",4,E.rank)}; let xShapeU = ${i?et("uniforms.x_shape",4,E.rank):et("uniforms.x_shape",1,E.rank)}; let inputDepthNearestVec4 = (xShapeU / 4) * 4; let inputDepthVec4Remainder = xShapeU % 4; var value = 0.0; for (var wF = 0u; wF < uniforms.filter_dims[0]; wF++) { let xF = xFCorner + wF * uniforms.dilations[0]; if (xF < 0 || xF >= xShapeY) { continue; } for (var wR = 0u; wR < uniforms.filter_dims[1]; wR++) { let xR = xRCorner + wR * uniforms.dilations[1]; if (xR < 0 || xR >= xShapeZ) { continue; } for (var wC = 0u; wC < uniforms.filter_dims[2]; wC++) { let xC = xCCorner + wC * uniforms.dilations[2]; if (xC < 0 || xC >= xShapeW) { continue; } for (var d1 = 0u; d1 < inputDepthNearestVec4; d1 += 4) { ${i?`let xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3)); `:`let xValues = vec4( getX(batch, d1, xF, xR, xC), getX(batch, d1 + 1, xF, xR, xC), getX(batch, d1 + 2, xF, xR, xC), getX(batch, d1 + 3, xF, xR, xC)); `} let wValues = vec4( getW(d2, d1, wF, wR, wC), getW(d2, d1 + 1, wF, wR, wC), getW(d2, d1 + 2, wF, wR, wC), getW(d2, d1 + 3, wF, wR, wC)); value += dot(xValues, wValues); } if (inputDepthVec4Remainder == 1) { ${i?`value += getX(batch, xF, xR, xC, inputDepthNearestVec4) * getW(d2, inputDepthNearestVec4, wF, wR, wC);`:`value += getX(batch, inputDepthNearestVec4, xF, xR, xC) * getW(d2, inputDepthNearestVec4, wF, wR, wC);`} } else if (inputDepthVec4Remainder == 2) { ${i?`let xValues = vec2( getX(batch, xF, xR, xC, inputDepthNearestVec4), getX(batch, xF, xR, xC, inputDepthNearestVec4 + 1)); `:`let xValues = vec2( getX(batch, inputDepthNearestVec4, xF, xR, xC), getX(batch, inputDepthNearestVec4 + 1, xF, xR, xC)); `} let wValues = vec2( getW(d2, inputDepthNearestVec4, wF, wR, wC), getW(d2, inputDepthNearestVec4 + 1, wF, wR, wC)); value += dot(xValues, wValues); } else if (inputDepthVec4Remainder == 3) { ${i?`let xValues = vec3( getX(batch, xF, xR, xC, inputDepthNearestVec4), getX(batch, xF, xR, xC, inputDepthNearestVec4 + 1), getX(batch, xF, xR, xC, inputDepthNearestVec4 + 2)); `:`let xValues = vec3( getX(batch, inputDepthNearestVec4, xF, xR, xC), getX(batch, inputDepthNearestVec4 + 1, xF, xR, xC), getX(batch, inputDepthNearestVec4 + 2, xF, xR, xC)); `} let wValues = vec3( getW(d2, inputDepthNearestVec4, wF, wR, wC), getW(d2, inputDepthNearestVec4 + 1, wF, wR, wC), getW(d2, inputDepthNearestVec4 + 2, wF, wR, wC)); value += dot(xValues, wValues); } } } } ${_?"value = value + getBiasByOutputCoords(coords)":""}; ${B} result[global_idx] = f32(value); }`};return{name:"Conv3DNaive",shaderCache:{hint:`${r.cacheKey};${i};${p};${_}`,inputDependencies:f},getRunData:()=>({outputs:[{dims:t,dataType:e[0].dataType}],dispatchGroup:{x:u[0],y:u[1],z:u[2]},programUniforms:c}),getShaderSource:T}}}),pm,hm,Ov=Be(()=>{ut(),mt(),ft(),on(),pm=(e,r,t,s)=>{let o=e.length>2,n=o?"value += b[output_channel];":"",i=e[0].dims,a=e[1].dims,l=r.format==="NHWC",u=l?t[3]:t[1],p=u/r.group,d=l&&p>=4?Kt(u):1,c=Me.size(t)/d,f=[{type:12,data:c},{type:12,data:r.dilations},{type:12,data:[r.strides[0],r.strides[1]]},{type:12,data:[r.pads[0],r.pads[1]]},{type:12,data:p}];sn(r,f),f.push(...st(i,[a[0],a[1],a[2],a[3]/d]));let _=o?["rank","rank","rank"]:["rank","rank"];f.push(...st([t[0],t[1],t[2],t[3]/d]));let T=$=>{let w=Ye("output",e[0].dataType,t.length,d),g=lr(w.type.tensor),S=rn(r,w.type.value,g),E=Pe("x",e[0].dataType,i.length),y=Pe("w",e[1].dataType,a.length,d),M=[E,y];o&&M.push(Pe("b",e[2].dataType,e[2].dims,d));let v=[{name:"output_size",type:"u32"},{name:"dilations",type:"u32",length:r.dilations.length},{name:"strides",type:"u32",length:2},{name:"pads",type:"u32",length:2},{name:"output_channels_per_group",type:"u32"}];nn(r,v);let C=l?` for (var wHeight: u32 = 0u; wHeight < uniforms.w_shape[0]; wHeight++) { let xHeight = xRCCorner.x + wHeight * uniforms.dilations[0]; if (xHeight < 0u || xHeight >= uniforms.x_shape[1]) { continue; } for (var wWidth: u32 = 0u; wWidth < uniforms.w_shape[1]; wWidth++) { let xWidth = xRCCorner.y + wWidth * uniforms.dilations[1]; if (xWidth < 0u || xWidth >= uniforms.x_shape[2]) { continue; } for (var wInChannel: u32 = 0u; wInChannel < uniforms.w_shape[2]; wInChannel++) { let input_channel = in_channel_offset + wInChannel; let xVal = ${E.get("batch","xHeight","xWidth","input_channel")}; let wVal = ${y.get("wHeight","wWidth","wInChannel","output_channel")}; value += xVal * wVal; } } } `:` for (var wInChannel: u32 = 0u; wInChannel < uniforms.w_shape[1]; wInChannel++) { let input_channel = in_channel_offset + wInChannel; for (var wHeight: u32 = 0u; wHeight < uniforms.w_shape[2]; wHeight++) { let xHeight = xRCCorner.x + wHeight * uniforms.dilations[0]; if (xHeight < 0u || xHeight >= uniforms.x_shape[2]) { continue; } for (var wWidth: u32 = 0u; wWidth < uniforms.w_shape[3]; wWidth++) { let xWidth = xRCCorner.y + wWidth * uniforms.dilations[1]; if (xWidth < 0u || xWidth >= uniforms.x_shape[3]) { continue; } let xVal = ${E.get("batch","input_channel","xHeight","xWidth")}; let wVal = ${y.get("output_channel","wInChannel","wHeight","wWidth")}; value += xVal * wVal; } } } `;return` ${$.registerUniforms(v).declareVariables(...M,w)} ${$.mainStart()} ${$.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let outputIndices = ${w.offsetToIndices("global_idx")}; let batch: u32 = outputIndices[0]; let output_channel: u32 = outputIndices[${l?3:1}]; let xRCCorner: vec2 = vec2(outputIndices[${l?1:2}], outputIndices[${l?2:3}]) * uniforms.strides - uniforms.pads; let group_id: u32 = output_channel * ${d} / uniforms.output_channels_per_group; var in_channel_offset = group_id * uniforms.w_shape[${l?2:1}]; var value: ${w.type.value} = ${w.type.value}(0); ${C} ${n} ${S} ${w.setByOffset("global_idx","value")} }`};return{name:"GroupedConv",shaderCache:{hint:`${r.cacheKey}_${d}`,inputDependencies:_},getRunData:()=>({outputs:[{dims:s?s(t):t,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(c/64)},programUniforms:f}),getShaderSource:T}},hm=(e,r,t,s)=>{let o=e.length>2,n=Kt(t[3]),i=Kt(t[2]),a=Me.size(t)/n/i,l=[e[0].dims[0],e[0].dims[1],e[0].dims[2],e[0].dims[3]/n],u=[e[1].dims[0],e[1].dims[1],e[1].dims[2],e[1].dims[3]/n],p=[t[0],t[1],t[2],t[3]/n],d=[{type:12,data:a},{type:6,data:[r.strides[0],r.strides[1]]},{type:6,data:[r.pads[0],r.pads[1]]}];sn(r,d),d.push(...st(l,u,p));let c=(i-1)*r.strides[1]+u[1],f=_=>{let T=Ye("output",e[0].dataType,p.length,n),$=lr(T.type.tensor),w=rn(r,T.type.value,$),g=Pe("x",e[0].dataType,l.length,n),S=Pe("w",e[1].dataType,u.length,n),E=[g,S];o&&E.push(Pe("b",e[2].dataType,e[2].dims,n));let y=o?"value += b[output_channel];":"",M=[{name:"output_size",type:"u32"},{name:"strides",type:"i32",length:2},{name:"pads",type:"i32",length:2}];return nn(r,M),` ${_.registerUniforms(M).declareVariables(...E,T)} ${_.mainStart()} ${_.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let width0 = uniforms.output_shape[3]; let output_channel = global_idx % width0; var index1 = global_idx / width0; let width1 = uniforms.output_shape[2] / ${i}u; let col = (index1 % width1) * ${i}u; index1 = index1 / width1; let row = index1 % uniforms.output_shape[1]; let batch = index1 / uniforms.output_shape[1]; let x_corner = vec2(i32(row), i32(col)) * uniforms.strides - uniforms.pads; var x_vals: array<${g.type.value}, ${c}>; var values: array<${T.type.value}, ${i}>; let input_channel = output_channel; // Use constant instead of uniform can give better performance for w's height/width. for (var w_height: u32 = 0u; w_height < ${u[0]}; w_height++) { let x_height = x_corner.x + i32(w_height); if (x_height >= 0 && u32(x_height) < uniforms.x_shape[1]) { for (var i = 0; i < ${c}; i++) { let x_width = x_corner.y + i; if (x_width >= 0 && u32(x_width) < uniforms.x_shape[2]) { x_vals[i] = ${g.get("batch","u32(x_height)","u32(x_width)","input_channel")}; } else { x_vals[i] = ${g.type.value}(0); } } for (var w_width: u32 = 0u; w_width < ${u[1]}; w_width++) { let w_val = ${S.get("w_height","w_width","0","output_channel")}; for (var i = 0u; i < ${i}u; i++) { values[i] = fma(x_vals[i * u32(uniforms.strides[1]) + w_width], w_val, values[i]); } } } } for (var i = 0u; i < ${i}u; i++) { var value = values[i]; ${y} ${w} ${T.set("batch","row","col + i","output_channel","value")}; } }`};return{name:"GroupedConv-Vectorize",shaderCache:{hint:`${r.cacheKey};${n};${i};${c};${u[0]};${u[1]}`,inputDependencies:o?["rank","rank","type"]:["rank","rank"]},getRunData:()=>({outputs:[{dims:s?s(t):t,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(a/64)},programUniforms:d}),getShaderSource:f}}}),mm,hi,_m,mi,Pl,Cl,fm,gm,Sl,Dv=Be(()=>{mt(),Av(),Fv(),xl(),Ov(),on(),Ml(),zs(),mm=(e,r,t,s,o,n)=>{let i=e[0],a=e.slice(n?1:2,n?3:4),l=a.length,u=r[0],p=r.slice(2).map((c,f)=>c+(c-1)*(t[f]-1)),d=a.map((c,f)=>c+s[f]+s[f+l]).map((c,f)=>Math.floor((c-p[f]+o[f])/o[f]));return d.splice(0,0,i),d.splice(n?3:1,0,u),d},hi=[2,3,1,0],_m=(e,r)=>{if(!e||e.length!==2&&e.length!==3)throw new Error("Conv requires 2 or 3 inputs");if(e[0].dims.length>5)throw new Error("greater than 5D is not supported");if(e[0].dims.length!==e[1].dims.length)throw new Error("filter does not have same dimension as input");let t=e[0].dims[r.format==="NHWC"?e[0].dims.length-1:1],s=e[1].dims[1]*r.group;if(t!==s)throw new Error("FILTER_IN_CHANNEL should be equal to DATA_CHANNEL");if(e.length===3&&(e[2].dims.length!==1||e[1].dims[0]!==e[2].dims[0]))throw new Error("invalid bias");let o=e[0].dims.length-2;if(r.dilations.length!==o)throw new Error(`dilations should be ${o}D`);if(r.strides.length!==o)throw new Error(`strides should be ${o}D`);if(r.pads.length!==o*2)throw new Error(`pads should be ${o*2}D`);if(r.kernelShape.length!==0&&r.kernelShape.length!==e[1].dims.length-2)throw new Error("invalid kernel shape")},mi=(e,r)=>{let t=e.kernelShape.slice();t.length{let r=fl(e),t=e.format,s=["NOTSET","VALID","SAME_UPPER","SAME_LOWER"][e.auto_pad],o=e.dilations,n=e.group,i=e.kernel_shape,a=e.pads,l=e.strides,u=e.w_is_const();return{autoPad:s,format:t,dilations:o,group:n,kernelShape:i,pads:a,strides:l,wIsConst:u,...r,cacheKey:`${e.format};${r.activation};`}},Cl=(e,r,t,s)=>{let o=t.format==="NHWC",n=mm(r[0].dims,r[1].dims,t.dilations,t.pads,t.strides,o);if(t.group!==1){let M=[r[0]];if(o){let v=e.kernelCustomData.wT??e.compute(Lr(r[1],hi),{inputs:[1],outputs:[t.wIsConst?-2:-1]})[0];t.wIsConst&&!e.kernelCustomData.wT&&(e.kernelCustomData.wT=v),M.push(v)}else M.push(r[1]);r.length===3&&M.push(r[2]),!e.adapterInfo.isArchitecture("ampere")&&o&&r[1].dims[0]===t.group&&r[1].dims[1]===1&&t.dilations[0]===1&&t.dilations[1]===1?e.compute(hm(M,t,n,s),{inputs:M}):e.compute(pm(M,t,n,s),{inputs:M});return}let i=r.length===3,a=r[0].dims[o?1:2],l=r[0].dims[o?2:3],u=r[0].dims[o?3:1],p=r[1].dims[2],d=r[1].dims[3],c=n[o?1:2],f=n[o?2:3],_=n[o?3:1],T=o&&p===a&&d===l&&t.pads[0]===0&&t.pads[1]===0;if(T||p===1&&d===1&&t.dilations[0]===1&&t.dilations[1]===1&&t.strides[0]===1&&t.strides[1]===1&&t.pads[0]===0&&t.pads[1]===0){let M=n[0],v,C,A,B=[];if(o){let j=e.kernelCustomData.wT??e.compute(Lr(r[1],hi),{inputs:[1],outputs:[t.wIsConst?-2:-1]})[0];if(t.wIsConst&&!e.kernelCustomData.wT&&(e.kernelCustomData.wT=j),T){let ee=a*l*u;v=r[0].reshape([1,M,ee]),C=j.reshape([1,ee,_]),A=[1,M,_]}else v=r[0].reshape([M,a*l,u]),C=j.reshape([1,u,_]),A=[M,c*f,_];B.push(v),B.push(C)}else v=r[0].reshape([M,u,a*l]),C=r[1].reshape([1,_,u]),A=[M,_,c*f],B.push(C),B.push(v);i&&B.push(r[2]);let K=A[2],G=B[0].dims[B[0].dims.length-1];K<8&&G<8?e.compute(wl(B,t,n,A,o,s),{inputs:B}):e.compute(pi(B,t,n,A,o,s),{inputs:B});return}let $=!0,w=e.kernelCustomData.wT??e.compute(Lr(r[1],hi),{inputs:[1],outputs:[t.wIsConst?-2:-1]})[0];t.wIsConst&&!e.kernelCustomData.wT&&(e.kernelCustomData.wT=w);let g=[r[0],w];i&&g.push(r[2]);let S=o?c*f:_,E=o?_:c*f,y=p*d*u;e.compute(im(g,t,n,S,E,y,i,$,s),{inputs:g})},fm=(e,r)=>{let t=r.format==="NHWC",s=[e.inputs[0].reshape(t?[e.inputs[0].dims[0],1,e.inputs[0].dims[1],e.inputs[0].dims[2]]:[e.inputs[0].dims[0],e.inputs[0].dims[1],1,e.inputs[0].dims[2]]),e.inputs[1].reshape([e.inputs[1].dims[0],e.inputs[1].dims[1],1,e.inputs[1].dims[2]])];e.inputs.length===3&&s.push(e.inputs[2]);let o=[0,r.pads[0],0,r.pads[1]],n=[1].concat(r.strides),i=[1].concat(r.dilations),a=[1].concat(r.kernelShape),l=mi({...r,pads:o,strides:n,dilations:i,kernelShape:a},s);Cl(e,s,l,u=>t?[u[0],u[2],u[3]]:[u[0],u[1],u[3]])},gm=(e,r,t)=>{let s=t.format==="NHWC"?"channelsLast":"channelsFirst",o=mi(t,r),n=t.autoPad==="NOTSET"?t.pads:t.autoPad,i=dm(r[0].dims,r[1].dims,t.strides,t.dilations,n,!1,s);e.compute(cm(r,o,i.outShape,[i.filterDepth,i.filterHeight,i.filterWidth],[i.padInfo.front,i.padInfo.top,i.padInfo.left],s))},Sl=(e,r)=>{if(_m(e.inputs,r),e.inputs[0].dims.length===3)fm(e,r);else if(e.inputs[0].dims.length===5)gm(e,e.inputs,r);else{let t=mi(r,e.inputs);Cl(e,e.inputs,t)}}}),wm,Lv=Be(()=>{ut(),Es(),mt(),ft(),wm=(e,r,t)=>{let s=e.length>2,o=r.outputShape,n=r.format==="NHWC",i=r.group,a=e[1].dims,l=a[2]/i,u=a[3],p=n?Kt(l):1,d=n&&u===1&&l>=4,c=d?Math.floor(l/4)*4:Math.floor(l/p)*p,f=l-c,_=n?Kt(u):1,T=n?u===1?p:_:1,$=Me.size(o)/_,w=[Math.ceil($/64),1,1];vt("verbose",()=>`[conv2d_backprop_webgpu] dispatch = ${w}`);let g=["rank","rank"],S=[r.strides[0],r.strides[1]],E=[r.kernelShape[n?1:2],r.kernelShape[n?2:3]],y=[r.dilations[0],r.dilations[1]],M=[E[0]+(r.dilations[0]<=1?0:(r.kernelShape[n?1:2]-1)*(r.dilations[0]-1)),E[1]+(r.dilations[1]<=1?0:(r.kernelShape[n?2:3]-1)*(r.dilations[1]-1))],v=[M[0]-1-Math.floor((r.pads[0]+r.pads[2])/2),M[1]-1-Math.floor((r.pads[1]+r.pads[3])/2)],C=[{type:12,data:$},{type:12,data:S},{type:12,data:E},{type:12,data:y},{type:12,data:M},{type:6,data:v},{type:12,data:c},{type:12,data:l},{type:12,data:u},...st(e[0].dims,e[1].dims)];s&&(C.push(...st(e[2].dims)),g.push("rank")),C.push(...st(o));let A=B=>{let K=[{name:"output_size",type:"u32"},{name:"strides",type:"u32",length:S.length},{name:"filter_dims",type:"u32",length:E.length},{name:"dilations",type:"u32",length:E.length},{name:"effective_filter_dims",type:"u32",length:M.length},{name:"pads",type:"i32",length:v.length},{name:"input_channels_per_group_int",type:"u32"},{name:"input_channels_per_group",type:"u32"},{name:"output_channels_per_group",type:"u32"}],G=lr(e[0].dataType),j=n?1:2,ee=n?2:3,H=n?3:1,Z=Pe("W",e[1].dataType,e[1].dims.length,T),X=Pe("Dy",e[0].dataType,e[0].dims.length,p),oe=[X,Z];s&&oe.push(Pe("bias",e[2].dataType,[o[H]].length,_));let me=Ye("result",e[0].dataType,o.length,_),ae=()=>{let W="";if(d)p===4?W+=` let xValue = ${X.getByOffset("x_offset")}; let wValue = ${Z.getByOffset("w_offset")}; dotProd = dotProd + dot(xValue, wValue); x_offset += 1u; w_offset += 1u;`:p===2?W+=` dotProd = dotProd + dot(vec4<${G}>(${X.getByOffset("x_offset")}, ${X.getByOffset("x_offset + 1u")}), vec4<${G}>(${Z.getByOffset("w_offset")}, ${Z.getByOffset("w_offset + 1u")})); x_offset += 2u; w_offset += 2u;`:p===1&&(W+=` dotProd = dotProd + dot(vec4<${G}>(${X.getByOffset("x_offset")}, ${X.getByOffset("x_offset + 1u")}, ${X.getByOffset("x_offset + 2u")}, ${X.getByOffset("x_offset + 3u")}), vec4<${G}>(${Z.getByOffset("w_offset")}, ${Z.getByOffset("w_offset + 1u")}, ${Z.getByOffset("w_offset + 2u")}, ${Z.getByOffset("w_offset + 3u")})); x_offset += 4u; w_offset += 4u;`);else if(W+=` let xValue = ${n?X.getByOffset(`${X.indicesToOffset(`${X.type.indices}(batch, idyR, idyC, inputChannel)`)} / ${p}`):X.get("batch","inputChannel","idyR","idyC")}; `,p===1)W+=` let w_offset = ${Z.indicesToOffset(`${Z.type.indices}(u32(wRPerm), u32(wCPerm), inputChannel, wOutChannel)`)}; let wValue = ${Z.getByOffset(`w_offset / ${T}`)}; dotProd = dotProd + xValue * wValue;`;else for(let re=0;re{if(f===0)return"";if(!d)throw new Error(`packInputAs4 ${d} is not true.`);let W="";if(p===1){W+="dotProd = dotProd";for(let re=0;re(i32(r), i32(c)) - uniforms.pads; let dyRCorner = dyCorner.x; let dyCCorner = dyCorner.y; let groupId = d1 / uniforms.output_channels_per_group; let wOutChannel = d1 - groupId * uniforms.output_channels_per_group; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. var dotProd = ${me.type.value}(0.0); var wR: u32 = 0; if (uniforms.dilations.x == 1) { // Minimum wR >= 0 that satisfies (dyRCorner + wR) % (uniforms.strides.x) == 0 wR = u32(((dyRCorner + i32(uniforms.strides.x) - 1) / i32(uniforms.strides.x)) * i32(uniforms.strides.x) - dyRCorner); } for (; wR < uniforms.effective_filter_dims.x; wR = wR + 1) { if (wR % uniforms.dilations.x != 0) { continue; } let dyR = (${G}(dyRCorner) + ${G}(wR)) / ${G}(uniforms.strides[0]); let wRPerm = uniforms.filter_dims.x - 1 - wR / uniforms.dilations.x; if (dyR < 0.0 || dyR >= ${G}(uniforms.Dy_shape[${j}]) || fract(dyR) > 0.0 || wRPerm < 0) { continue; } let idyR: u32 = u32(dyR); var wC: u32 = 0; if (uniforms.dilations.y == 1) { // Minimum wC >= 0 that satisfies (dyCCorner + wC) % (uniforms.strides.y) == 0 wC = u32(((dyCCorner + i32(uniforms.strides.y) - 1) / i32(uniforms.strides.y)) * i32(uniforms.strides.y) - dyCCorner); } for (; wC < uniforms.effective_filter_dims.y; wC = wC + 1) { if (wC % uniforms.dilations.y != 0) { continue; } let dyC = (${G}(dyCCorner) + ${G}(wC)) / ${G}(uniforms.strides.y); let wCPerm = uniforms.filter_dims.y - 1 - wC / uniforms.dilations.y; if (dyC < 0.0 || dyC >= ${G}(uniforms.Dy_shape[${ee}]) || fract(dyC) > 0.0 || wCPerm < 0) { continue; } let idyC: u32 = u32(dyC); var inputChannel = groupId * uniforms.input_channels_per_group; ${d?` var x_offset = ${X.indicesToOffset(`${X.type.indices}(batch, idyR, idyC, inputChannel)`)} / ${p}; var w_offset = ${Z.indicesToOffset(`${Z.type.indices}(wRPerm, wCPerm, inputChannel, wOutChannel)`)} / ${T}; `:""} for (var d2: u32 = 0; d2 < uniforms.input_channels_per_group_int; d2 = d2 + ${d?4:p}) { ${ae()} inputChannel = inputChannel + ${d?4:p}; } ${V()} wC = wC + uniforms.strides.y - 1; } wR = wR + uniforms.strides[0] - 1; } let value = dotProd${s?` + bias[d1 / ${_}]`:""}; ${me.setByOffset("global_idx","value")}; `;return` ${B.registerUniforms(K).declareVariables(...oe,me)} ${B.mainStart()} ${B.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")}; ${F}}`};return{name:"ConvTranspose2D",shaderCache:{hint:`${r.cacheKey};${p}${T}${_}${d}${f}`,inputDependencies:g},getRunData:()=>({dispatchGroup:{x:w[0],y:w[1],z:w[2]},outputs:[{dims:t?t(o):o,dataType:e[0].dataType}],programUniforms:C}),getShaderSource:A}}}),Mm,bm,ym,$l,vm,xm,kl,Tm,Em,zv=Be(()=>{Lv(),on(),zs(),Mm=(e,r,t,s,o,n)=>(e-1)*r+t+(s-1)*o+1-n,bm=(e,r,t,s,o)=>{let n=Math.floor(e/2);r==="SAME_UPPER"?(t[s]=n,t[o]=e-n):r==="SAME_LOWER"&&(t[s]=e-n,t[o]=n)},ym=(e,r,t,s,o,n,i,a,l,u)=>{let p=e.length-2,d=u.length===0;l.length{let t=e.kernelShape.slice();if(e.kernelShape.length===0||e.kernelShape.reduce((d,c)=>d*c,1)===0){t.length=0;for(let d=2;dd+c,0)===0){let d=r[0].dims.length-2;l=new Array(d).fill(1)}let u=e.strides.slice();if(u.reduce((d,c)=>d+c,0)===0){let d=r[0].dims.length-2;u=new Array(d).fill(1)}ym(a,t,l,e.autoPad,e.group,o,u,s,i,n);let p=Object.assign({},e);return Object.assign(p,{kernelShape:t,pads:o,outputPadding:i,outputShape:n,dilations:l,strides:u}),p},vm=e=>{let r=fl(e),t=e.format,s=["NOTSET","VALID","SAME_UPPER","SAME_LOWER"][typeof e.autoPad>"u"?0:e.autoPad],o=e.dilations,n=e.group,i=e.kernelShape,a=e.pads,l=e.strides,u=e.wIsConst(),p=e.outputPadding,d=e.outputShape;return{autoPad:s,format:t,dilations:o,group:n,kernelShape:i,outputPadding:p,outputShape:d,pads:a,strides:l,wIsConst:u,...r,cacheKey:`${e.format};${r.activation};`}},xm=(e,r)=>{if(!e||e.length!==2&&e.length!==3)throw new Error("Conv requires 2 or 3 inputs");if(e[0].dims.length!==4&&e[0].dims.length!==3)throw new Error("currently only support 2-dimensional conv");if(e[0].dims.length!==e[1].dims.length)throw new Error("filter does not have same dimension as input");let t=e[0].dims[r.format==="NHWC"?e[0].dims.length-1:1],s=e[1].dims[0];if(t!==s)throw new Error("FILTER_IN_CHANNEL should be equal to DATA_CHANNEL");let o=e[1].dims[1]*r.group;if(e.length===3&&(e[2].dims.length!==1||e[2].dims[0]!==o))throw new Error("invalid bias");let n=e[0].dims.length-2;if(r.dilations.reduce((i,a)=>i+a,0)>0&&r.dilations.length!==n)throw new Error(`dilations should be ${n}D`);if(r.strides.reduce((i,a)=>i+a,0)>0&&r.strides.length!==n)throw new Error(`strides should be ${n}D`);if(r.pads.reduce((i,a)=>i+a,0)>0&&r.pads.length!==n*2)throw new Error(`pads should be ${n*2}D`);if(r.outputPadding.length!==n&&r.outputPadding.length!==0)throw new Error(`output_padding should be ${n}D`);if(r.kernelShape.reduce((i,a)=>i+a,0)>0&&r.kernelShape.length!==0&&r.kernelShape.length!==e[1].dims.length-2)throw new Error("invalid kernel shape");if(r.outputShape.length!==0&&r.outputShape.length!==e[0].dims.length-2)throw new Error("invalid output shape")},kl=(e,r,t,s)=>{let o=e.kernelCustomData.wT??e.compute(Lr(r[1],[2,3,0,1]),{inputs:[1],outputs:[t.wIsConst?-2:-1]})[0];t.wIsConst&&!e.kernelCustomData.wT&&(e.kernelCustomData.wT=o);let n=[r[0],o];r.length===3&&n.push(r[2]),e.compute(wm(n,t,s),{inputs:n})},Tm=(e,r)=>{let t=r.format==="NHWC",s=[e.inputs[0].reshape(t?[e.inputs[0].dims[0],1,e.inputs[0].dims[1],e.inputs[0].dims[2]]:[e.inputs[0].dims[0],e.inputs[0].dims[1],1,e.inputs[0].dims[2]]),e.inputs[1].reshape([e.inputs[1].dims[0],e.inputs[1].dims[1],1,e.inputs[1].dims[2]])];e.inputs.length===3&&s.push(e.inputs[2]);let o=r.kernelShape;(o.length===0||o[0]===0)&&(o=[e.inputs[1].dims[2]]);let n=r.dilations;(n.length===0||n[0]===0)&&(n=[1]);let i=r.strides;(i.length===0||i[0]===0)&&(i=[1]);let a=r.pads;a.length===0&&(a=[0,0]),a=[0,a[0],0,a[1]],i=[1].concat(i),n=[1].concat(n),o=[1].concat(o);let l=r.outputPadding;l=[0].concat(l);let u=$l({...r,pads:a,strides:i,dilations:n,kernelShape:o,outputPadding:l},s);kl(e,s,u,p=>t?[p[0],p[2],p[3]]:[p[0],p[1],p[3]])},Em=(e,r)=>{if(xm(e.inputs,r),e.inputs[0].dims.length===3)Tm(e,r);else{let t=$l(r,e.inputs);kl(e,e.inputs,t)}}}),Pm,Cm,Sm,Bv=Be(()=>{ut(),mt(),Xt(),ft(),Pm=(e,r,t,s)=>{let o=Me.size(r),n=r.length,i=Pe("input",e,n),a=Ye("output",e,n),l=t.dataType===6?t.getInt32Array()[0]:Number(t.getBigInt64Array()[0]),u=Me.normalizeAxis(l,n),p=d=>{let c=` i32(${i.indicesGet("inputIndices","uniforms.axis")}) `,f=et("uniforms.input_shape","uniforms.axis",n),_=s.reverse?c+(s.exclusive?" + 1":""):"0",T=s.reverse?f:c+(s.exclusive?"":" + 1");return` ${d.registerUniform("outputSize","u32").registerUniform("axis","u32").declareVariables(i,a)} ${d.mainStart()} ${d.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.outputSize")} var inputIndices = ${a.offsetToIndices("global_idx")}; var sum = ${a.type.value}(0); let first : i32 = ${_}; let last : i32 = ${T}; for (var i : i32 = first; i < last; i++) { ${i.indicesSet("inputIndices","uniforms.axis","u32(i)")}; sum = sum + ${i.getByIndices("inputIndices")}; } ${a.setByOffset("global_idx","sum")}; }`};return{name:"CumSum",shaderCache:{hint:s.cacheKey,inputDependencies:["rank"]},getRunData:()=>({outputs:[{dims:r,dataType:e}],dispatchGroup:{x:Math.ceil(o/64)},programUniforms:[{type:12,data:o},{type:12,data:u},...st(r,r)]}),getShaderSource:p}},Cm=(e,r)=>{let t=e.inputs[0].dims,s=e.inputs[0].dataType,o=e.inputs[1];e.compute(Pm(s,t,o,r),{inputs:[0]})},Sm=e=>{let r=e.exclusive===1,t=e.reverse===1;return St({exclusive:r,reverse:t})}}),$m,km,Im,Am,Fm,Rv=Be(()=>{ut(),mt(),Xt(),ft(),$m=e=>{if(!e||e.length!==1)throw new Error("DepthToSpace requires 1 input.");if(e[0].dims.length!==4)throw new Error("DepthToSpace requires 4D input.")},km=(e,r,t,s)=>{let o=[];o.push(`fn perm(i: ${s.type.indices}) -> ${t.type.indices} { var a: ${t.type.indices};`);for(let n=0;n{let t,s,o,n,i,a,l=r.format==="NHWC",u=r.blocksize,p=r.mode==="DCR";l?([t,s,o,n]=e.dims,i=p?[t,s,o,u,u,n/u**2]:[t,s,o,n/u**2,u,u],a=p?[0,1,3,2,4,5]:[0,1,4,2,5,3]):([t,s,o,n]=[e.dims[0],e.dims[2],e.dims[3],e.dims[1]],i=p?[t,u,u,n/u**2,s,o]:[t,n/u**2,u,u,s,o],a=p?[0,3,4,1,5,2]:[0,1,4,2,5,3]);let d=e.reshape(i),c=d.dims.length,f=e.dataType,_=Pe("a",f,c),T=Ye("output",f,c),$=w=>` ${w.registerUniform("output_size","u32").declareVariables(_,T)} ${km(a,c,_,T)} ${w.mainStart()} ${w.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let indices = ${T.offsetToIndices("global_idx")}; let aIndices = perm(indices); ${T.setByOffset("global_idx",_.getByIndices("aIndices"))} }`;return{name:"DepthToSpace",shaderCache:{hint:`${e.dims};${r.blocksize};${r.mode}`,inputDependencies:["rank"]},getRunData:w=>{let g=l?[t,s*u,o*u,n/u**2]:[t,n/u**2,s*u,o*u],S=Me.size(g),E=d.dims,y=Me.sortBasedOnPerm(E,a);return{outputs:[{dims:g,dataType:w[0].dataType}],dispatchGroup:{x:Math.ceil(S/64)},programUniforms:[{type:12,data:S},...st(E,y)]}},getShaderSource:$}},Am=(e,r)=>{$m(e.inputs),e.compute(Im(e.inputs[0],r))},Fm=e=>St({blocksize:e.blocksize,mode:e.mode,format:e.format})}),_i,wo,Il,Om,Dm,Lm,zm,Al,Bm,Rm,jm,jv=Be(()=>{ut(),mt(),Xt(),ft(),_i="[a-zA-Z]|\\.\\.\\.",wo="("+_i+")+",Il="^"+wo+"$",Om="("+wo+",)*"+wo,Dm="^"+Om+"$",Lm=class{constructor(e=-1){this.symbolToIndices=new Map,this.inputIndex=e}addSymbol(e,r){let t=this.symbolToIndices.get(e);t===void 0?t=[r]:t.push(r),this.symbolToIndices.set(e,t)}},zm=class{constructor(e,r){var o;this.equation=r,this.hasEllipsis=!1,this.symbolToInfo=new Map,this.lhs=new Array,this.outputDims=[];let[t,s]=r.includes("->")?r.split("->",2):[r,""];if(!t.match(RegExp(Dm)))throw new Error("Invalid LHS term");if(t.split(",").forEach((n,i)=>{let a=e[i].dims.slice();if(!n.match(RegExp(Il)))throw new Error("Invalid LHS term");let l=this.processTerm(n,!0,a,i);this.lhs.push(l)}),s==="")s+=[...this.symbolToInfo.entries()].filter(([n,i])=>i.count===1||n==="...").map(([n])=>n).join("");else if(!s.match(RegExp(wo)))throw new Error("Invalid RHS");(o=s.match(RegExp(_i,"g")))==null||o.forEach(n=>{if(n==="...")this.outputDims=this.outputDims.concat(this.ellipsisDims);else{let i=this.symbolToInfo.get(n);if(i===void 0)throw new Error("Invalid RHS symbol");this.outputDims.push(i.dimValue)}}),this.rhs=this.processTerm(s,!1,this.outputDims)}addSymbol(e,r,t){let s=this.symbolToInfo.get(e);if(s!==void 0){if(s.dimValue!==r&&s.count!==1)throw new Error("Dimension mismatch");s.count++,s.inputIndices.push(t)}else s={count:1,dimValue:r,inputIndices:[t]};this.symbolToInfo.set(e,s)}processTerm(e,r,t,s=-1){let o=t.length,n=!1,i=[],a=0;if(!e.match(RegExp(Il))&&!r&&e!=="")throw new Error("Invalid LHS term");let l=e.match(RegExp(_i,"g")),u=new Lm(s);return l==null||l.forEach((p,d)=>{if(p==="..."){if(n)throw new Error("Only one ellipsis is allowed per input term");n=!0;let c=o-l.length+1;if(c<0)throw new Error("Ellipsis out of bounds");if(i=t.slice(a,a+c),this.hasEllipsis){if(this.ellipsisDims.length!==i.length||this.ellipsisDims.toString()!==i.toString())throw new Error("Ellipsis dimensions mismatch")}else if(r)this.hasEllipsis=!0,this.ellipsisDims=i;else throw new Error("Ellipsis must be specified in the LHS");for(let f=0;fe+"_max",Bm=(e,r,t,s)=>{let o=e.map(u=>u.length).map((u,p)=>Pe(`input${p}`,r,u)),n=Me.size(s),i=Ye("output",r,s.length),a=[...t.symbolToInfo.keys()].filter(u=>!t.rhs.symbolToIndices.has(u)),l=u=>{let p=[],d="var prod = 1.0;",c="var sum = 0.0;",f="sum += prod;",_=[],T=[],$=[],w=[],g=t.symbolToInfo.size===t.rhs.symbolToIndices.size;t.symbolToInfo.forEach((E,y)=>{var M;if(t.rhs.symbolToIndices.has(y)){let v=(M=t.rhs.symbolToIndices.get(y))==null?void 0:M[0];v!==void 0&&t.lhs.forEach((C,A)=>{if(E.inputIndices.includes(A)){let B=C.symbolToIndices.get(y);if(B===void 0)throw new Error("Invalid symbol error");B.forEach(K=>{p.push(`${o[A].indicesSet(`input${A}Indices`,K,i.indicesGet("outputIndices",v))}`)})}})}else t.lhs.forEach((v,C)=>{if(E.inputIndices.includes(C)){let A=v.symbolToIndices.get(y);if(A===void 0)throw new Error("Invalid symbol error");A.forEach(B=>{_.push(`${o[C].indicesSet(`input${C}Indices`,B,`${y}`)}`)}),w.push(`prod *= ${o[C].getByIndices(`input${C}Indices`)};`)}}),T.push(`for(var ${y}: u32 = 0; ${y} < uniforms.${Al(y)}; ${y}++) {`),$.push("}")});let S=g?[...p,`let sum = ${o.map((E,y)=>E.getByIndices(`input${y}Indices`)).join(" * ")};`]:[...p,c,...T,..._,d,...w,f,...$];return` ${u.registerUniforms(a.map(E=>({name:`${Al(E)}`,type:"u32"}))).registerUniform("outputSize","u32").declareVariables(...o,i)} ${u.mainStart()} ${u.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.outputSize")} var outputIndices = ${i.offsetToIndices("global_idx")}; ${o.map((E,y)=>`var input${y}Indices: ${o[y].type.indices};`).join(` `)} ${S.join(` `)}; ${i.setByOffset("global_idx","sum")}; }`};return{name:"Einsum",shaderCache:{hint:t.equation,inputDependencies:e.map(()=>"rank")},getRunData:()=>{let u=a.filter(d=>t.symbolToInfo.has(d)).map(d=>{var c;return{type:12,data:((c=t.symbolToInfo.get(d))==null?void 0:c.dimValue)||0}});u.push({type:12,data:n});let p=e.map((d,c)=>[...st(d)]).reduce((d,c)=>d.concat(c),u);return p.push(...st(s)),{outputs:[{dims:s,dataType:r}],dispatchGroup:{x:Math.ceil(n/64)},programUniforms:p}},getShaderSource:l}},Rm=(e,r)=>{let t=new zm(e.inputs,r.equation),s=t.outputDims,o=e.inputs.map((n,i)=>n.dims);e.compute(Bm(o,e.inputs[0].dataType,t,s))},jm=e=>{let r=e.equation.replace(/\s+/g,"");return St({equation:r})}}),Nm,Fl,Vm,Um,Wm,Nv=Be(()=>{ut(),mt(),ft(),Nm=e=>{if(!e||e.length!==2)throw new Error("Expand requires 2 input.");let r=e[0].dims,t=Array.from(e[1].getBigInt64Array(),Number),s=t.length{let t=e.length-r.length,s=[];for(let o=0;oe.length>r.length?Fl(e,r):Fl(r,e),Um=e=>{let r=e[0].dims,t=Array.from(e[1].getBigInt64Array(),Number),s=Vm(r,t),o=e[0].dataType,n=o===9||Me.size(r)===1,i=o===9||r.length>0&&r[r.length-1]%4===0?4:1,a=n||s.length>0&&s[s.length-1]%4===0?4:1,l=Math.ceil(Me.size(s)/a),u=d=>{let c=Pe("input",o,r.length,i),f=Ye("output",o,s.length,a),_;if(o===9){let T=($,w,g="")=>` let outputIndices${w} = ${f.offsetToIndices(`outputOffset + ${w}u`)}; let offset${w} = ${c.broadcastedIndicesToOffset(`outputIndices${w}`,f)}; let index${w} = offset${w} / 4u; let component${w} = offset${w} % 4u; ${$}[${w}] = ${g}(${c.getByOffset(`index${w}`)}[component${w}]); `;_=` let outputOffset = global_idx * ${a}; var data = vec4(0); ${T("data",0,"u32")} ${T("data",1,"u32")} ${T("data",2,"u32")} ${T("data",3,"u32")} ${f.setByOffset("global_idx","data")} }`}else _=` let outputIndices = ${f.offsetToIndices(`global_idx * ${a}`)}; let inputOffset = ${c.broadcastedIndicesToOffset("outputIndices",f)}; let data = ${f.type.value}(${c.getByOffset(`inputOffset / ${i}`)}); ${f.setByOffset("global_idx","data")} }`;return` ${d.registerUniform("vec_size","u32").declareVariables(c,f)} ${d.mainStart()} ${d.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.vec_size")} ${_}`},p=[{type:12,data:l},...st(r,s)];return{name:"Expand",shaderCache:{hint:`${s.length};${i}${a}`,inputDependencies:["rank"]},getShaderSource:u,getRunData:()=>({outputs:[{dims:s,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(l/64)},programUniforms:p})}},Wm=e=>{Nm(e.inputs),e.compute(Um(e.inputs),{inputs:[0]})}}),Gm,Km,Vv=Be(()=>{ut(),mt(),ft(),_l(),Gm=e=>{let r=e[0].dataType,t=Me.size(e[0].dims),s=Me.size(e[1].dims),o=s%4===0,n=i=>{let a=Pe("x",r,[1],4),l=Pe("bias",r,[1],4),u=Ye("y",r,[1],4),p=[{name:"output_vec_size",type:"u32"},{name:"bias_size",type:"u32"}],d=f=>` let bias${f}_offset: u32 = (global_idx * 4 + ${f}) % uniforms.bias_size; let bias${f} = ${l.getByOffset(`bias${f}_offset / 4`)}[bias${f}_offset % 4];`,c=o?` let bias = ${l.getByOffset("global_idx % (uniforms.bias_size / 4)")};`:`${d(0)}${d(1)}${d(2)}${d(3)} let bias = ${a.type.value}(bias0, bias1, bias2, bias3);`;return`${i.registerUniforms(p).declareVariables(a,l,u)} ${hl(yr(r))} ${i.mainStart(Vn)} ${i.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_vec_size")} let x = ${a.getByOffset("global_idx")}; ${c} let x_in = x + bias; ${u.setByOffset("global_idx",ml("x_in"))} }`};return{name:"FastGeluWithBias",shaderCache:{hint:`${o}`,inputDependencies:["type","type"]},getShaderSource:n,getRunData:i=>({outputs:[{dims:i[0].dims,dataType:i[0].dataType}],programUniforms:[{type:12,data:Math.ceil(t/4)},{type:12,data:s}],dispatchGroup:{x:Math.ceil(t/Vn/4)}})}},Km=e=>{e.inputs.length<2||Me.size(e.inputs[1].dims)===0?Ph(e):e.compute(Gm(e.inputs))}}),Hm,qm,Xm,Qm,Uv=Be(()=>{ut(),mt(),Xt(),ft(),Hm=e=>{if(!e||e.length!==2)throw new Error("Gather requires 2 inputs.")},qm=(e,r)=>{let t=e[0].dims,s=e[1].dims,o=t.length,n=Me.normalizeAxis(r.axis,o),i=t.slice(0);i.splice(n,1,...s);let a=t[n],l=e[0].dataType===9?4:1,u=Math.ceil(Me.size(i)/l),p=[{type:12,data:u},{type:6,data:a},{type:12,data:n},...st(e[0].dims,e[1].dims,i)],d=c=>{let f=Pe("data",e[0].dataType,e[0].dims.length,l),_=Pe("inputIndices",e[1].dataType,e[1].dims.length),T=Ye("output",e[0].dataType,i.length,l),$=g=>{let S=s.length,E=`var indicesIndices${g} = ${_.type.indices}(0);`;for(let y=0;y1?`indicesIndices${g}[${y}]`:`indicesIndices${g}`} = ${i.length>1?`outputIndices${g}[uniforms.axis + ${y}]`:`outputIndices${g}`};`;E+=` var idx${g} = ${_.getByIndices(`indicesIndices${g}`)}; if (idx${g} < 0) { idx${g} = idx${g} + uniforms.axisDimLimit; } var dataIndices${g} : ${f.type.indices}; `;for(let y=0,M=0;y1?`dataIndices${g}[${y}]`:`dataIndices${g}`} = u32(idx${g});`,M+=S):(E+=`${o>1?`dataIndices${g}[${y}]`:`dataIndices${g}`} = ${i.length>1?`outputIndices${g}[${M}]`:`outputIndices${g}`};`,M++);return E},w;if(e[0].dataType===9){let g=(S,E,y="")=>` let outputIndices${E} = ${T.offsetToIndices(`outputOffset + ${E}u`)}; ${$(E)}; let offset${E} = ${f.indicesToOffset(`dataIndices${E}`)}; let index${E} = offset${E} / 4u; let component${E} = offset${E} % 4u; ${S}[${E}] = ${y}(${f.getByOffset(`index${E}`)}[component${E}]); `;w=` let outputOffset = global_idx * ${l}; var value = vec4(0); ${g("value",0,"u32")} ${g("value",1,"u32")} ${g("value",2,"u32")} ${g("value",3,"u32")} ${T.setByOffset("global_idx","value")} `}else w=` let outputIndices = ${T.offsetToIndices("global_idx")}; ${$("")}; let value = ${f.getByIndices("dataIndices")}; ${T.setByOffset("global_idx","value")}; `;return` ${c.registerUniform("outputSize","u32").registerUniform("axisDimLimit","i32").registerUniform("axis","u32").declareVariables(f,_,T)} ${c.mainStart()} ${c.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.outputSize")} ${w} }`};return{name:"Gather",shaderCache:{hint:r.cacheKey,inputDependencies:["rank","rank"]},getRunData:()=>({outputs:[{dims:i,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(u/64)},programUniforms:p}),getShaderSource:d}},Xm=e=>St({axis:e.axis}),Qm=(e,r)=>{let t=e.inputs;Hm(t),e.compute(qm(e.inputs,r))}}),Jm,Ym,Zm,Wv=Be(()=>{ut(),mt(),ft(),Jm=(e,r,t,s,o,n,i,a,l)=>{let u=[{type:12,data:n},{type:12,data:s},{type:12,data:o},{type:12,data:t},{type:12,data:i},{type:12,data:a},{type:12,data:l}],p=[n];u.push(...st(r.dims,p));let d=c=>{let f=Pe("indices_data",r.dataType,r.dims.length),_=Ye("input_slice_offsets_data",12,1,1),T=[f,_],$=[{name:"output_size",type:"u32"},{name:"batch_dims",type:"u32"},{name:"input_dims",type:"u32",length:o.length},{name:"sizes_from_slice_dims_data",type:"u32",length:t.length},{name:"num_slices_per_batch",type:"u32"},{name:"input_batch_stride",type:"u32"},{name:"num_slice_dims",type:"u32"}];return` ${c.registerUniforms($).declareVariables(...T)} ${c.mainStart()} ${c.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let batch_idx = global_idx / uniforms.num_slices_per_batch; let base_offset = batch_idx * uniforms.input_batch_stride; let slice_indices_base_offset = global_idx * uniforms.num_slice_dims; var relative_slice_offset = 0; for (var dim_idx = 0u; dim_idx < uniforms.num_slice_dims; dim_idx ++) { var index = i32(indices_data[dim_idx + slice_indices_base_offset].x); let input_dim_idx = uniforms.batch_dims + dim_idx; if (index < 0) { ${o.length===1?"index += i32(uniforms.input_dims);":"index += i32(uniforms.input_dims[input_dim_idx]);"} } ${t.length===1?"relative_slice_offset += index * i32(uniforms.sizes_from_slice_dims_data);":"relative_slice_offset += index * i32(uniforms.sizes_from_slice_dims_data[dim_idx]);"} } input_slice_offsets_data[global_idx] = base_offset + u32(relative_slice_offset); }`};return e.compute({name:"computeSliceOffsets",shaderCache:{hint:`${o.length}_${t.length}`,inputDependencies:["rank"]},getRunData:()=>({outputs:[{dims:p,dataType:e.inputs[1].dataType}],dispatchGroup:{x:Math.ceil(n/64)},programUniforms:u}),getShaderSource:d},{inputs:[r],outputs:[-1]})[0]},Ym=(e,r)=>{let t=e.inputs,s=t[0].dims,o=t[0].dataType,n=t[1].dims,i=n[n.length-1],a=Me.sizeToDimension(n,n.length-1),l=Me.sizeFromDimension(s,r.batchDims+i),u=Me.sizeToDimension(s,r.batchDims),p=Me.sizeFromDimension(s,r.batchDims),d=a/u,c=new Array(i),f=l;for(let E=0;Es.length)throw new Error("last dimension of indices must not be larger than rank of input tensor");let $=n.slice(0,-1).concat(s.slice(T)),w=Me.size($),g=[{type:12,data:w},{type:12,data:l},...st(t[0].dims,_.dims,$)],S=E=>{let y=Pe("data",t[0].dataType,t[0].dims.length),M=Pe("slice_offsets",12,_.dims.length),v=Ye("output",t[0].dataType,$.length);return` ${E.registerUniform("output_size","u32").registerUniform("slice_size","u32").declareVariables(y,M,v)} ${E.mainStart()} ${E.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let slice_offset = slice_offsets[global_idx / uniforms.slice_size]; output[global_idx] = data[u32(slice_offset) + global_idx % uniforms.slice_size]; }`};e.compute({name:"GatherND",shaderCache:{hint:r.cacheKey,inputDependencies:["rank","rank"]},getRunData:()=>({outputs:[{dims:$,dataType:o}],dispatchGroup:{x:Math.ceil(w/64)},programUniforms:g}),getShaderSource:S},{inputs:[t[0],_]})},Zm=e=>({batchDims:e.batch_dims,cacheKey:""})}),e_,t_,r_,s_,Gv=Be(()=>{ut(),mt(),Xt(),ft(),e_=(e,r)=>{if(e.length<3||e.length>4)throw new Error("GatherBlockQuantized requires 3 or 4 inputs.");let t=Me.normalizeAxis(r.quantizeAxis,e[0].dims.length),s=r.blockSize,o=e[0],n=e[2],i=e.length===4?e[3]:void 0;if(n.dims.length!==o.dims.length||!o.dims.map((a,l)=>l===t?Math.ceil(a/s)===n.dims[l]:a===n.dims[l]).reduce((a,l)=>a&&l,!0))throw new Error("Scales must have the same rank as the input tensor and the dims should match except on gatherAxis.");if(i){if(i.dataType!==o.dataType)throw new Error("Zero point must have the same data type as the input tensor.");if(i.dims.length!==n.dims.length||!i.dims.map((a,l)=>a===n.dims[l]).reduce((a,l)=>a&&l,!0))throw new Error("Zero point must have the same rank as the input tensor and the dims should match except on quantizeAxis.")}},t_=(e,r)=>{let t=e[0].dims,s=e[1].dims,o=t.length,n=Me.normalizeAxis(r.gatherAxis,o),i=Me.normalizeAxis(r.quantizeAxis,o),a=t.slice(0);a.splice(n,1,...s);let l=Me.size(a),u=e[2].dataType,p=e[0].dataType===22,d=[{type:12,data:l},{type:12,data:i},{type:12,data:n},{type:12,data:r.blockSize},...st(...e.map((f,_)=>f.dims),a)],c=f=>{let _=Pe("data",e[0].dataType,e[0].dims.length),T=Pe("inputIndices",e[1].dataType,e[1].dims.length),$=Pe("scales",e[2].dataType,e[2].dims.length),w=e.length>3?Pe("zeroPoint",e[3].dataType,e[3].dims.length):void 0,g=Ye("output",u,a.length),S=[_,T,$];w&&S.push(w);let E=[{name:"output_size",type:"u32"},{name:"quantize_axis",type:"u32"},{name:"gather_axis",type:"u32"},{name:"block_size",type:"u32"}];return` ${f.registerUniforms(E).declareVariables(...S,g)} ${f.mainStart()} let output_indices = ${g.offsetToIndices("global_idx")}; var indices_indices = ${T.type.indices}(0); ${s.length>1?` for (var i: u32 = 0; i < ${s.length}; i++) { let index = ${g.indicesGet("output_indices","uniforms.gather_axis + i")}; ${T.indicesSet("indices_indices","i","index")}; }`:`indices_indices = ${g.indicesGet("output_indices","uniforms.gather_axis")};`}; var data_indices = ${_.type.indices}(0); for (var i: u32 = 0; i < uniforms.gather_axis; i++) { let index = ${g.indicesGet("output_indices","i")}; ${_.indicesSet("data_indices","i","index")}; } var index_from_indices = ${T.getByIndices("indices_indices")}; if (index_from_indices < 0) { index_from_indices += ${t[n]}; } ${_.indicesSet("data_indices","uniforms.gather_axis","u32(index_from_indices)")}; for (var i = uniforms.gather_axis + 1; i < ${a.length}; i++) { let index = ${g.indicesGet("output_indices",`i + ${s.length} - 1`)}; ${_.indicesSet("data_indices","i","index")}; } let data_offset = ${_.indicesToOffset("data_indices")}; let data_index = data_offset % 8; // Convert 4-bit packed data to 8-bit packed data. let packed_4bit_quantized_data = ${_.getByOffset("data_offset / 8")}; let packed_8bit_quantized_data = (packed_4bit_quantized_data >> (4 * (data_index % 2))) & 0x0f0f0f0f; let quantized_data_vec = ${p?"unpack4xI8":"unpack4xU8"}(u32(packed_8bit_quantized_data)); let quantized_data = quantized_data_vec[data_index / 2]; var scale_indices = data_indices; let quantize_axis_index = ${$.indicesGet("data_indices","uniforms.quantize_axis")} / uniforms.block_size; ${$.indicesSet("scale_indices","uniforms.quantize_axis","quantize_axis_index")}; var scale = ${$.getByIndices("scale_indices")}; ${w?` let zero_point_indices = scale_indices; let zero_point_offset = ${w.indicesToOffset("zero_point_indices")}; let zero_point_index = zero_point_offset % 8; let packed_4bit_zero_points = ${w.getByOffset("zero_point_offset / 8")}; let packed_8bit_zero_points = (packed_4bit_zero_points >> (4 * (zero_point_index % 2))) & 0x0f0f0f0f; let zero_point_vec = ${p?"unpack4xI8":"unpack4xU8"}(u32(packed_8bit_zero_points)); let zero_point = zero_point_vec[zero_point_index / 2];`:"var zero_point = 0"}; let dequantized_data = ${yr(u)}(quantized_data - zero_point) * scale; ${g.setByOffset("global_idx","dequantized_data")}; }`};return{name:"GatherBlockQuantized",shaderCache:{hint:`${r.cacheKey};${e.filter((f,_)=>_!==1).map(f=>f.dims.join("_")).join(";")}`,inputDependencies:Array.from({length:e.length},(f,_)=>"rank")},getRunData:()=>({outputs:[{dims:a,dataType:u}],dispatchGroup:{x:Math.ceil(l/64)},programUniforms:d}),getShaderSource:c}},r_=(e,r)=>{let t=e.inputs;e_(t,r),e.compute(t_(e.inputs,r))},s_=e=>St({blockSize:e.blockSize,gatherAxis:e.gatherAxis,quantizeAxis:e.quantizeAxis})}),n_,o_,i_,a_,Kv=Be(()=>{ut(),mt(),Xt(),ft(),n_=e=>{if(!e||e.length!==2)throw new Error("GatherElements requires 2 inputs.");if(e[0].dims.length<1)throw new Error("GatherElements requires that the data input be rank >= 1.");if(e[0].dims.length!==e[1].dims.length)throw new Error(`GatherElements requires that the data input and indices input tensors be of same rank.`)},o_=(e,r)=>{let t=e[0].dims,s=e[0].dataType,o=t.length,n=e[1].dims,i=e[1].dataType,a=Me.normalizeAxis(r.axis,o),l=t[a],u=n.slice(0),p=Me.size(u),d=Pe("input",s,o),c=Pe("indicesInput",i,n.length),f=Ye("output",s,u.length),_=[{type:12,data:p},{type:6,data:l},{type:12,data:a}];return _.push(...st(t,n,u)),{name:"GatherElements",shaderCache:{inputDependencies:["rank","rank"]},getRunData:()=>({outputs:[{dims:u,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(p/64)},programUniforms:_}),getShaderSource:T=>` ${T.registerUniform("outputSize","u32").registerUniform("axisDimLimit","i32").registerUniform("axis","u32").declareVariables(d,c,f)} ${T.mainStart()} ${T.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.outputSize")} let outputIndices = ${f.offsetToIndices("global_idx")}; var idx = ${c.getByOffset("global_idx")}; if (idx < 0) { idx = idx + uniforms.axisDimLimit; } var inputIndices = ${d.type.indices}(outputIndices); ${d.indicesSet("inputIndices","uniforms.axis","u32(idx)")}; let value = ${d.getByIndices("inputIndices")}; ${f.setByOffset("global_idx","value")}; }`}},i_=e=>St({axis:e.axis}),a_=(e,r)=>{let t=e.inputs;n_(t),e.compute(o_(e.inputs,r))}}),l_,u_,d_,c_,Hv=Be(()=>{ut(),mt(),ft(),l_=e=>{if(!e)throw new Error("Input is missing");if(e.length<2||e.length>3)throw new Error("Invaid input number.");if(e.length===3&&e[2].dims.length>2)throw new Error("Invalid input shape of C");if(e[0].dataType!==e[1].dataType||e.length===3&&e[0].dataType!==e[2].dataType)throw new Error("Input types are mismatched")},u_=(e,r)=>{let t=e[0].dims.slice(),s=e[1].dims.slice(),[o,n,i]=bc.getShapeOfGemmResult(t,r.transA,s,r.transB,e.length===3?e[2].dims:void 0),a=[o,n];if(!a)throw new Error("Can't use gemm on the given tensors");let l=16,u=Math.ceil(n/l),p=Math.ceil(o/l),d=!0,c=Me.size(a),f=[{type:12,data:d?u:c},{type:12,data:o},{type:12,data:n},{type:12,data:i},{type:1,data:r.alpha},{type:1,data:r.beta}],_=["type","type"];e.length===3&&(f.push(...st(e[2].dims)),_.push("rank")),f.push(...st(a));let T=w=>{let g="";r.transA&&r.transB?g="value += a[k * uniforms.M + m] * b[n * uniforms.K + k];":r.transA&&!r.transB?g="value += a[k * uniforms.M + m] * b[k * uniforms.N + n];":!r.transA&&r.transB?g="value += a[m * uniforms.K + k] * b[n * uniforms.K + k];":!r.transA&&!r.transB&&(g="value += a[m * uniforms.K + k] * b[k * uniforms.N + n];");let S=r.alpha===1?"":"value *= uniforms.alpha;",E=Pe("a",e[0].dataType,e[0].dims),y=Pe("b",e[1].dataType,e[1].dims),M=E.type.value,v=null,C=[E,y];e.length===3&&(v=Pe("c",e[2].dataType,e[2].dims.length),C.push(v));let A=Ye("output",e[0].dataType,a.length);C.push(A);let B=[{name:"output_size",type:"u32"},{name:"M",type:"u32"},{name:"N",type:"u32"},{name:"K",type:"u32"},{name:"alpha",type:"f32"},{name:"beta",type:"f32"}];return` ${w.registerUniforms(B).declareVariables(...C)} ${w.mainStart()} ${w.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let m = global_idx / uniforms.N; let n = global_idx % uniforms.N; var value = ${M}(0); for (var k: u32 = 0u; k < uniforms.K; k++) { ${g} } ${S} ${v!=null?`let cOffset = ${v.broadcastedIndicesToOffset("vec2(m, n)",A)}; value += ${M}(uniforms.beta) * ${v.getByOffset("cOffset")};`:""} output[global_idx] = value; }`},$=w=>{let g=Pe("a",e[0].dataType,e[0].dims),S=Pe("b",e[1].dataType,e[1].dims),E=null,y=[g,S];e.length===3&&(E=Pe("c",e[2].dataType,e[2].dims.length),y.push(E));let M=Ye("output",e[0].dataType,a.length);y.push(M);let v=[{name:"num_tile_n",type:"u32"},{name:"M",type:"u32"},{name:"N",type:"u32"},{name:"K",type:"u32"},{name:"alpha",type:"f32"},{name:"beta",type:"f32"}],C="",A="";r.transA&&r.transB?(A=` var col = tile_row_start + local_id.x; var row = k_start + local_id.y; if (col < uniforms.M && row < uniforms.K) { tile_a[local_id.y][local_id.x] = a[row * uniforms.M + col]; } else { tile_a[local_id.y][local_id.x] = ${g.type.value}(0); } col = k_start + local_id.x; row = tile_col_start + local_id.y; if (col < uniforms.K && row < uniforms.N) { tile_b[local_id.y][local_id.x] = b[row * uniforms.K + col]; } else { tile_b[local_id.y][local_id.x] = ${S.type.value}(0); } `,C="value += tile_a[k][local_id.y] * tile_b[local_id.x][k];"):r.transA&&!r.transB?(A=` var col = tile_row_start + local_id.x; var row = k_start + local_id.y; if (col < uniforms.M && row < uniforms.K) { tile_a[local_id.y][local_id.x] = a[row * uniforms.M + col]; } else { tile_a[local_id.y][local_id.x] = ${g.type.value}(0); } col = tile_col_start + local_id.x; row = k_start + local_id.y; if (col < uniforms.N && row < uniforms.K) { tile_b[local_id.y][local_id.x] = b[row * uniforms.N + col]; } else { tile_b[local_id.y][local_id.x] = ${S.type.value}(0); } `,C="value += tile_a[k][local_id.y] * tile_b[k][local_id.x];"):!r.transA&&r.transB?(A=` var col = k_start + local_id.x; var row = tile_row_start + local_id.y; if (col < uniforms.K && row < uniforms.M) { tile_a[local_id.y][local_id.x] = a[row * uniforms.K + col]; } else { tile_a[local_id.y][local_id.x] = ${g.type.value}(0); } col = k_start + local_id.x; row = tile_col_start + local_id.y; if (col < uniforms.K && row < uniforms.N) { tile_b[local_id.y][local_id.x] = b[row * uniforms.K + col]; } else { tile_b[local_id.y][local_id.x] = ${S.type.value}(0); } `,C="value += tile_a[local_id.y][k] * tile_b[local_id.x][k];"):!r.transA&&!r.transB&&(A=` var col = k_start + local_id.x; var row = tile_row_start + local_id.y; if (col < uniforms.K && row < uniforms.M) { tile_a[local_id.y][local_id.x] = a[row * uniforms.K + col]; } else { tile_a[local_id.y][local_id.x] = ${g.type.value}(0); } col = tile_col_start + local_id.x; row = k_start + local_id.y; if (col < uniforms.N && row < uniforms.K) { tile_b[local_id.y][local_id.x] = b[row * uniforms.N + col]; } else { tile_b[local_id.y][local_id.x] = ${S.type.value}(0); } `,C="value += tile_a[local_id.y][k] * tile_b[k][local_id.x];");let B=r.alpha===1?"":"value *= uniforms.alpha;";return` ${w.registerUniforms(v).declareVariables(...y)} var tile_a: array, ${l}>; var tile_b: array, ${l}>; ${w.mainStart([l,l,1])} let tile_col_start = (workgroup_index % uniforms.num_tile_n) * ${l}; let tile_row_start = (workgroup_index / uniforms.num_tile_n) * ${l}; let num_tiles = (uniforms.K - 1) / ${l} + 1; var k_start = 0u; var value = ${M.type.value}(0); for (var t: u32 = 0u; t < num_tiles; t++) { ${A} k_start = k_start + ${l}; workgroupBarrier(); for (var k: u32 = 0u; k < ${l}; k++) { ${C} } workgroupBarrier(); } ${B} let m = tile_row_start + local_id.y; let n = tile_col_start + local_id.x; ${E!=null?`let cOffset = ${E.broadcastedIndicesToOffset("vec2(m, n)",M)}; value += ${M.type.value}(uniforms.beta) * ${E.getByOffset("cOffset")};`:""} if (m < uniforms.M && n < uniforms.N) { output[m * uniforms.N + n] = value; } }`};return d?{name:"GemmShared",shaderCache:{hint:`${r.cacheKey}`,inputDependencies:_},getRunData:()=>({outputs:[{dims:a,dataType:e[0].dataType}],dispatchGroup:{x:u*p},programUniforms:f}),getShaderSource:$}:{name:"Gemm",shaderCache:{hint:`${r.cacheKey}`,inputDependencies:_},getRunData:()=>({outputs:[{dims:a,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(c/64)},programUniforms:f}),getShaderSource:T}},d_=e=>{let r=e.transA,t=e.transB,s=e.alpha,o=e.beta;return{transA:r,transB:t,alpha:s,beta:o,cacheKey:`${e.transA};${e.transB};${e.alpha===1}`}},c_=(e,r)=>{l_(e.inputs),e.compute(u_(e.inputs,r))}}),ws,Ps,an,ln,p_,h_,m_,__,f_,g_,w_,M_,b_,y_,qv=Be(()=>{ut(),mt(),Xt(),ft(),[ws,Ps,an,ln]=[0,1,2,3],p_=e=>{if(e[0].dims.length!==4)throw new Error("only 4-D tensor is supported.");if(e[0].dims.length!==e[1].dims.length)throw new Error("input dimensions must be equal to grid dimensions");if(e[0].dims.length-2!==e[1].dims[e[1].dims.length-1])throw new Error(`last dimension of grid must be equal to ${e[0].dims.length-2}`);if(e[0].dims[0]!==e[1].dims[0])throw new Error("grid batch size must match input batch size")},h_=` fn gs_get_cubic_coeffs(x: f32) -> vec4 { let cubic_alpha = -0.75f; let x_abs = abs(x); var coeffs: vec4; coeffs[0] = (((cubic_alpha * (x_abs + 1) - 5 * cubic_alpha) * (x_abs + 1) + 8 * cubic_alpha) * (x_abs + 1) - 4 * cubic_alpha); coeffs[1] = (((cubic_alpha + 2) * x_abs - (cubic_alpha + 3)) * x_abs * x_abs + 1); coeffs[2] = (((cubic_alpha + 2) * (1 - x_abs) - (cubic_alpha + 3)) * (1 - x_abs) * (1 - x_abs) + 1); coeffs[3] = (((cubic_alpha * (2 - x_abs) - 5 * cubic_alpha) * (2 - x_abs) + 8 * cubic_alpha) * (2 - x_abs) - 4 * cubic_alpha); return coeffs; } `,m_=e=>` fn gs_bicubic_interpolate(p: mat4x4<${e}>, x: f32, y: f32) -> ${e} { var v: vec4; var coeffs = gs_get_cubic_coeffs(x); for (var i = 0; i < 4; i++) { v[i] = coeffs[0] * p[i][0] + coeffs[1] * p[i][1] + coeffs[2] * p[i][2] + coeffs[3] * p[i][3]; } coeffs = gs_get_cubic_coeffs(y); let pixel = ${e}(coeffs[0] * v[0] + coeffs[1] * v[1] + coeffs[2] * v[2] + coeffs[3] * v[3]); return pixel; } `,__=e=>` fn gs_denormalize(n: f32, length: i32) -> f32 { ${e.alignCorners===0?` // alignCorners: false => [-1, 1] to [-0.5, length - 0.5] return ((n + 1.0) * f32(length) - 1.0) / 2.0; `:` // alignCorners: true => [-1, 1] to [0, length - 1] return (n + 1.0) / 2.0 * (f32(length - 1)); `} } `,f_=e=>` ${e.paddingMode==="reflection"?` fn gs_reflect(x: i32, x_min: f32, x_max: f32) -> u32 { var dx = 0.0; var fx = f32(x); let range = x_max - x_min; if (fx < x_min) { dx = x_min - fx; let n = u32(dx / range); let r = dx - f32(n) * range; if (n % 2 == 0) { fx = x_min + r; } else { fx = x_max - r; } } else if (fx > x_max) { dx = fx - x_max; let n = u32(dx / range); let r = dx - f32(n) * range; if (n % 2 == 0) { fx = x_max - r; } else { fx = x_min + r; } } return u32(fx); }`:""} `,g_=(e,r,t)=>` fn pixel_at_grid(r: i32, c: i32, H: i32, W: i32, batch: u32, channel: u32, border: vec4) -> ${r} { var pixel = ${r}(0); var indices = vec4(0); indices[${ws}] = batch; indices[${Ps}] = channel;`+(()=>{switch(t.paddingMode){case"zeros":return` if (r >= 0 && r < H && c >=0 && c < W) { indices[${an}] = u32(r); indices[${ln}] = u32(c); } else { return ${r}(0); } `;case"border":return` indices[${an}] = u32(clamp(r, 0, H - 1)); indices[${ln}] = u32(clamp(c, 0, W - 1)); `;case"reflection":return` indices[${an}] = gs_reflect(r, border[1], border[3]); indices[${ln}] = gs_reflect(c, border[0], border[2]); `;default:throw new Error(`padding mode ${t.paddingMode} is not supported`)}})()+` return ${e.getByIndices("indices")}; } `,w_=(e,r,t)=>(()=>{switch(t.mode){case"nearest":return` let result = pixel_at_grid(i32(round(y)), i32(round(x)), H_in, W_in, indices[${ws}], indices[${Ps}], border); `;case"bilinear":return` let x1 = i32(floor(x)); let y1 = i32(floor(y)); let x2 = x1 + 1; let y2 = y1 + 1; let p11 = pixel_at_grid(y1, x1, H_in, W_in, indices[${ws}], indices[${Ps}], border); let p12 = pixel_at_grid(y1, x2, H_in, W_in, indices[${ws}], indices[${Ps}], border); let p21 = pixel_at_grid(y2, x1, H_in, W_in, indices[${ws}], indices[${Ps}], border); let p22 = pixel_at_grid(y2, x2, H_in, W_in, indices[${ws}], indices[${Ps}], border); let dx2 = ${r}(f32(x2) - x); let dx1 = ${r}(x - f32(x1)); let dy2 = ${r}(f32(y2) - y); let dy1 = ${r}(y - f32(y1)); let result = dy2 * (dx2 * p11 + dx1 * p12) + dy1 * (dx2 * p21 + dx1 * p22); `;case"bicubic":return` let x0 = i32(floor(x)) - 1; let y0 = i32(floor(y)) - 1; var p: mat4x4<${r}>; for (var h = 0; h < 4; h++) { for (var w = 0; w < 4; w++) { p[h][w] = pixel_at_grid(h + y0, w + x0, H_in, W_in, indices[${ws}], indices[${Ps}], border); } } let dx = x - f32(x0 + 1); let dy = y - f32(y0 + 1); let result = gs_bicubic_interpolate(p, dx, dy); `;default:throw new Error(`mode ${t.mode} is not supported`)}})()+`${e.setByOffset("global_idx","result")}`,M_=(e,r)=>{let t=Pe("x",e[0].dataType,e[0].dims.length),s=[e[1].dims[0],e[1].dims[1],e[1].dims[2]],o=Pe("grid",e[1].dataType,s.length,2),n=[e[0].dims[0],e[0].dims[1],e[1].dims[1],e[1].dims[2]];r.format==="NHWC"&&(n=[e[0].dims[0],e[1].dims[1],e[1].dims[2],e[0].dims[3]],[ws,Ps,an,ln]=[0,3,1,2]);let i=Ye("output",e[0].dataType,n.length),a=t.type.value,l=Me.size(n),u=[{type:12,data:l},...st(e[0].dims,s,n)],p=d=>` ${d.registerUniform("output_size","u32").declareVariables(t,o,i)} ${h_} ${m_(a)} ${__(r)} ${f_(r)} ${g_(t,a,r)} ${d.mainStart()} ${d.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let H_in = i32(uniforms.x_shape[${an}]); let W_in = i32(uniforms.x_shape[${ln}]); ${r.alignCorners===0?` let x_min = -0.5; let x_max = f32(W_in) - 0.5; let y_min = -0.5; let y_max = f32(H_in) - 0.5; `:` let x_min = 0.0; let x_max = f32(W_in) - 1.0; let y_min = 0.0; let y_max = f32(H_in) - 1.0; `}; let border = vec4(x_min, y_min, x_max, y_max); let indices = ${i.offsetToIndices("global_idx")}; var grid_indices = vec3(indices[${ws}], indices[${an}], indices[${ln}]); let nxy = ${o.getByIndices("grid_indices")}; var x = gs_denormalize(f32(nxy[0]), W_in); var y = gs_denormalize(f32(nxy[1]), H_in); ${w_(i,a,r)} }`;return{name:"GridSample",shaderCache:{hint:`${r.cacheKey}`,inputDependencies:["type","type"]},getRunData:d=>{let c=Me.size(n);return{outputs:[{dims:n,dataType:d[0].dataType}],dispatchGroup:{x:Math.ceil(c/64)},programUniforms:u}},getShaderSource:p}},b_=(e,r)=>{p_(e.inputs),e.compute(M_(e.inputs,r))},y_=e=>St({alignCorners:e.align_corners,mode:e.mode,paddingMode:e.padding_mode,format:e.format})}),Cr,v_,x_,Ol,T_,Mo,E_,P_=Be(()=>{ut(),mt(),Xt(),el(),cl(),ft(),zs(),Cr=(e,r)=>e.length>r&&e[r].dims.length>0?e[r]:void 0,v_=(e,r)=>{let t=e[0],s=Cr(e,1),o=Cr(e,2),n=Cr(e,3),i=Cr(e,4),a=Cr(e,5),l=Cr(e,6),u=Cr(e,7);if(t.dims.length!==3&&t.dims.length!==5)throw new Error("Input query is expected to have 3 or 5 dimensions");let p=t.dims[0],d=t.dims[1],c=t.dims.length===3?t.dims[2]:r.numHeads*t.dims[4],f=d,_=0,T=0,$=Math.floor(c/r.numHeads);if(l&&u&&Me.size(l.dims)&&Me.size(u.dims)){if(l.dims.length!==4)throw new Error('Input "past_key" is expected to have 4 dimensions');if(l.dims[0]!==p||l.dims[1]!==r.numHeads||l.dims[3]!==$)throw new Error('Input "past_key" shape (batch_size, num_heads, past_sequence_length, head_size)');if(u.dims[0]!==p||u.dims[1]!==r.numHeads||u.dims[3]!==$)throw new Error('Input "past_value" shape (batch_size, num_heads, past_sequence_length, head_size)');if(l.dims[2]!==u.dims[2])throw new Error('Input "past_key" and "past_value" shall have same dim 2 (past_sequence_length)');if(u.dims.length!==4)throw new Error('Input "past_value" is expected to have 4 dimensions');_=l.dims[2],T=l.dims[2]}else if(l&&Me.size(l.dims)||u&&Me.size(u.dims))throw new Error('Input "past_key" and "past_value" shall be both present or both absent');let w;if(s&&Me.size(s.dims)>0){if(t.dims.length!==3)throw new Error('Input "query" is expected to have 3 dimensions when key is given');if(s.dims.length<3||s.dims.length>5)throw new Error('Input "key" is expected to have 3, 4, or 5 dimensions');if(t.dims[0]!==s.dims[0])throw new Error('Input "query" and "key" shall have same dim 0 (batch size)');if(s.dims.length===3){if(s.dims[2]!==t.dims[2])throw new Error('Input "query" and "key" shall have same dim 2 (hidden_size)');w=2,f=s.dims[1]}else if(s.dims.length===5){if(s.dims[2]!==r.numHeads||s.dims[3]!==2||s.dims[4]!==$)throw new Error('Expect "key" shape (batch_size, kv_sequence_length, num_heads, 2, head_size) for packed kv');if(o)throw new Error('Expect "value" be none when "key" has packed kv format.');w=5,f=s.dims[1]}else{if(s.dims[1]!==r.numHeads||s.dims[3]!==$)throw new Error('Expect "key" shape (batch_size, num_heads, kv_sequence_length, head_size) for past_key');w=0,f=s.dims[2]}}else{if(t.dims.length!==5)throw new Error('Input "query" is expected to have 5 dimensions when key is empty');if(t.dims[2]!==r.numHeads||t.dims[3]!==3)throw new Error('Expect "query" shape (batch_size, kv_sequence_length, num_heads, 3, head_size) for packed kv');w=3}if(n&&Me.size(n.dims)>0){if(n.dims.length!==1)throw new Error('Input "bias" is expected to have 1 dimension');if(s&&s.dims.length===5&&s.dims[3]===2)throw new Error("bias is not allowed for packed kv.")}let g=_+f,S=0;if(i&&Me.size(i.dims)>0){S=8;let v=i.dims;throw v.length===1?v[0]===p?S=1:v[0]===3*p+2&&(S=3):v.length===2&&v[0]===p&&v[1]===g&&(S=5),S===8?new Error('Input "key_padding_mask" shape shall be (batch_size) or (batch_size, total_sequence_length)'):new Error("Mask not supported")}let E=!1,y=c;if(o&&Me.size(o.dims)>0){if(o.dims.length!==3&&o.dims.length!==4)throw new Error('Input "value" is expected to have 3 or 4 dimensions');if(t.dims[0]!==o.dims[0])throw new Error('Input "query" and "value" shall have same dim 0 (batch_size)');if(o.dims.length===3){if(f!==o.dims[1])throw new Error('Input "key" and "value" shall have the same dim 1 (kv_sequence_length)');y=o.dims[2]}else{if(f!==o.dims[2])throw new Error('Input "key" and "value" shall have the same dim 2 (kv_sequence_length)');y=o.dims[1]*o.dims[3],E=!0}}let M=!1;if(i&&Me.size(i.dims)>0)throw new Error("Key padding mask is not supported");if(a&&Me.size(a.dims)>0){if(a.dims.length!==4)throw new Error('Input "attention_bias" is expected to have 4 dimensions');if(a.dims[0]!==p||a.dims[1]!==r.numHeads||a.dims[2]!==d||a.dims[3]!==g)throw new Error('Expect "attention_bias" shape (batch_size, num_heads, sequence_length, total_sequence_length)')}return{batchSize:p,sequenceLength:d,pastSequenceLength:_,kvSequenceLength:f,totalSequenceLength:g,maxSequenceLength:T,inputHiddenSize:0,hiddenSize:c,vHiddenSize:y,headSize:$,vHeadSize:Math.floor(y/r.numHeads),numHeads:r.numHeads,isUnidirectional:!1,pastPresentShareBuffer:!1,maskFilterValue:r.maskFilterValue,maskType:S,scale:r.scale,broadcastResPosBias:M,passPastInKv:E,qkvFormat:w}},x_=e=>St({...e}),Ol=St({perm:[0,2,1,3]}),T_=(e,r,t,s,o,n,i)=>{let a=[s,o,n],l=Me.size(a),u=[{type:12,data:l},{type:12,data:i},{type:12,data:n}],p=d=>{let c=Ye("qkv_with_bias",r.dataType,a),f=Pe("qkv",r.dataType,a),_=Pe("bias",t.dataType,a),T=[{name:"output_size",type:"u32"},{name:"bias_offset",type:"u32"},{name:"hidden_size",type:"u32"}];return` ${d.registerUniforms(T).declareVariables(f,_,c)} ${d.mainStart()} ${d.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let bias_offset_idx = (global_idx % uniforms.hidden_size) + uniforms.bias_offset; qkv_with_bias[global_idx] = qkv[global_idx] + bias[bias_offset_idx]; }`};return e.compute({name:"MultiHeadAttentionAddBias",shaderCache:{inputDependencies:["type","type"]},getRunData:()=>({outputs:[{dims:a,dataType:r.dataType,gpuDataType:0}],dispatchGroup:{x:Math.ceil(l/64)},programUniforms:u}),getShaderSource:p},{inputs:[r,t],outputs:[-1]})[0]},Mo=(e,r,t,s,o,n,i,a)=>{let l=n;if(i&&Me.size(i.dims)>0){if(s===1)throw new Error("AddBiasReshape is not implemented. Please export your model with packed QKV or KV");return l=T_(e,n,i,r,s,t*o,a),l=l.reshape([r,s,t,o]),t===1||s===1?l:e.compute(Lr(l,Ol.perm),{inputs:[l],outputs:[-1]})[0]}else return n.dims.length===3&&(l=n.reshape([r,s,t,o])),t===1||s===1?l:e.compute(Lr(l,Ol.perm),{inputs:[l],outputs:[-1]})[0]},E_=(e,r)=>{let t=v_(e.inputs,r),s=e.inputs[0],o=Cr(e.inputs,1),n=Cr(e.inputs,2),i=Cr(e.inputs,3),a=Cr(e.inputs,4),l=Cr(e.inputs,5),u=Cr(e.inputs,6),p=Cr(e.inputs,7);if(s.dims.length===5)throw new Error("Packed QKV is not implemented");if((o==null?void 0:o.dims.length)===5)throw new Error("Packed KV is not implemented");let d=o&&n&&o.dims.length===4&&n.dims.length===4,c=Mo(e,t.batchSize,t.numHeads,t.sequenceLength,t.headSize,s,i,0);if(d)return mo(e,c,o,n,a,void 0,u,p,l,t);if(!o||!n)throw new Error("key and value must be provided");let f=Mo(e,t.batchSize,t.numHeads,t.kvSequenceLength,t.headSize,o,i,t.hiddenSize),_=Mo(e,t.batchSize,t.numHeads,t.kvSequenceLength,t.vHeadSize,n,i,2*t.hiddenSize);mo(e,c,f,_,a,void 0,u,p,l,t)}}),C_,S_,$_,k_,Dl,I_,A_,F_=Be(()=>{ut(),mt(),Xt(),ft(),C_=e=>{if(!e||e.length<1)throw new Error("too few inputs")},S_=(e,r)=>{let t=[],s=r.numOutputs;return e[1].dims[0]>0&&(e[1].getBigInt64Array().forEach(o=>t.push(Number(o))),s=t.length),St({numOutputs:s,axis:r.axis,splitSizes:t})},$_=e=>` fn calculateOutputIndex(index: u32) -> u32 { for (var i: u32 = 0u; i < ${e}u; i += 1u ) { if (index < ${et("uniforms.size_in_split_axis","i",e)}) { return i; } } return ${e}u; }`,k_=e=>{let r=e.length,t=[];for(let s=0;s{let t=e[0].dims,s=Me.size(t),o=e[0].dataType,n=Me.normalizeAxis(r.axis,t.length),i=new Array(r.numOutputs),a=Pe("input",o,t.length),l=new Array(r.numOutputs),u=[],p=[],d=0,c=[{type:12,data:s}];for(let _=0;_` ${_.registerUniform("input_size","u32").registerUniform("size_in_split_axis","u32",l.length).declareVariables(a,...i)} ${$_(l.length)} ${k_(i)} ${_.mainStart()} ${_.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.input_size")} var indices = ${a.offsetToIndices("global_idx")}; var index = ${a.indicesGet("indices",n)}; let output_number = calculateOutputIndex(index); if (output_number != 0) { index -= ${et("uniforms.size_in_split_axis","output_number - 1u",l.length)}; ${a.indicesSet("indices",n,"index")}; } writeBufferData(output_number, indices, global_idx); }`;return{name:"Split",shaderCache:{hint:r.cacheKey,inputDependencies:["rank"]},getShaderSource:f,getRunData:()=>({outputs:u,dispatchGroup:{x:Math.ceil(s/64)},programUniforms:c})}},I_=(e,r)=>{C_(e.inputs);let t=e.inputs.length===1?r:S_(e.inputs,r);e.compute(Dl(e.inputs,t),{inputs:[0]})},A_=e=>{let r=e.axis,t=e.splitSizes,s=e.numOutputs<0?t.length:e.numOutputs;if(s!==t.length)throw new Error("numOutputs and splitSizes lengh must be equal");return St({axis:r,numOutputs:s,splitSizes:t})}}),O_,fi,D_,L_=Be(()=>{ut(),mt(),Xt(),ft(),O_=(e,r)=>{let[t,s,o,n]=e,{numHeads:i,rotaryEmbeddingDim:a}=r;if(t.dims.length!==3&&t.dims.length!==4)throw new Error(`Input 'x' is expected to have 3 or 4 dimensions, got ${t.dims.length}`);if(!Me.areEqual(s.dims,[])&&!Me.areEqual(s.dims,[1])&&s.dims.length!==2)throw new Error(`Input 'position_ids' is expected to have 0, 1, or 2 dimensions, got ${s.dims.length}`);if(o.dims.length!==2)throw new Error(`Input 'cos_cache' is expected to have 2 dimensions, got ${o.dims.length}`);if(n.dims.length!==2)throw new Error(`Input 'sin_cache' is expected to have 2 dimensions, got ${n.dims.length}`);if(!Me.areEqual(o.dims,n.dims))throw new Error("Inputs 'cos_cache' and 'sin_cache' are expected to have the same shape");if(a>0&&i===0)throw new Error("num_heads must be provided if rotary_embedding_dim is specified");let l=t.dims[0],u=t.dims[t.dims.length-2],p=o.dims[0],d=Me.sizeFromDimension(t.dims,1)/u,c=a===0?o.dims[1]*2:d/i;if(a>c)throw new Error("rotary_embedding_dim must be less than or equal to head_size");if(s.dims.length===2){if(l!==s.dims[0])throw new Error(`Input 'position_ids' dimension 0 should be of size batch_size, got ${s.dims[0]}`);if(u!==s.dims[1])throw new Error(`Input 'position_ids' dimension 1 should be of size sequence_length, got ${s.dims[1]}`)}if(c/2!==o.dims[1]&&a/2!==o.dims[1])throw new Error(`Input 'cos_cache' dimension 1 should be same as head_size / 2 or rotary_embedding_dim / 2, got ${o.dims[1]}`);if(u>p)throw new Error("Updating cos_cache and sin_cache in RotaryEmbedding is not currently supported")},fi=(e,r)=>{let{interleaved:t,numHeads:s,rotaryEmbeddingDim:o,scale:n}=r,i=e[0].dims[0],a=Me.sizeFromDimension(e[0].dims,1),l=e[0].dims[e[0].dims.length-2],u=a/l,p=e[2].dims[1],d=o===0?p*2:u/s,c=new Array(i,l,u/d,d-p),f=Me.computeStrides(c),_=[{type:1,data:n},{type:12,data:c},{type:12,data:f},...e[0].dims.length===3?new Array({type:12,data:[a,u,d,1]}):[],...e[0].dims.length===4?new Array({type:12,data:[a,d,l*d,1]}):[],...st(e[0].dims,e[1].dims,e[2].dims,e[3].dims,e[0].dims)],T=$=>{let w=Pe("input",e[0].dataType,e[0].dims.length),g=Pe("position_ids",e[1].dataType,e[1].dims.length),S=Pe("cos_cache",e[2].dataType,e[2].dims.length),E=Pe("sin_cache",e[3].dataType,e[3].dims.length),y=Ye("output",e[0].dataType,e[0].dims.length);return $.registerUniforms([{name:"scale",type:"f32"},{name:"global_shape",type:"u32",length:c.length},{name:"global_strides",type:"u32",length:f.length},{name:"input_output_strides",type:"u32",length:f.length}]),` ${$.declareVariables(w,g,S,E,y)} ${$.mainStart(Vn)} let half_rotary_emb_dim = uniforms.${S.name}_shape[1]; let bsnh = global_idx / uniforms.global_strides % uniforms.global_shape; let size = uniforms.global_shape[0] * uniforms.global_strides[0]; ${$.guardAgainstOutOfBoundsWorkgroupSizes("size")} if (bsnh[3] < half_rotary_emb_dim) { let position_ids_idx = ${g.broadcastedIndicesToOffset("bsnh.xy",Ye("",g.type.tensor,2))}; let position_id = u32(${g.getByOffset("position_ids_idx")}) + select(0, bsnh[1], position_ids_idx == 0); let i = dot(bsnh, uniforms.input_output_strides) + select(0, bsnh[3], ${t}); let j = i + select(half_rotary_emb_dim, 1, ${t}); let re = ${w.getByOffset("i")} * ${S.get("position_id","bsnh[3]")} - ${w.getByOffset("j")} * ${E.get("position_id","bsnh[3]")}; ${y.setByOffset("i","re")} let im = ${w.getByOffset("i")} * ${E.get("position_id","bsnh[3]")} + ${w.getByOffset("j")} * ${S.get("position_id","bsnh[3]")}; ${y.setByOffset("j","im")} } else { let k = dot(bsnh, uniforms.input_output_strides) + half_rotary_emb_dim; ${y.setByOffset("k",w.getByOffset("k"))} } }`};return{name:"RotaryEmbedding",shaderCache:{hint:St({interleaved:t}).cacheKey,inputDependencies:["rank","rank","rank","rank"]},getShaderSource:T,getRunData:()=>({outputs:[{dims:e[0].dims,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(Me.size(c)/Vn)},programUniforms:_})}},D_=(e,r)=>{O_(e.inputs,r),e.compute(fi(e.inputs,r))}}),z_,B_,Ll,R_,j_,Xv=Be(()=>{Xt(),ut(),cl(),P_(),F_(),zs(),L_(),ft(),z_=(e,r)=>{if(r.doRotary&&e.length<=7)throw new Error("cos_cache and sin_cache inputs are required if do_rotary is specified");let t=e[0],s=e[1],o=e[2],n=e[3],i=e[4];if(r.doRotary!==0&&e.length<=7)throw new Error("cos_cast and sin_cache are expected if do_rotary attribute is non-zero");if(r.localWindowSize!==-1)throw new Error("Local attention is not supported");if(r.softcap!==0)throw new Error("Softcap is not supported");if(r.rotaryInterleaved!==0)throw new Error("Rotary interleaved is not supported");if(r.smoothSoftmax)throw new Error("Smooth softmax is not supported");if(t.dims.length!==3&&t.dims.length!==5)throw new Error("Input query is expected to have 3 or 5 dimensions");let a=!1,l=t.dims[0],u=t.dims[1],p=t.dims.length===3?a?t.dims[2]/3:t.dims[2]:r.numHeads*t.dims[4],d=u,c=0,f=!s||s.dims.length===0,_=Math.floor(f?p/(r.numHeads+2*r.kvNumHeads):p/r.numHeads);f&&(p=_*r.numHeads);let T=n&&n.dims.length!==0,$=i&&i.dims.length!==0;if(T&&n.dims.length===4&&n.dims[0]===l&&n.dims[1]!==r.kvNumHeads&&n.dims[2]===r.kvNumHeads&&n.dims[3]===_)throw new Error("BSNH pastKey/pastValue is not supported");if(T&&$){if(n.dims.length!==4)throw new Error('Input "past_key" is expected to have 4 dimensions');if(i.dims.length!==4)throw new Error('Input "past_value" is expected to have 4 dimensions');c=n.dims[2]}else if(T||$)throw new Error('Input "past_key" and "past_value" shall be both present or both absent');let w=1;if(s&&s.dims.length>0){if(t.dims.length!==3)throw new Error('Input "query" is expected to have 3 dimensions when key is given');if(s.dims.length<3||s.dims.length>5)throw new Error('Input "key" is expected to have 3, 4, or 5 dimensions');if(t.dims[0]!==s.dims[0])throw new Error('Input "query" and "key" shall have same dim 0 (batch size)');if(s.dims.length===3){if(t.dims[2]%s.dims[2]!==0)throw new Error('Dimension 2 of "query" should be a multiple of "key"');d=s.dims[1]}else if(s.dims.length===5){if(s.dims[2]!==r.numHeads||s.dims[3]!==2||s.dims[4]!==_)throw new Error('Expect "key" shape (batch_size, kv_sequence_length, num_heads, 2, head_size) for packed kv');if(o)throw new Error('Expect "value" be none when "key" has packed kv format.');d=s.dims[1]}else{if(s.dims[1]!==r.numHeads||s.dims[3]!==_)throw new Error('Expect "key" shape (batch_size, num_heads, kv_sequence_length, head_size) for past_key');d=s.dims[2]}}else{if(t.dims.length!==3&&t.dims.length!==5)throw new Error('Input "query" is expected to have 3 or 5 dimensions when key is empty');if(t.dims.length===5&&(t.dims[2]!==r.numHeads||t.dims[3]!==3))throw new Error('Expect "query" shape (batch_size, kv_sequence_length, num_heads, 3, head_size) for packed kv');w=3}let g=0,S=!1,E=r.kvNumHeads?_*r.kvNumHeads:p;if(o&&o.dims.length>0){if(o.dims.length!==3&&o.dims.length!==4)throw new Error('Input "value" is expected to have 3 or 4 dimensions');if(t.dims[0]!==o.dims[0])throw new Error('Input "query" and "value" shall have same dim 0 (batch_size)');if(o.dims.length===3){if(d!==o.dims[1])throw new Error('Input "key" and "value" shall have the same dim 1 (kv_sequence_length)');E=o.dims[2]}else{if(d!==o.dims[2])throw new Error('Input "past_key" and "past_value" shall have the same dim 2 (kv_sequence_length)');E=o.dims[1]*o.dims[3],S=!0}}let y=e.length>4?e[5]:void 0;if(y&&y.dims.length!==1&&y.dims[0]!==l)throw new Error('Input "seqlens" is expected to have 1 dimension and the same dim 0 as batch_size');return{batchSize:l,sequenceLength:u,pastSequenceLength:c,kvSequenceLength:d,totalSequenceLength:-1,maxSequenceLength:-1,inputHiddenSize:0,hiddenSize:p,vHiddenSize:E,headSize:_,vHeadSize:Math.floor(E/r.kvNumHeads),numHeads:r.numHeads,kvNumHeads:r.kvNumHeads,nReps:r.numHeads/r.kvNumHeads,pastPresentShareBuffer:!1,maskType:g,scale:r.scale,broadcastResPosBias:!1,passPastInKv:S,qkvFormat:w}},B_=St({perm:[0,2,1,3]}),Ll=(e,r,t)=>{let s=r,o=t.kvNumHeads;return r.dims.length===3&&t.kvSequenceLength!==0&&(s=r.reshape([t.batchSize,t.kvSequenceLength,o,t.headSize]),s=e.compute(Lr(s,B_.perm),{inputs:[s],outputs:[-1]})[0]),s},R_=(e,r,t,s)=>{let o=7,n=["type","type"],i=[e*r],a=e*r,l=[{type:12,data:a},{type:12,data:r},{type:12,data:e}],u=p=>{let d=Pe("seq_lens",t.dataType,t.dims),c=Pe("total_seq_lens",s.dataType,s.dims),f=Ye("pos_ids",o,i),_=[{name:"output_size",type:"u32"},{name:"sequence_length",type:"u32"},{name:"batch_size",type:"u32"}];return` ${p.registerUniforms(_).declareVariables(d,c,f)} ${p.mainStart()} ${p.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let total_sequence_length = u32(${c.getByOffset("0")}); let is_subsequent_prompt = uniforms.sequence_length > 1 && uniforms.sequence_length != total_sequence_length; let is_first_prompt = !is_subsequent_prompt && uniforms.sequence_length == total_sequence_length; let batch_idx = global_idx / uniforms.sequence_length; let sequence_idx = i32(global_idx % uniforms.sequence_length); var pos_id: i32 = 0; let seqlen = ${d.getByOffset("batch_idx")}; let total_seqlen = seqlen + 1; if (is_first_prompt) { if (sequence_idx < total_seqlen) { pos_id = sequence_idx; } else { pos_id = 1; } ${f.setByOffset("global_idx","pos_id")} } else if (is_subsequent_prompt) { let past_seqlen = total_seqlen - i32(uniforms.sequence_length); if (past_seqlen + sequence_idx < total_seqlen) { pos_id = past_seqlen + sequence_idx; } else { pos_id = 1; } ${f.setByOffset("global_idx","pos_id")} } else if (global_idx < uniforms.batch_size) { ${f.setByOffset("global_idx","seqlen")} }; } `};return{name:"GeneratePositionIds",shaderCache:{hint:`${e};${r}`,inputDependencies:n},getRunData:()=>({outputs:[{dims:i,dataType:o}],dispatchGroup:{x:Math.ceil(a/64)},programUniforms:l}),getShaderSource:u}},j_=(e,r)=>{var E;let t=z_(e.inputs,r);if(e.inputs[0].dims.length===5)throw new Error("Packed QKV is not implemented");if(((E=e.inputs[1])==null?void 0:E.dims.length)===5)throw new Error("Packed KV is not implemented");let s=e.inputs[0],o=e.inputs[1]&&e.inputs[1].dims.length>0?e.inputs[1]:void 0,n=e.inputs[2]&&e.inputs[2].dims.length>0?e.inputs[2]:void 0,i=e.inputs[3]&&e.inputs[3].dims.length!==0?e.inputs[3]:void 0,a=e.inputs[4]&&e.inputs[4].dims.length!==0?e.inputs[4]:void 0,l=e.inputs.length>4?e.inputs[5]:void 0,u=e.inputs.length>5?e.inputs[6]:void 0,p=t.kvNumHeads?t.kvNumHeads:t.numHeads,d=St({axis:2,numOutputs:3,splitSizes:[t.numHeads*t.headSize,p*t.headSize,p*t.headSize]}),[c,f,_]=!o&&!n?e.compute(Dl([s],d),{inputs:[s],outputs:[-1,-1,-1]}):[s,o,n],T,$;if(r.doRotary){let y=e.compute(R_(t.batchSize,t.sequenceLength,l,u),{inputs:[l,u],outputs:[-1]})[0],M=e.inputs[7],v=e.inputs[8],C=St({interleaved:r.rotaryInterleaved!==0,numHeads:t.numHeads,rotaryEmbeddingDim:0,scale:r.scale}),A=[c,y,M,v],B=[-1];T=e.compute(fi(A,C),{inputs:A,outputs:B})[0],A.splice(0,1,f);let K=St({interleaved:r.rotaryInterleaved!==0,numHeads:t.kvNumHeads,rotaryEmbeddingDim:0,scale:r.scale});$=e.compute(fi(A,K),{inputs:A,outputs:B})[0]}let w=Mo(e,t.batchSize,t.numHeads,t.sequenceLength,t.headSize,r.doRotary?T:c,void 0,0),g=Ll(e,r.doRotary?$:f,t),S=Ll(e,_,t);mo(e,w,g,S,void 0,void 0,i,a,void 0,t,l,u)}}),zl,N_,V_,U_,Qv=Be(()=>{ut(),mt(),zs(),ft(),zl=(e,r,t,s,o,n,i,a)=>{let l=Kt(n),u=l===1?"f32":`vec${l}f`,p=l===1?"vec2f":`mat2x${l}f`,d=o*i,c=64;d===1&&(c=256);let f=[o,i,n/l],_=[o,i,2],T=["rank","type","type"],$=[];$.push(...st(f,_));let w=g=>{let S=Pe("x",r.dataType,3,l),E=Pe("scale",t.dataType,t.dims),y=Pe("bias",s.dataType,s.dims),M=Ye("output",1,3,2),v=[S,E,y,M];return` var workgroup_shared : array<${p}, ${c}>; const workgroup_size = ${c}u; ${g.declareVariables(...v)} ${g.mainStart(c)} let batch = workgroup_index / uniforms.x_shape[1]; let channel = workgroup_index % uniforms.x_shape[1]; let hight = uniforms.x_shape[2]; // initialize workgroup memory var sum = ${u}(0); var squared_sum = ${u}(0); for (var h = local_idx; h < hight; h += workgroup_size) { let value = ${u}(${S.get("batch","channel","h")}); sum += value; squared_sum += value * value; } workgroup_shared[local_idx] = ${p}(sum, squared_sum); workgroupBarrier(); for (var currSize = workgroup_size >> 1; currSize > 0; currSize = currSize >> 1) { if (local_idx < currSize) { workgroup_shared[local_idx] = workgroup_shared[local_idx] + workgroup_shared[local_idx + currSize]; } workgroupBarrier(); } if (local_idx == 0) { let sum_final = ${Ls("workgroup_shared[0][0]",l)} / f32(hight * ${l}); let squared_sum_final = ${Ls("workgroup_shared[0][1]",l)} / f32(hight * ${l}); let inv_std_dev = inverseSqrt(squared_sum_final - sum_final * sum_final + f32(${a})); let channel_scale = inv_std_dev * f32(scale[channel]); let channel_shift = f32(bias[channel]) - sum_final * channel_scale; output[workgroup_index] = vec2f(channel_scale, channel_shift); } }`};return e.compute({name:"InstanceNormComputeChannelScaleShift",shaderCache:{hint:`${l};${a};${c}`,inputDependencies:T},getRunData:()=>({outputs:[{dims:_,dataType:1}],dispatchGroup:{x:d},programUniforms:$}),getShaderSource:w},{inputs:[r,t,s],outputs:[-1]})[0]},N_=(e,r,t)=>{let s=r[0].dims,o=s,n=2,i=s[0],a=s[1],l=Me.sizeFromDimension(s,n),u=Kt(l),p=Me.size(o)/u,d=zl(e,r[0],r[1],r[2],i,l,a,t.epsilon),c=[i,a,l/u],f=[i,a],_=["type","none"],T=$=>{let w=Pe("x",r[0].dataType,c.length,u),g=Pe("scale_shift",1,f.length,2),S=Ye("output",r[0].dataType,c.length,u),E=[w,g,S];return` ${$.registerUniform("output_size","u32").declareVariables(...E)} ${$.mainStart()} ${$.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let outputIndices = ${S.offsetToIndices("global_idx")}; let batch = outputIndices[0]; let channel = outputIndices[1]; let scale_shift = ${g.getByIndices("vec2(batch, channel)")}; let value = ${w.getByOffset("global_idx")} * ${S.type.value}(scale_shift.x) + ${S.type.value}(scale_shift.y); ${S.setByOffset("global_idx","value")}; }`};e.compute({name:"InstanceNormalization",shaderCache:{hint:`${u}`,inputDependencies:_},getRunData:()=>({outputs:[{dims:o,dataType:r[0].dataType}],dispatchGroup:{x:Math.ceil(p/64)},programUniforms:[{type:12,data:p},...st(c,f,c)]}),getShaderSource:T},{inputs:[r[0],d]})},V_=(e,r,t)=>{let s=r[0].dims,o=s,n=s[0],i=s[s.length-1],a=Me.sizeFromDimension(s,1)/i,l=Kt(i),u=Me.size(o)/l,p=[{type:12,data:a},{type:12,data:Math.floor(i/l)}],d=["type","type"],c=!1,f=[0,s.length-1];for(let w=0;ws[f[g]])),T=zl(e,_,r[1],r[2],n,a,i,t.epsilon),$=w=>{let g=lr(r[0].dataType),S=l===1?"vec2f":`mat${l}x2f`,E=v=>{let C=v===0?"x":"y",A=l===1?"f32":`vec${l}f`;switch(l){case 1:return`${g}(${A}(scale.${C}))`;case 2:return`vec2<${g}>(${A}(scale[0].${C}, scale[1].${C}))`;case 4:return`vec4<${g}>(${A}(scale[0].${C}, scale[1].${C}, scale[2].${C}, scale[3].${C}))`;default:throw new Error(`Not supported compoents ${l}`)}},y=Pe("input",r[0].dataType,r[0].dims,l),M=Ye("output",r[0].dataType,o,l);return` @group(0) @binding(0) var input : array<${y.type.storage}>; @group(0) @binding(1) var scale_input : array<${S}>; @group(0) @binding(2) var output : array<${M.type.storage}>; struct Uniforms {H: u32, C : u32}; @group(0) @binding(3) var uniforms: Uniforms; ${w.mainStart()} let current_image_number = global_idx / (uniforms.C * uniforms.H); let current_channel_number = global_idx % uniforms.C; let scale_offset = current_image_number * uniforms.C + current_channel_number; let scale = scale_input[scale_offset]; output[global_idx] = fma(input[global_idx], ${E(0)}, ${E(1)}); }`};e.compute({name:"InstanceNormalizationNHWC",shaderCache:{hint:`${l}`,inputDependencies:d},getRunData:()=>({outputs:[{dims:o,dataType:r[0].dataType}],dispatchGroup:{x:Math.ceil(u/64)},programUniforms:p}),getShaderSource:$},{inputs:[r[0],T]})},U_=(e,r)=>{r.format==="NHWC"?V_(e,e.inputs,r):N_(e,e.inputs,r)}}),W_,G_,K_,Jv=Be(()=>{ut(),mt(),ft(),W_=e=>{if(!e||e.length<2)throw new Error("layerNorm requires at least 2 inputs.")},G_=(e,r,t)=>{let s=r.simplified,o=e[0].dims,n=e[1],i=!s&&e[2],a=o,l=Me.normalizeAxis(r.axis,o.length),u=Me.sizeToDimension(o,l),p=Me.sizeFromDimension(o,l),d=Me.size(n.dims),c=i?Me.size(i.dims):0;if(d!==p||i&&c!==p)throw new Error(`Size of X.shape()[axis:] == ${p}. Size of scale and bias (if provided) must match this. Got scale size of ${d} and bias size of ${c}`);let f=[];for(let y=0;y1,g=t>2,S=y=>{let M=lr(e[0].dataType),v=[Pe("x",e[0].dataType,e[0].dims,_),Pe("scale",n.dataType,n.dims,_)];i&&v.push(Pe("bias",i.dataType,i.dims,_)),v.push(Ye("output",e[0].dataType,a,_)),w&&v.push(Ye("mean_data_output",1,f)),g&&v.push(Ye("inv_std_output",1,f));let C=[{name:"norm_count",type:"u32"},{name:"norm_size",type:"f32"},{name:"norm_size_vectorized",type:"u32"},{name:"epsilon",type:"f32"}];return` ${y.registerUniforms(C).declareVariables(...v)} ${y.mainStart()} ${y.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.norm_count")} let offset = global_idx * uniforms.norm_size_vectorized; var mean_vector = ${nl("f32",_)}; var mean_square_vector = ${nl("f32",_)}; for (var h: u32 = 0u; h < uniforms.norm_size_vectorized; h++) { let value = ${Un(M,_,"x[h + offset]")}; mean_vector += value; mean_square_vector += value * value; } let mean = ${Ls("mean_vector",_)} / uniforms.norm_size; let inv_std_dev = inverseSqrt(${Ls("mean_square_vector",_)} / uniforms.norm_size ${s?"":"- mean * mean"} + uniforms.epsilon); for (var j: u32 = 0; j < uniforms.norm_size_vectorized; j++) { let f32input = ${Un(M,_,"x[j + offset]")}; let f32scale = ${Un(M,_,"scale[j]")}; output[j + offset] = ${v[0].type.value}((f32input ${s?"":"- mean"}) * inv_std_dev * f32scale ${i?`+ ${Un(M,_,"bias[j]")}`:""} ); } ${w?"mean_data_output[global_idx] = mean":""}; ${g?"inv_std_output[global_idx] = inv_std_dev":""}; }`},E=[{dims:a,dataType:e[0].dataType}];return w&&E.push({dims:f,dataType:1}),g&&E.push({dims:f,dataType:1}),{name:"LayerNormalization",shaderCache:{hint:`${_};${t};${s}`,inputDependencies:T},getRunData:()=>({outputs:E,dispatchGroup:{x:Math.ceil(u/64)},programUniforms:$}),getShaderSource:S}},K_=(e,r)=>{W_(e.inputs),e.compute(G_(e.inputs,r,e.outputCount))}}),H_,q_,Yv=Be(()=>{mt(),Ml(),xl(),H_=e=>{if(!e||e.length!==2)throw new Error("MatMul requires 2 inputs.");if(e[0].dims[e[0].dims.length-1]!==e[1].dims[e[1].dims.length-2])throw new Error("shared dimension does not match.")},q_=e=>{H_(e.inputs);let r=Nn.calcShape(e.inputs[0].dims,e.inputs[1].dims,!0);if(!r)throw new Error("Can't use matmul on the given tensors");let t=r[r.length-1],s=e.inputs[0].dims[e.inputs[0].dims.length-1];if(t<8&&s<8)e.compute(wl(e.inputs,{activation:""},r));else{let o=r[r.length-2],n=Me.size(e.inputs[0].dims.slice(0,-2)),i=Me.size(e.inputs[1].dims.slice(0,-2));if(n!==1&&o===1&&i===1){let a=e.inputs[0].reshape([1,n,s]),l=e.inputs[1].reshape([1,s,t]),u=[1,n,t],p=[a,l];e.compute(pi(p,{activation:""},r,u),{inputs:p})}else e.compute(pi(e.inputs,{activation:""},r))}}}),X_,Q_,J_,Y_,Z_,Zv=Be(()=>{ut(),mt(),Xt(),ft(),X_=(e,r)=>{if(e.length<3||e.length>4)throw new Error("MatMulNBits requires 3 or 4 inputs");let t=e[0],s=t.dims.length;if(t.dims[s-1]!==r.k)throw new Error("The last dim of input shape does not match the k value");let o=Math.floor((r.k+r.blockSize-1)/r.blockSize),n=r.blockSize/8*r.bits,i=e[1];if(!Me.areEqual(i.dims,[r.n,o,n]))throw new Error("The second inputs must be 3D tensor with shape N X nBlocksPerCol X blobSize");let a=e[2].dims;if(Me.size(a)!==r.n*o)throw new Error("scales input size error.");if(e.length===4){let l=e[3].dims,u=r.bits>4?r.n*o:r.n*Math.floor((o+1)/2);if(Me.size(l)!==u)throw new Error("zeroPoints input size error.")}},Q_=(e,r)=>{let t=e[0].dims,s=t.length,o=t[s-2],n=r.k,i=r.n,a=t.slice(0,s-2),l=Me.size(a),u=e[1].dims[2]/4,p=e[0].dataType,d=Kt(r.k),c=Kt(u),f=Kt(i),_=a.concat([o,i]),T=o>1&&i/f%2===0?2:1,$=Me.size(_)/f/T,w=64,g=[],S=[l,o,n/d],E=Me.convertShape(e[1].dims).slice();E.splice(-1,1,u/c),g.push(...st(S)),g.push(...st(E)),g.push(...st(e[2].dims)),e.length===4&&g.push(...st(Me.convertShape(e[3].dims)));let y=[l,o,i/f];g.push(...st(y));let M=v=>{let C=S.length,A=Pe("a",e[0].dataType,C,d),B=Pe("b",12,E.length,c),K=Pe("scales",e[2].dataType,e[2].dims.length),G=[A,B,K],j=e.length===4?Pe("zero_points",12,e[3].dims.length):void 0;j&&G.push(j);let ee=y.length,H=Ye("output",e[0].dataType,ee,f),Z=lr(e[0].dataType),X=(()=>{switch(d){case 1:return`array<${Z}, 8>`;case 2:return`mat4x2<${Z}>`;case 4:return`mat2x4<${Z}>`;default:throw new Error(`${d}-component is not supported.`)}})(),oe=()=>{let V=` // reuse a data var input_offset = ${A.indicesToOffset(`${A.type.indices}(batch, row, word_offset)`)}; var a_data: ${X}; for (var j: u32 = 0; j < ${8/d}; j++) { a_data[j] = ${A.getByOffset("input_offset")}; input_offset++; } `;for(let F=0;F> 4) & b_mask); b_quantized_values = ${X}(${Array.from({length:4},(W,re)=>`${Z}(b_value_lower[${re}]), ${Z}(b_value_upper[${re}])`).join(", ")}); b_dequantized_values = ${d===1?`${X}(${Array.from({length:8},(W,re)=>`(b_quantized_values[${re}] - ${j?`zero_point${F}`:"zero_point"}) * scale${F}`).join(", ")});`:`(b_quantized_values - ${X}(${Array(8).fill(`${j?`zero_point${F}`:"zero_point"}`).join(",")})) * scale${F};`}; workgroup_shared[local_id.x * ${T} + ${Math.floor(F/f)}]${f>1?`[${F%f}]`:""} += ${Array.from({length:8/d},(W,re)=>`${d===1?`a_data[${re}] * b_dequantized_values[${re}]`:`dot(a_data[${re}], b_dequantized_values[${re}])`}`).join(" + ")}; `;return V},me=()=>{let V=` var col_index = col * ${f}; ${j?` let zero_point_bytes_per_col = (nBlocksPerCol + 1) / 2; var zero_point_byte_count: u32; var zero_point_word_index: u32; var zero_point_byte_offset: u32; let zero_point_nibble_offset: u32 = block & 0x1u; var zero_point_bits_offset: u32; var zero_point_word: u32;`:` // The default zero point is 8 for unsigned 4-bit quantization. let zero_point = ${Z}(8);`} `;for(let F=0;F> 0x1u); zero_point_word_index = zero_point_byte_count >> 0x2u; zero_point_byte_offset = zero_point_byte_count & 0x3u; zero_point_bits_offset = (zero_point_byte_offset << 3) + (zero_point_nibble_offset << 2); zero_point_word = ${j.getByOffset("zero_point_word_index")} >> zero_point_bits_offset; let zero_point${F} = ${Z}((zero_point_word) & 0xFu);`:""} col_index += 1;`;return V},ae=()=>{let V=`col_index = col * ${f};`;for(let F=0;F; var b_value_upper: vec4; var b_quantized_values: ${X}; var b_dequantized_values: ${X};`,V};return` var workgroup_shared: array<${H.type.value}, ${T*w}>; ${v.declareVariables(...G,H)} ${v.mainStart([w,1,1])} let output_indices = ${H.offsetToIndices(`(global_idx / ${w}) * ${T}`)}; let col = output_indices[2]; let row = output_indices[1]; let batch = output_indices[0]; let nBlocksPerCol = uniforms.b_shape[1]; for (var block = local_id.x; block < nBlocksPerCol; block += ${w}) { //process one block var word_offset: u32 = block * ${r.blockSize/d}; ${me()} for (var word: u32 = 0; word < ${u}; word += ${c}) { ${ae()} for (var i: u32 = 0; i < ${c}; i++) { ${oe()} word_offset += ${8/d}; } } } workgroupBarrier(); if (local_id.x < ${T}) { var output_value: ${H.type.value} = ${H.type.value}(0); var workgroup_shared_offset: u32 = local_id.x; for (var b: u32 = 0u; b < ${w}u; b++) { output_value += workgroup_shared[workgroup_shared_offset]; workgroup_shared_offset += ${T}; } ${H.setByIndices(`${H.type.indices}(batch, row, col + local_id.x)`,"output_value")}; } }`};return{name:"MatMulNBits",shaderCache:{hint:`${r.blockSize};${r.bits};${d};${c};${f};${T};${w}`,inputDependencies:Array(e.length).fill("rank")},getRunData:()=>({outputs:[{dims:_,dataType:p}],dispatchGroup:{x:$},programUniforms:g}),getShaderSource:M}},J_=(e,r)=>{let t=e[0].dims,s=t.length,o=t[s-2],n=r.k,i=r.n,a=t.slice(0,s-2),l=Me.size(a),u=e[1].dims[2]/4,p=e[0].dataType,d=Kt(r.k),c=Kt(u),f=a.concat([o,i]),_=128,T=i%8===0?8:i%4===0?4:1,$=_/T,w=$*c*8,g=w/d,S=w/r.blockSize,E=Me.size(f)/T,y=[],M=[l,o,n/d],v=Me.convertShape(e[1].dims).slice();v.splice(-1,1,u/c),y.push(...st(M)),y.push(...st(v)),y.push(...st(e[2].dims)),e.length===4&&y.push(...st(Me.convertShape(e[3].dims)));let C=[l,o,i];y.push(...st(C));let A=B=>{let K=M.length,G=Pe("a",e[0].dataType,K,d),j=Pe("b",12,v.length,c),ee=Pe("scales",e[2].dataType,e[2].dims.length),H=[G,j,ee],Z=e.length===4?Pe("zero_points",12,e[3].dims.length):void 0;Z&&H.push(Z);let X=C.length,oe=Ye("output",e[0].dataType,X),me=lr(e[0].dataType),ae=()=>{switch(d){case 1:return` let a_data0 = vec4<${me}>(sub_a[word_offset], sub_a[word_offset + 1], sub_a[word_offset + 2], sub_a[word_offset + 3]); let a_data1 = vec4<${me}>(sub_a[word_offset + 4], sub_a[word_offset + 5], sub_a[word_offset + 6], sub_a[word_offset + 7]);`;case 2:return` let a_data0 = vec4<${me}>(sub_a[word_offset], sub_a[word_offset + 1]); let a_data1 = vec4<${me}>(sub_a[word_offset + 2], sub_a[word_offset + 3]);`;case 4:return` let a_data0 = sub_a[word_offset]; let a_data1 = sub_a[word_offset + 1];`;default:throw new Error(`${d}-component is not supported.`)}};return` var sub_a: array<${G.type.value}, ${g}>; var inter_results: array, ${T}>; ${B.declareVariables(...H,oe)} ${B.mainStart([$,T,1])} let output_indices = ${oe.offsetToIndices(`workgroup_index * ${T}`)}; let col = output_indices[2]; let row = output_indices[1]; let batch = output_indices[0]; let n_blocks_per_col = uniforms.b_shape[1]; let num_tiles = (n_blocks_per_col - 1) / ${S} + 1; // Loop over shared dimension. for (var tile: u32 = 0; tile < num_tiles; tile += 1) { let a_col_start = tile * ${g}; // load one tile A data into shared memory. for (var a_offset = local_idx; a_offset < ${g}; a_offset += ${_}) { let a_col = a_col_start + a_offset; if (a_col < uniforms.a_shape[2]) { sub_a[a_offset] = ${G.getByIndices(`${G.type.indices}(batch, row, a_col)`)}; } else { sub_a[a_offset] = ${G.type.value}(0); } } workgroupBarrier(); // each thread process one block let b_row = col + local_id.y; let block = tile * ${S} + local_id.x; ${Z?` let zero_point_bytes_per_col = (n_blocks_per_col + 1) / 2; let zero_point_byte_count = b_row * zero_point_bytes_per_col + (block >> 0x1u); let zero_point_word_index = zero_point_byte_count >> 0x2u; let zero_point_byte_offset = zero_point_byte_count & 0x3u; let zero_point_nibble_offset: u32 = block & 0x1u; let zero_point_bits_offset = (zero_point_byte_offset << 3) + (zero_point_nibble_offset << 2); let zero_point_word = ${Z.getByOffset("zero_point_word_index")} >> zero_point_bits_offset; let zero_point = ${me}((zero_point_word) & 0xFu);`:` // The default zero point is 8 for unsigned 4-bit quantization. let zero_point = ${me}(8);`} let scale = ${ee.getByOffset("b_row * n_blocks_per_col + block")}; let b_data = ${j.getByIndices(`${j.type.indices}(b_row, block, 0)`)}; var word_offset = local_id.x * ${r.blockSize/d}; for (var i: u32 = 0; i < ${c}; i++) { ${ae()} let b_value = ${c===1?"b_data":"b_data[i]"}; let b_value_lower = unpack4xU8(b_value & 0x0F0F0F0Fu); let b_value_upper = unpack4xU8((b_value >> 4) & 0x0F0F0F0Fu); let b_quantized_values = mat2x4<${me}>(${Array.from({length:4},(V,F)=>`${me}(b_value_lower[${F}]), ${me}(b_value_upper[${F}])`).join(", ")}); let b_dequantized_values = (b_quantized_values - mat2x4<${me}>(${Array(8).fill("zero_point").join(",")})) * scale; inter_results[local_id.y][local_id.x] += ${Array.from({length:2},(V,F)=>`${`dot(a_data${F}, b_dequantized_values[${F}])`}`).join(" + ")}; word_offset += ${8/d}; } workgroupBarrier(); } if (local_idx < ${T}) { var output_value: ${oe.type.value} = ${oe.type.value}(0); for (var b = 0u; b < ${$}; b++) { output_value += inter_results[local_idx][b]; } if (col + local_idx < uniforms.output_shape[2]) { ${oe.setByIndices(`${oe.type.indices}(batch, row, col + local_idx)`,"output_value")} } } }`};return{name:"BlockwiseMatMulNBits32",shaderCache:{hint:`${r.blockSize};${d};${c};${$};${T}`,inputDependencies:Array(e.length).fill("rank")},getRunData:()=>({outputs:[{dims:f,dataType:p}],dispatchGroup:{x:E},programUniforms:y}),getShaderSource:A}},Y_=(e,r)=>{X_(e.inputs,r),r.blockSize===32&&e.adapterInfo.isVendor("intel")&&e.adapterInfo.isArchitecture("gen-12lp")?e.compute(J_(e.inputs,r)):e.compute(Q_(e.inputs,r))},Z_=e=>St(e)}),ef,tf,rf,sf,nf,of,af,lf,uf,ex=Be(()=>{ut(),mt(),ft(),ef=e=>{if(!e||e.length<1)throw new Error("Too few inputs");if(e[0].dataType!==1&&e[0].dataType!==10)throw new Error("Input type must be float or float16.");if(e.length>=2){let r=e[0].dims.length*2===e[1].dims[0];if(e.length===4&&(r=e[3].dims[0]*2===e[1].dims[0]),!r)throw new Error("The pads should be a 1D tensor of shape [2 * input_rank] or [2 * num_axes].")}},tf=(e,r,t)=>{let s="";for(let o=r-1;o>=0;--o)s+=` k = i32(${e.indicesGet("indices",o)}) - ${et("uniforms.pads",o,t)}; if (k < 0) { break; } if (k >= i32(${et("uniforms.x_shape",o,r)})) { break; } offset += k * i32(${et("uniforms.x_strides",o,r)}); `;return` value = ${e.type.value}(uniforms.constant_value); for (var i = 0; i < 1; i++) { var offset = 0; var k = 0; ${s} value = x[offset]; } `},rf=(e,r,t)=>{let s="";for(let o=r-1;o>=0;--o)s+=` k = i32(${e.indicesGet("indices",o)}) - ${et("uniforms.pads",o,t)}; if (k < 0) { k = -k; } { let _2n_1 = 2 * (i32(${et("uniforms.x_shape",o,r)}) - 1); k = k % _2n_1; if(k >= i32(${et("uniforms.x_shape",o,r)})) { k = _2n_1 - k; } } offset += k * i32(${et("uniforms.x_strides",o,r)}); `;return` var offset = 0; var k = 0; ${s} value = x[offset]; `},sf=(e,r,t)=>{let s="";for(let o=r-1;o>=0;--o)s+=` k = i32(${e.indicesGet("indices",o)}) - ${et("uniforms.pads",o,t)}; if (k < 0) { k = 0; } if (k >= i32(${et("uniforms.x_shape",o,r)})) { k = i32(${et("uniforms.x_shape",o,r)}) - 1; } offset += k * i32(${et("uniforms.x_strides",o,r)}); `;return` var offset = 0; var k = 0; ${s} value = x[offset]; `},nf=(e,r,t)=>{let s="";for(let o=r-1;o>=0;--o)s+=` k = i32(${e.indicesGet("indices",o)}) - ${et("uniforms.pads",o,t)}; if (k < 0) { k += i32(${et("uniforms.x_shape",o,r)}]); } if (k >= i32(${et("uniforms.x_shape",o,r)})) { k -= i32(${et("uniforms.x_shape",o,r)}); } offset += k * i32(${et("uniforms.x_strides",o,r)}); `;return` var offset = 0; var k = 0; ${s} value = x[offset]; `},of=(e,r,t)=>{switch(t.mode){case 0:return tf(e,r,t.pads.length);case 1:return rf(e,r,t.pads.length);case 2:return sf(e,r,t.pads.length);case 3:return nf(e,r,t.pads.length);default:throw new Error("Invalid mode")}},af=(e,r)=>{let t=Me.padShape(e[0].dims.slice(),r.pads),s=e[0].dims,o=Me.size(t),n=[{type:12,data:o},{type:6,data:r.pads}],i=e.length>=3&&e[2].data;r.mode===0&&n.push({type:i?e[2].dataType:1,data:r.value}),n.push(...st(e[0].dims,t));let a=["rank"],l=u=>{let p=Ye("output",e[0].dataType,t.length),d=Pe("x",e[0].dataType,s.length),c=d.type.value,f=of(p,s.length,r),_=[{name:"output_size",type:"u32"},{name:"pads",type:"i32",length:r.pads.length}];return r.mode===0&&_.push({name:"constant_value",type:i?c:"f32"}),` ${u.registerUniforms(_).declareVariables(d,p)} ${u.mainStart()} ${u.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let indices = ${p.offsetToIndices("global_idx")}; var value = ${c}(0); ${f} output[global_idx] = value; }`};return{name:"Pad",shaderCache:{hint:`${r.mode}${i}`,inputDependencies:a},getRunData:()=>({outputs:[{dims:t,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(Me.size(t)/64)},programUniforms:n}),getShaderSource:l}},lf=(e,r)=>{if(e.length>1){let t=e[1].getBigInt64Array(),s=e.length>=3&&e[2].data?e[2].dataType===10?e[2].getUint16Array()[0]:e[2].getFloat32Array()[0]:0,o=e[0].dims.length,n=new Int32Array(2*o).fill(0);if(e.length>=4){let a=e[3].getBigInt64Array();for(let l=0;ln[Number(l)]=Number(a));let i=[];return n.forEach(a=>i.push(a)),{mode:r.mode,value:s,pads:i}}else return r},uf=(e,r)=>{ef(e.inputs);let t=lf(e.inputs,r);e.compute(af(e.inputs,t),{inputs:[0]})}}),bo,Bl,Rl,jl,Nl,df,cf,Vl,Ul,pf,hf,Wl,mf,_f,Gl,ff,gf,wf,Mf,tx=Be(()=>{ts(),ut(),mt(),ft(),bo=e=>{if(Bt.webgpu.validateInputContent&&(!e||e.length!==1))throw new Error("Pool ops requires 1 input.")},Bl=(e,r,t)=>{let s=r.format==="NHWC",o=e.dims.slice();s&&o.splice(1,0,o.pop());let n=Object.hasOwnProperty.call(r,"dilations"),i=r.kernelShape.slice(),a=r.strides.slice(),l=n?r.dilations.slice():[],u=r.pads.slice();ni.adjustPoolAttributes(t,o,i,a,l,u);let p=ni.computePoolOutputShape(t,o,a,l,i,u,r.autoPad),d=Object.assign({},r);n?Object.assign(d,{kernelShape:i,strides:a,pads:u,dilations:l,cacheKey:r.cacheKey}):Object.assign(d,{kernelShape:i,strides:a,pads:u,cacheKey:r.cacheKey});let c=p.slice();return c.push(c.splice(1,1)[0]),[d,s?c:p]},Rl=(e,r)=>{let t=r.format==="NHWC",s=Me.size(e),o=Me.size(r.kernelShape),n=[{type:12,data:s},{type:12,data:o}],i=[{name:"outputSize",type:"u32"},{name:"kernelSize",type:"u32"}];if(r.kernelShape.length<=2){let a=r.kernelShape[r.kernelShape.length-1],l=r.strides[r.strides.length-1],u=r.pads[r.pads.length/2-1],p=r.pads[r.pads.length-1],d=!!(u+p);n.push({type:12,data:a},{type:12,data:l},{type:12,data:u},{type:12,data:p}),i.push({name:"kw",type:"u32"},{name:"sw",type:"u32"},{name:"pwStart",type:"u32"},{name:"pwEnd",type:"u32"});let c=!1;if(r.kernelShape.length===2){let f=r.kernelShape[r.kernelShape.length-2],_=r.strides[r.strides.length-2],T=r.pads[r.pads.length/2-2],$=r.pads[r.pads.length-2];c=!!(T+$),n.push({type:12,data:f},{type:12,data:_},{type:12,data:T},{type:12,data:$}),i.push({name:"kh",type:"u32"},{name:"sh",type:"u32"},{name:"phStart",type:"u32"},{name:"phEnd",type:"u32"})}return[n,i,!0,d,c]}else{if(t)throw new Error("Pooling with kernelShape.length > 2 is not supported for NHWC format.");let a=Me.computeStrides(r.kernelShape);n.push({type:12,data:a},{type:12,data:r.pads},{type:12,data:r.strides}),i.push({name:"kernelStrides",type:"u32",length:a.length},{name:"pads",type:"u32",length:r.pads.length},{name:"strides",type:"u32",length:r.strides.length});let l=r.pads.reduce((u,p)=>u+p);return[n,i,!!l,!1,!1]}},jl=(e,r,t,s,o,n,i,a,l,u,p,d)=>{let c=o.format==="NHWC",f=r.type.value,_=Ye("output",r.type.tensor,s);if(o.kernelShape.length<=2){let T="",$="",w="",g=t-(c?2:1);if(p?T=` for (var i: u32 = 0u; i < uniforms.kw; i++) { xIndices[${g}] = indices[${g}] * uniforms.sw - uniforms.pwStart + i; if (xIndices[${g}] < 0 || xIndices[${g}] >= uniforms.x_shape[${g}]) { pad++; continue; } let x_val = x[${r.indicesToOffset("xIndices")}]; ${n} }`:T=` for (var i: u32 = 0u; i < uniforms.kw; i++) { xIndices[${g}] = indices[${g}] * uniforms.sw - uniforms.pwStart + i; let x_val = x[${r.indicesToOffset("xIndices")}]; ${n} }`,o.kernelShape.length===2){let S=t-(c?3:2);d?$=` for (var j: u32 = 0u; j < uniforms.kh; j++) { xIndices[${S}] = indices[${S}] * uniforms.sh - uniforms.phStart + j; if (xIndices[${S}] < 0 || xIndices[${S}] >= uniforms.x_shape[${S}]) { pad += i32(uniforms.kw); continue; } `:$=` for (var j: u32 = 0u; j < uniforms.kh; j++) { xIndices[${S}] = indices[${S}] * uniforms.sh - uniforms.phStart + j; `,w=` } `}return` ${e.registerUniforms(l).declareVariables(r,_)} ${e.mainStart()} ${e.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.outputSize")} let indices = ${_.offsetToIndices("global_idx")}; var xIndices = ${_.offsetToIndices("global_idx")}; var value = ${f}(${a}); var pad = 0; ${$} ${T} ${w} ${i} output[global_idx] = value; }`}else{if(c)throw new Error("Pooling with kernelShape.length > 2 is not supported for NHWC format.");let T=o.kernelShape.length,$=o.pads.length,w="";return u?w=` if (xIndices[j] >= uniforms.x_shape[j]) { pad++; isPad = true; break; } } if (!isPad) { let x_val = x[${r.indicesToOffset("xIndices")}]; ${n} }`:w=` } let x_val = x[${r.indicesToOffset("xIndices")}]; ${n} `,` ${e.registerUniforms(l).declareVariables(r,_)} ${e.mainStart()} ${e.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.outputSize")} let indices = ${_.offsetToIndices("global_idx")}; var xIndices = ${_.offsetToIndices("global_idx")}; var offsets: array; var value = ${f}(${a}); var pad = 0; var isPad = false; for (var i: u32 = 0u; i < uniforms.kernelSize; i++) { var offset = i; for (var j = 0u; j < ${T-1}u; j++) { offsets[j] = offset / ${et("uniforms.kernelStrides","j",T)}; offset -= offsets[j] * ${et("uniforms.kernelStrides","j",T)}; } offsets[${T-1}] = offset; isPad = false; for (var j = ${t-T}u; j < ${t}u; j++) { xIndices[j] = indices[j] * ${et("uniforms.strides",`j - ${t-T}u`,T)} + offsets[j - ${t-T}u] - ${et("uniforms.pads","j - 2u",$)}; ${w} } ${i} output[global_idx] = value; }`}},Nl=e=>`${e.format};${e.ceilMode};${e.autoPad};${e.kernelShape.length}`,df=e=>`${Nl(e)};${e.countIncludePad}`,cf=e=>`${Nl(e)};${e.storageOrder};${e.dilations}`,Vl=e=>({format:e.format,autoPad:["NOTSET","VALID","SAME_UPPER","SAME_LOWER"][e.auto_pad],ceilMode:e.ceil_mode,kernelShape:e.kernel_shape,strides:e.strides,pads:e.pads}),Ul=(e,r,t,s)=>{let[o,n]=Bl(r,s,t),i=Pe("x",r.dataType,r.dims.length),a=i.type.value,l="value += x_val;",u="";o.countIncludePad?u+=`value /= ${a}(uniforms.kernelSize);`:u+=`value /= ${a}(i32(uniforms.kernelSize) - pad);`;let[p,d,c,f,_]=Rl(n,o);p.push(...st(r.dims,n));let T=["rank"];return{name:e,shaderCache:{hint:`${s.cacheKey};${c};${f};${_}`,inputDependencies:T},getRunData:()=>({outputs:[{dims:n,dataType:r.dataType}],dispatchGroup:{x:Math.ceil(Me.size(n)/64)},programUniforms:p}),getShaderSource:$=>jl($,i,r.dims.length,n.length,o,l,u,0,d,c,f,_)}},pf=e=>{let r=e.count_include_pad!==0,t=Vl(e);if(t.ceilMode!==0)throw new Error("using ceil() in shape computation is not yet supported for AveragePool");let s={countIncludePad:r,...t,cacheKey:""};return{...s,cacheKey:df(s)}},hf=(e,r)=>{bo(e.inputs),e.compute(Ul("AveragePool",e.inputs[0],!1,r))},Wl={autoPad:"",ceilMode:0,countIncludePad:!1,kernelShape:[],strides:[],pads:[],storageOrder:0,dilations:[]},mf=e=>{let r=e.format;return{format:r,...Wl,cacheKey:r}},_f=(e,r)=>{bo(e.inputs),e.compute(Ul("GlobalAveragePool",e.inputs[0],!0,r))},Gl=(e,r,t,s)=>{let[o,n]=Bl(r,s,t),i=` value = max(x_val, value); `,a="",l=Pe("x",r.dataType,r.dims.length),u=["rank"],[p,d,c,f,_]=Rl(n,o);return p.push(...st(r.dims,n)),{name:e,shaderCache:{hint:`${s.cacheKey};${c};${f};${_}`,inputDependencies:u},getRunData:()=>({outputs:[{dims:n,dataType:r.dataType}],dispatchGroup:{x:Math.ceil(Me.size(n)/64)},programUniforms:p}),getShaderSource:T=>jl(T,l,r.dims.length,n.length,o,i,a,r.dataType===10?-65504:-1e5,d,c,f,_)}},ff=(e,r)=>{bo(e.inputs),e.compute(Gl("MaxPool",e.inputs[0],!1,r))},gf=e=>{let r=e.storage_order,t=e.dilations,s=Vl(e);if(r!==0)throw new Error("column major storage order is not yet supported for MaxPool");if(s.ceilMode!==0)throw new Error("using ceil() in shape computation is not yet supported for MaxPool");let o={storageOrder:r,dilations:t,...s,cacheKey:""};return{...o,cacheKey:cf(o)}},wf=e=>{let r=e.format;return{format:r,...Wl,cacheKey:r}},Mf=(e,r)=>{bo(e.inputs),e.compute(Gl("GlobalMaxPool",e.inputs[0],!0,r))}}),bf,yf,vf,xf,rx=Be(()=>{ut(),mt(),Xt(),ft(),bf=(e,r)=>{if(e.length<2||e.length>3)throw new Error("DequantizeLinear requires 2 or 3 inputs.");if(e.length===3&&e[1].dims===e[2].dims)throw new Error("x-scale and x-zero-point must have the same shape.");if(e.length===3&&e[0].dataType!==e[2].dataType)throw new Error("x and x-zero-point must have the same data type.");if(e[0].dataType===6&&e.length>2)throw new Error("In the case of dequantizing int32 there is no zero point.");if(e[1].dims.length!==0&&e[1].dims.length!==1&&e[1].dims.length!==e[0].dims.length)throw new Error("scale input must be a scalar, a 1D tensor, or have the same rank as the input tensor.");if(e.length>2){if(e[0].dataType!==e[2].dataType)throw new Error("x and x-zero-point must have the same data type.");if(e[1].dims.length!==e[2].dims.length)throw new Error("scale and zero-point inputs must have the same rank.");if(!e[1].dims.map((t,s)=>t===e[2].dims[s]).reduce((t,s)=>t&&s,!0))throw new Error("scale and zero-point inputs must have the same shape.")}if(r.blockSize>0){if(e[1].dims.length===0||e[1].dims.length===1&&e[1].dims[0]===1)throw new Error("blockSize must be set only for block quantization.");if(!e[1].dims.map((o,n)=>n===r.axis||o===e[0].dims[n]).reduce((o,n)=>o&&n,!0))throw new Error("For block qunatization, scale input shape to match the input shape except for the axis");if(e[1].dims.length!==e[0].dims.length)throw new Error("For block qunatization the scale input rank must be the same as the x rank.");let t=e[0].dims[r.axis],s=e[1].dims[r.axis];if(r.blockSizeMath.ceil(t/(s-1)-1))throw new Error("blockSize must be with in the range [ceil(dI / Si), ceil(dI / (Si - 1) - 1)].")}},yf=(e,r)=>{let t=Me.normalizeAxis(r.axis,e[0].dims.length),s=e[0].dataType,o=s===3,n=e[0].dims,i=e[1].dataType,a=Me.size(n),l=s===3||s===2,u=l?[Math.ceil(Me.size(e[0].dims)/4)]:e[0].dims,p=e[1].dims,d=e.length>2?e[2]:void 0,c=d?l?[Math.ceil(Me.size(d.dims)/4)]:d.dims:void 0,f=p.length===0||p.length===1&&p[0]===1,_=f===!1&&p.length===1,T=Kt(a),$=f&&(!l||T===4),w=$?T:1,g=$&&!l?T:1,S=Pe("input",l?12:s,u.length,g),E=Pe("scale",i,p.length),y=d?Pe("zero_point",l?12:s,c.length):void 0,M=Ye("output",i,n.length,w),v=[S,E];y&&v.push(y);let C=[u,p];d&&C.push(c);let A=[{type:12,data:a/w},{type:12,data:t},{type:12,data:r.blockSize},...st(...C,n)],B=K=>{let G=[{name:"output_size",type:"u32"},{name:"axis",type:"u32"},{name:"block_size",type:"u32"}];return` ${K.registerUniforms(G).declareVariables(...v,M)} ${K.mainStart()} ${K.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let output_indices = ${M.offsetToIndices("global_idx")}; // Set input x ${l?` let input = ${S.getByOffset("global_idx / 4")}; let x_vec = ${o?"unpack4xI8(input)":"unpack4xU8(input)"}; let x_value = ${w===1?"x_vec[global_idx % 4]":"x_vec"};`:`let x_value = ${S.getByOffset("global_idx")};`}; // Set scale input ${f?`let scale_value= ${E.getByOffset("0")}`:_?` let scale_index = ${M.indicesGet("output_indices","uniforms.axis")}; let scale_value= ${E.getByOffset("scale_index")};`:` var scale_indices: ${E.type.indices} = output_indices; let index = ${E.indicesGet("scale_indices","uniforms.axis")} / uniforms.block_size; ${E.indicesSet("scale_indices","uniforms.axis","index")}; let scale_value= ${E.getByIndices("scale_indices")};`}; // Set zero-point input ${y?f?l?` let zero_point_input = ${y.getByOffset("0")}; let zero_point_vec = ${o?"unpack4xI8(zero_point_input)":"unpack4xU8(zero_point_input)"}; let zero_point_value= zero_point_vec[0]`:`let zero_point_value = ${y.getByOffset("0")}`:_?l?` let zero_point_index = ${M.indicesGet("output_indices","uniforms.axis")}; let zero_point_input = ${y.getByOffset("zero_point_index / 4")}; let zero_point_vec = ${o?"unpack4xI8(zero_point_input)":"unpack4xU8(zero_point_input)"}; let zero_point_value = zero_point_vec[zero_point_index % 4]`:` let zero_point_index = ${M.indicesGet("output_indices","uniforms.axis")}; let zero_point_value = ${y.getByOffset("zero_point_index")};`:l?` let zero_point_offset = ${E.indicesToOffset("scale_indices")}; let zero_point_input = ${y.getByOffset("zero_point_offset / 4")}; let zero_point_vec = ${o?"unpack4xI8(zero_point_input)":"unpack4xU8(zero_point_input)"}; let zero_point_value = zero_point_vec[zero_point_offset % 4];`:`let zero_point_value = ${y.getByIndices("scale_indices")};`:`let zero_point_value = ${l?o?"i32":"u32":S.type.value}(0);`}; // Compute and write output ${M.setByOffset("global_idx",`${M.type.value}(x_value - zero_point_value) * scale_value`)}; }`};return{name:"DequantizeLinear",shaderCache:{hint:r.cacheKey,inputDependencies:y?["rank","rank","rank"]:["rank","rank"]},getShaderSource:B,getRunData:()=>({outputs:[{dims:n,dataType:i}],dispatchGroup:{x:Math.ceil(a/w/64),y:1,z:1},programUniforms:A})}},vf=(e,r)=>{bf(e.inputs,r),e.compute(yf(e.inputs,r))},xf=e=>St({axis:e.axis,blockSize:e.blockSize})}),Tf,Ef,Pf,sx=Be(()=>{ts(),ut(),ft(),Tf=(e,r,t)=>{let s=e===r,o=er&&t>0;if(s||o||n)throw new Error("Range these inputs' contents are invalid.")},Ef=(e,r,t,s)=>{let o=Math.abs(Math.ceil((r-e)/t)),n=[o],i=o,a=[{type:12,data:i},{type:s,data:e},{type:s,data:t},...st(n)],l=u=>{let p=Ye("output",s,n.length),d=p.type.value,c=[{name:"outputSize",type:"u32"},{name:"start",type:d},{name:"delta",type:d}];return` ${u.registerUniforms(c).declareVariables(p)} ${u.mainStart()} ${u.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.outputSize")} output[global_idx] = uniforms.start + ${d}(global_idx) * uniforms.delta; }`};return{name:"Range",shaderCache:{hint:`${s}`},getShaderSource:l,getRunData:()=>({outputs:[{dims:n,dataType:s}],dispatchGroup:{x:Math.ceil(i/64)},programUniforms:a})}},Pf=e=>{let r=0,t=0,s=0;e.inputs[0].dataType===6?(r=e.inputs[0].getInt32Array()[0],t=e.inputs[1].getInt32Array()[0],s=e.inputs[2].getInt32Array()[0]):e.inputs[0].dataType===1&&(r=e.inputs[0].getFloat32Array()[0],t=e.inputs[1].getFloat32Array()[0],s=e.inputs[2].getFloat32Array()[0]),Bt.webgpu.validateInputContent&&Tf(r,t,s),e.compute(Ef(r,t,s,e.inputs[0].dataType),{inputs:[]})}}),Cf,Kl,Hl,Sf,$f,kf,nx=Be(()=>{ut(),mt(),Xt(),ft(),Cf=(e,r,t,s)=>{if(e!=="none"&&s!=="i32"&&s!=="u32"&&s!=="f32")throw new Error(`Input ${s} is not supported with reduction ${e}.`);let o=`{ var oldValue = 0; loop { let newValueF32 =`,n=`; let newValue = bitcast(newValueF32); let res = atomicCompareExchangeWeak(&${r}, oldValue, newValue); if res.exchanged { break; } oldValue = res.old_value; } }`;switch(e){case"none":return`${r}=${t};`;case"add":return s==="i32"||s==="u32"?`atomicAdd(&${r}, bitcast<${s}>(${t}));`:` ${o}bitcast<${s}>(oldValue) + (${t})${n}`;case"max":return s==="i32"||s==="u32"?`atomicMax(&${r}, bitcast<${s}>(${t}));`:` ${o}max(bitcast(oldValue), (${t}))${n}`;case"min":return s==="i32"||s==="u32"?`atomicMin(&${r}, bitcast<${s}>(${t}));`:`${o}min(bitcast<${s}>(oldValue), (${t}))${n}`;case"mul":return`${o}(bitcast<${s}>(oldValue) * (${t}))${n}`;default:throw new Error(`Reduction ${e} is not supported.`)}},Kl=(e,r)=>`${e===1?` let element_count_dim = uniforms.output_strides; let dim_value = uniforms.output_shape;`:` let element_count_dim = uniforms.output_strides[${r?"i - indices_start":"i"}]; let dim_value = uniforms.output_shape[${r?"i - indices_start":"i"} + uniforms.last_index_dimension];`} if (index >= 0) { if (index >= i32(dim_value)) { index = i32(dim_value - 1); } } else { if (index < -i32(dim_value)) { index = 0; } else { index += i32(dim_value); } } data_offset += u32((u32(index) * element_count_dim));`,Hl=(e,r,t)=>`for (var i = 0u; i < uniforms.num_updates_elements; i++) { let value = updates[uniforms.num_updates_elements * ${t?"global_idx":"idx"} + i]; ${Cf(e.reduction,"output[data_offset + i]","value",r)} }`,Sf=(e,r)=>{let t=e[0].dims,s=e[1].dims,o=t,n=1,i=Math.ceil(Me.size(s)/n),a=s[s.length-1],l=Me.sizeFromDimension(t,a),u=Me.sizeFromDimension(s,0)/a,p=[{type:12,data:i},{type:12,data:a},{type:12,data:l},...st(e[1].dims,e[2].dims,o)],d=c=>{let f=Pe("indices",e[1].dataType,e[1].dims.length),_=Pe("updates",e[2].dataType,e[2].dims.length,n),T=r.reduction!=="none"&&r.reduction!==""?Dc("output",e[0].dataType,o.length):Ye("output",e[0].dataType,o.length,n);return` ${c.registerUniform("output_size","u32").registerUniform("last_index_dimension","u32").registerUniform("num_updates_elements","u32").declareVariables(f,_,T)} ${c.mainStart()} ${c.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} var hasDuplicates = false; if (${r.reduction==="none"}) { for (var i = 0; i < ${u}; i = i + 1) { for (var j = i + 1; j < ${u}; j = j + 1) { var index_i = i32(indices[i].x); var index_j = i32(indices[j].x); if (index_i == index_j) { hasDuplicates = true; break; } } if (hasDuplicates) { break; } } } if (${r.reduction==="none"} && hasDuplicates) { if (global_idx != 0u) { return; } // Process each index-update pair individually when duplicates exist for (var idx = 0u; idx < ${u}u; idx++) { var data_offset = 0u; for (var i = 0u; i < uniforms.last_index_dimension; i++) { var index = i32(indices[idx * uniforms.last_index_dimension + i].x); ${Kl(t.length,!1)} } ${Hl(r,T.type.value,!1)} } return; } var data_offset = 0u; var indices_start = uniforms.last_index_dimension * global_idx; var indices_end = indices_start + uniforms.last_index_dimension; for (var i = indices_start; i < indices_end; i++) { var index = i32(indices[i].x); ${Kl(t.length,!0)} } ${Hl(r,T.type.value,!0)} }`};return{name:"ScatterND",shaderCache:{hint:`${r.cacheKey}_${r.reduction}`,inputDependencies:["rank","rank"]},getRunData:()=>({outputs:[{dims:o,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(i/64)},programUniforms:p}),getShaderSource:d}},$f=e=>St({reduction:e.reduction}),kf=(e,r)=>{e.compute(Sf(e.inputs,r),{inputs:[e.inputs[1],e.inputs[2]],outputs:[]})}}),If,Af,Ff,ql,Of,Df,Lf,zf,Bf,Rf,jf,Nf,Xl,Vf,Uf,Wf,Gf,Kf,Hf,qf,ox=Be(()=>{ut(),mt(),Xt(),ft(),If=(e,r)=>{if(e.every(t=>t>0||(()=>{throw new Error("Resize requires scales input values to be positive")})),e.length>0){if(r.mode==="linear"){if(!(e.length===2||e.length===3||e.length===4&&e[0]===1&&e[1]===1||e.length===4&&e[0]===1&&e[3]===1||e.length===5&&e[0]===1&&e[1]===1))throw new Error(`For linear mode, Resize requires scales to be 2D, 3D, 4D with either two outermost or one innermost and one outermost scale values equal to 1, or 5D with two outermost scale values equal to 1`)}else if(r.mode==="cubic"&&!(e.length===2||e.length===4&&e[0]===1&&e[1]===1||e.length===4&&e[0]===1&&e[3]===1))throw new Error("Resize requires scales input size to be 2 or 4 for cubic mode")}},Af=(e,r,t)=>{r.every(o=>o>=0&&o{throw new Error("Resize requires axes input values to be positive and less than rank")}));let s=new Array(t).fill(1);return r.forEach((o,n)=>s[o]=e[n]),s},Ff=(e,r,t,s,o,n)=>{let[i,a,l]=t>10?[1,2,3]:[-1,e.length>1?1:-1,-1],u=e[0].dims.length;if(i>0&&e.length>i&&e[i].dims.length>0)e[i].getFloat32Array().forEach(p=>n.push(p));else if(r.coordinateTransformMode==="tf_crop_and_resize")throw new Error("Resize requires RoI input to be specified when coordinateTransformMode is tfCropAndResize");if(a>0&&e.length>a&&e[a].dims.length===1&&e[a].dims[0]>0){if(e[a].getFloat32Array().forEach(p=>s.push(p)),s.length!==0&&s.length!==u&&t>=18&&s.length!==r.axes.length)throw new Error("Resize requires scales input size to be same as input rank or axes size for opset 18 and up");If(s,r),r.axes.length>0&&Af(s,r.axes,u).forEach((p,d)=>s[d]=p)}if(l>0&&e.length>l&&e[l].dims.length===1&&e[l].dims[0]>0&&(e[l].getBigInt64Array().forEach(p=>o.push(Number(p))),o.length!==0&&o.length!==u&&t>=18&&o.length!==r.axes.length))throw new Error("Resize requires sizes input size to be same as input rank or axes size for opset 18 and up");if(r.axes.length>0){if(s.length!==0&&s.length!==r.axes.length)throw new Error('Resize requires "scales" input size to be of axes rank when axes attributes is specified');if(o.length!==0&&o.length!==r.axes.length)throw new Error('Resize requires "sizes" input size to be of rank axes rank when axes attributes is specified')}if(typeof s<"u"&&typeof o<"u"&&s.length>0&&o.length>u)throw new Error("Resize requires only of scales or sizes to be specified")},ql=(e,r,t,s)=>` // The whole part and the fractional part are calculated separately due to inaccuracy of floating // point division. As an example, f32(21) / f32(7) may evaluate to 2.99... instead of 3, causing an // offset-by-one error later in floor(). let big = (${e}) * (${r}); let whole = ${s}(big / (${t})); let fract = ${s}(big % (${t})) / ${s}(${t}); return whole + fract; `,Of=(e,r)=>`fn getOriginalCoordinateFromResizedCoordinate(xResized: u32, xScale: f32, lengthResized: u32, lengthOriginal: u32, roiStart: f32, roiEnd: f32) -> ${r} { `+(()=>{switch(e){case"asymmetric":return` if (xScale < 1.0 || floor(xScale) != xScale) { return ${r}(xResized) / ${r}(xScale); } else { ${ql("xResized","lengthOriginal","lengthResized",r)} } `;case"pytorch_half_pixel":return`if (lengthResized > 1) { return (${r}(xResized) + 0.5) / ${r}(xScale) - 0.5; } else { return 0.0; }`;case"tf_half_pixel_for_nn":return`return (${r}(xResized) + 0.5) / ${r}(xScale);`;case"align_corners":return`if (lengthResized == 1) { return 0.0; } else { ${ql("xResized","lengthOriginal - 1","lengthResized - 1",r)} }`;case"tf_crop_and_resize":return`if (lengthResized > 1) { return ${r}(roiStart) * ${r}(lengthOriginal - 1) + (${r}(xResized) * ${r}(roiEnd - roiStart) * ${r}(lengthOriginal - 1)) / ${r}(lengthResized - 1); } else { return 0.5 * ${r}(roiStart + roiEnd) * ${r}(lengthOriginal - 1); }`;case"half_pixel_symmetric":return`const outputWidth = ${r}xScale * ${r}(lengthResized); const adjustment = ${r}(lengthResized) / outputWidth; const center = ${r}(lengthOriginal) / 2; const offset = center * (1 - adjustment); return offset + ((${r}(xResized) + 0.5) / ${r}(xScale)) - 0.5;`;case"half_pixel":return`return ((${r}(xResized) + 0.5) / ${r}(xScale)) - 0.5;`;default:throw new Error(`Coordinate transform mode ${e} is not supported`)}})()+"}",Df=(e,r,t)=>`fn getNearestPixelFromOriginal(xOriginal: ${t}, isDownSample: bool) -> ${t} {`+(()=>{switch(e){case"round_prefer_ceil":return"if (fract(xOriginal) == 0.5) { return ceil(xOriginal); } else { return round(xOriginal); }";case"floor":return"return floor(xOriginal);";case"ceil":return"return ceil(xOriginal);";case"round_prefer_floor":return"if (fract(xOriginal) == 0.5) { return floor(xOriginal); } else { return round(xOriginal); }";case"simple":default:if(r<11)return"if (isDownSample) { return ceil(xOriginal); } else { return xOriginal; }";throw new Error(`Nearest mode ${e} is not supported`)}})()+"}",Lf=(e,r,t)=>{let s=new Array(t).fill(0).concat(new Array(t).fill(1)),o=e.length===0?s:e.slice();return r.length>0?(r.forEach((n,i)=>{s[n]=o[i],s[i+t]=o[r.length+i]}),s):o},zf=(e,r,t,s)=>{let o=[];if(t.length>0)if(s.length>0){if(e.forEach(n=>o.push(n)),Math.max(...s)>e.length)throw new Error("axes is out of bound");s.forEach((n,i)=>o[n]=t[i])}else t.forEach(n=>o.push(n));else{if(r.length===0)throw new Error("Resize requires either scales or sizes.");o=e.map((n,i)=>Math.round(n*r[i]))}return o},Bf=(e,r,t)=>{let s=(()=>{switch(t.keepAspectRatioPolicy){case"not_larger":return t.axes.length>0?Math.min(...t.axes.map(n=>r[n]),Number.MAX_VALUE):Math.min(...r,Number.MAX_VALUE);case"not_smaller":return t.axes.length>0?Math.max(...t.axes.map(n=>r[n]),Number.MIN_VALUE):Math.max(...r,Number.MIN_VALUE);default:throw new Error(`Keep aspect ratio policy ${t.keepAspectRatioPolicy} is not supported`)}})();r.fill(1,0,r.length);let o=e.slice();return t.axes.length>0?(t.axes.forEach(n=>r[n]=s),t.axes.forEach(n=>o[n]=Math.round(e[n]*r[n]))):(r.fill(s,0,r.length),o.forEach((n,i)=>o[i]=Math.round(n*r[i]))),o},Rf=(e,r,t,s,o)=>` fn calculateOriginalIndicesFromOutputIndices(output_indices: ${e.type.indices}) -> array<${e.type.value}, ${t.length}> { var original_indices: array<${e.type.value}, ${t.length}>; for (var i:u32 = 0; i < ${t.length}; i++) { var output_index = ${e.indicesGet("output_indices","i")}; var scale = ${et("uniforms.scales","i",s)}; var roi_low = ${et("uniforms.roi","i",o)}; var roi_hi = ${et("uniforms.roi",`i + ${r.length}`,o)}; if (scale == 1.0) { original_indices[i] = ${e.type.value}(output_index); } else { var input_shape_i = ${et("uniforms.input_shape","i",r.length)}; var output_shape_i = ${et("uniforms.output_shape","i",t.length)}; original_indices[i] = getOriginalCoordinateFromResizedCoordinate(output_index, scale, output_shape_i, input_shape_i, roi_low, roi_hi); } } return original_indices; }`,jf=(e,r,t,s,o,n,i)=>` fn calculateInputIndicesFromOutputIndices(output_indices: ${r.type.indices}) -> ${e.type.indices} { var input_indices: ${e.type.indices}; for (var i:u32 = 0; i < ${s.length}; i++) { var output_index = ${r.indicesGet("output_indices","i")}; var input_index: u32; var scale = ${et("uniforms.scales","i",o)}; if (scale == 1.0) { input_index = output_index; } else { var roi_low = ${et("uniforms.roi","i",n)}; var roi_hi = ${et("uniforms.roi",`i + ${t.length}`,n)}; var input_shape_i = ${et("uniforms.input_shape","i",t.length)}; var output_shape_i = ${et("uniforms.output_shape","i",s.length)}; var original_idx = getOriginalCoordinateFromResizedCoordinate(output_index, scale, output_shape_i, input_shape_i, roi_low, roi_hi); if (!${i} || (original_idx >= 0 && original_idx < ${r.type.value}(input_shape_i))) { if (original_idx < 0) { input_index = 0; } else if (original_idx > ${r.type.value}(input_shape_i - 1)) { input_index = input_shape_i - 1; } else { input_index = u32(getNearestPixelFromOriginal(original_idx, scale < 1)); } } else { input_index = u32(original_idx); } } ${e.indicesSet("input_indices","i","input_index")} } return input_indices; }`,Nf=(e,r)=>` fn checkInputIndices(input_indices: ${e.type.indices}) -> bool { for (var i:u32 = 0; i < ${r.length}; i++) { var input_index = ${e.indicesGet("input_indices","i")}; if (input_index < 0 || input_index >= ${et("uniforms.input_shape","i",r.length)}) { return false; } } return true; }`,Xl=(e,r,t,s)=>e.rank>s?` ${e.indicesSet("input_indices",r,"channel")}; ${e.indicesSet("input_indices",t,"batch")}; `:"",Vf=(e,r,t,s,o)=>{let[n,i,a,l]=t.length===2?[-1,0,1,-1]:[0,2,3,1],u=e.type.value;return` fn getInputValue(batch: u32, channel: u32, row: u32, col: u32) -> ${u} { var input_indices: ${e.type.indices}; ${e.indicesSet("input_indices",i,`max(0, min(row, ${t[i]} - 1))`)}; ${e.indicesSet("input_indices",a,`max(0, min(col, ${t[a]} - 1))`)}; ${Xl(e,l,n,2)} return ${e.getByIndices("input_indices")}; } fn bilinearInterpolation(output_indices: ${r.type.indices}) -> ${u} { var originalIndices = calculateOriginalIndicesFromOutputIndices(output_indices); var row:${u} = originalIndices[${i}]; var col:${u} = originalIndices[${a}]; ${s?`if (row < 0 || row > (${t[i]} - 1) || col < 0 || col > (${t[a]} - 1)) { return ${o}; }`:""}; row = max(0, min(row, ${t[i]} - 1)); col = max(0, min(col, ${t[a]} - 1)); var row1: u32 = u32(row); var col1: u32 = u32(col); var row2: u32 = u32(row + 1); var col2: u32 = u32(col + 1); var channel: u32 = ${t.length>2?`u32(originalIndices[${l}])`:"0"}; var batch: u32 = ${t.length>2?`u32(originalIndices[${n}])`:"0"}; var x11: ${u} = getInputValue(batch, channel, row1, col1); var x12: ${u} = getInputValue(batch, channel, row1, col2); var x21: ${u} = getInputValue(batch, channel, row2, col1); var x22: ${u} = getInputValue(batch, channel, row2, col2); var dx1: ${u} = abs(row - ${u}(row1)); var dx2: ${u} = abs(${u}(row2) - row); var dy1: ${u} = abs(col - ${u}(col1)); var dy2: ${u} = abs(${u}(col2) - col); if (row1 == row2) { dx1 = 0.5; dx2 = 0.5; } if (col1 == col2) { dy1 = 0.5; dy2 = 0.5; } return (x11 * dx2 * dy2 + x12 * dx2 * dy1 + x21 * dx1 * dy2 + x22 * dx1 * dy1); }`},Uf=(e,r,t,s,o,n,i,a,l,u)=>{let p=t.length===2,[d,c]=p?[0,1]:[2,3],f=e.type.value,_=T=>{let $=T===d?"row":"col";return` fn ${$}CubicInterpolation(input_indices: ${e.type.indices}, output_indices: ${r.type.indices}) -> ${f} { var output_index = ${r.indicesGet("output_indices",T)}; var originalIdx: ${f} = getOriginalCoordinateFromResizedCoordinate(output_index, ${o[T]}, ${s[T]}, ${t[T]}, ${n[T]}, ${n[T]} + ${t.length}); var fractOriginalIdx: ${f} = originalIdx - floor(originalIdx); var coefs = getCubicInterpolationCoefs(fractOriginalIdx); if (${a} && (originalIdx < 0 || originalIdx > (${t[T]} - 1))) { return ${l}; } var data: array<${f}, 4> = array<${f}, 4>(0.0, 0.0, 0.0, 0.0); for (var i: i32 = -1; i < 3; i++) { var ${$}: ${f} = originalIdx + ${f}(i); if (${$} < 0 || ${$} >= ${t[T]}) { ${u?`coefs[i + 1] = 0.0; continue;`:a?`return ${l};`:`${$} = max(0, min(${$}, ${t[T]} - 1));`}; } var input_indices_copy: ${e.type.indices} = input_indices; ${e.indicesSet("input_indices_copy",T,`u32(${$})`)}; data[i + 1] = ${T===d?e.getByIndices("input_indices_copy"):"rowCubicInterpolation(input_indices_copy, output_indices)"}; } return cubicInterpolation1D(data, coefs); }`};return` ${_(d)}; ${_(c)}; fn getCubicInterpolationCoefs(s: ${f}) -> array<${f}, 4> { var absS = abs(s); var coeffs: array<${f}, 4> = array<${f}, 4>(0.0, 0.0, 0.0, 0.0); var oneMinusAbsS: ${f} = 1.0 - absS; var twoMinusAbsS: ${f} = 2.0 - absS; var onePlusAbsS: ${f} = 1.0 + absS; coeffs[0] = ((${i} * onePlusAbsS - 5 * ${i}) * onePlusAbsS + 8 * ${i}) * onePlusAbsS - 4 * ${i}; coeffs[1] = ((${i} + 2) * absS - (${i} + 3)) * absS * absS + 1; coeffs[2] = ((${i} + 2) * oneMinusAbsS - (${i} + 3)) * oneMinusAbsS * oneMinusAbsS + 1; coeffs[3] = ((${i} * twoMinusAbsS - 5 * ${i}) * twoMinusAbsS + 8 * ${i}) * twoMinusAbsS - 4 * ${i}; return coeffs; } fn cubicInterpolation1D(x: array<${f}, 4>, coefs: array<${f}, 4>) -> ${f} { var coefsSum: ${f} = coefs[0] + coefs[1] + coefs[2] + coefs[3]; return (x[0] * coefs[0] + x[1] * coefs[1]+ x[2] * coefs[2]+ x[3] * coefs[3]) / coefsSum; } fn bicubicInterpolation(output_indices: ${r.type.indices}) -> ${f} { var input_indices: ${e.type.indices} = output_indices; return colCubicInterpolation(input_indices, output_indices); } `},Wf=(e,r,t,s,o)=>{let[n,i,a,l,u]=t.length===3?[-1,0,1,2,-1]:[0,2,3,4,1],p=e.type.value;return` fn getInputValue(batch: u32, channel: u32, depth:u32, height: u32, width: u32) -> ${p} { var input_indices: ${e.type.indices}; ${e.indicesSet("input_indices",i,`max(0, min(depth, ${t[i]} - 1))`)}; ${e.indicesSet("input_indices",a,`max(0, min(height, ${t[a]} - 1))`)}; ${e.indicesSet("input_indices",l,`max(0, min(width, ${t[l]} - 1))`)}; ${Xl(e,u,n,3)} return ${e.getByIndices("input_indices")}; } fn trilinearInterpolation(output_indices: ${r.type.indices}) -> ${p} { var originalIndices = calculateOriginalIndicesFromOutputIndices(output_indices); var depth:${p} = originalIndices[${i}]; var height:${p} = originalIndices[${a}]; var width:${p} = originalIndices[${l}]; ${s?`if (depth < 0 || depth > (${t[i]} - 1) || height < 0 || height > (${t[a]} - 1) || width < 0 || (width > ${t[l]} - 1)) { return ${o}; }`:""}; depth = max(0, min(depth, ${t[i]} - 1)); height = max(0, min(height, ${t[a]} - 1)); width = max(0, min(width, ${t[l]} - 1)); var depth1: u32 = u32(depth); var height1: u32 = u32(height); var width1: u32 = u32(width); var depth2: u32 = u32(depth + 1); var height2: u32 = u32(height + 1); var width2: u32 = u32(width + 1); var channel: u32 = ${t.length>3?`u32(originalIndices[${u}])`:"0"}; var batch: u32 = ${t.length>3?`u32(originalIndices[${n}])`:"0"}; var x111: ${p} = getInputValue(batch, channel, depth1, height1, width1); var x112: ${p} = getInputValue(batch, channel, depth1, height1, width2); var x121: ${p} = getInputValue(batch, channel, depth1, height2, width1); var x122: ${p} = getInputValue(batch, channel, depth1, height2, width2); var x211: ${p} = getInputValue(batch, channel, depth2, height1, width1); var x212: ${p} = getInputValue(batch, channel, depth2, height1, width2); var x221: ${p} = getInputValue(batch, channel, depth2, height2, width1); var x222: ${p} = getInputValue(batch, channel, depth2, height2, width2); var dx1: ${p} = abs(depth - ${p}(depth1)); var dx2: ${p} = abs(${p}(depth2) - depth); var dy1: ${p} = abs(height - ${p}(height1)); var dy2: ${p} = abs(${p}(height2) - height); var dz1: ${p} = abs(width - ${p}(width1)); var dz2: ${p} = abs(${p}(width2) - width); if (depth1 == depth2) { dx1 = 0.5; dx2 = 0.5; } if (height1 == height2) { dy1 = 0.5; dy2 = 0.5; } if (width1 == width2) { dz1 = 0.5; dz2 = 0.5; } return (x111 * dx2 * dy2 * dz2 + x112 * dx2 * dy2 * dz1 + x121 * dx2 * dy1 *dz2 + x122 * dx2 * dy1 * dz1 + x211 * dx1 * dy2 * dz2 + x212 * dx1 * dy2 * dz1 + x221 * dx1 * dy1 *dz2 + x222 * dx1 * dy1 * dz1); }`},Gf=(e,r,t,s,o,n)=>{let i=e.dims,a=Lf(n,r.axes,i.length),l=zf(i,s,o,r.axes),u=s.slice();s.length===0&&(u=i.map((g,S)=>g===0?1:l[S]/g),r.keepAspectRatioPolicy!=="stretch"&&(l=Bf(i,u,r)));let p=Ye("output",e.dataType,l.length),d=Pe("input",e.dataType,i.length),c=Me.size(l),f=i.length===l.length&&i.every((g,S)=>g===l[S]),_=r.coordinateTransformMode==="tf_crop_and_resize",T=r.extrapolationValue,$=d.type.value,w=g=>` ${f?"":` ${Of(r.coordinateTransformMode,$)}; ${(()=>{switch(r.mode){case"nearest":return` ${Nf(d,i)}; ${Df(r.nearestMode,t,$)}; ${jf(d,p,i,l,u.length,a.length,_)}; `;case"linear":return` ${Rf(p,i,l,u.length,a.length)}; ${(()=>{if(i.length===2||i.length===4)return`${Vf(d,p,i,_,T)}`;if(i.length===3||i.length===5)return`${Wf(d,p,i,_,T)}`;throw Error("Linear mode only supports input dims 2, 3, 4 and 5 are supported in linear mode.")})()}; `;case"cubic":return` ${(()=>{if(i.length===2||i.length===4)return`${Uf(d,p,i,l,u,a,r.cubicCoeffA,_,r.extrapolationValue,r.excludeOutside)}`;throw Error("Cubic mode only supports input dims 2 and 4 are supported in linear mode.")})()}; `;default:throw Error("Invalid resize mode")}})()}; `} ${g.registerUniform("output_size","u32").registerUniform("scales","f32",u.length).registerUniform("roi","f32",a.length).declareVariables(d,p)} ${g.mainStart()} ${g.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} ${f?"output[global_idx] = input[global_idx];":` let output_indices = ${p.offsetToIndices("global_idx")}; var input_indices: ${d.type.indices}; ${(()=>{switch(r.mode){case"nearest":return`input_indices = calculateInputIndicesFromOutputIndices(output_indices); if (checkInputIndices(input_indices)) { output[global_idx] = ${d.getByIndices("input_indices")}; } else { output[global_idx] = ${r.extrapolationValue}; }`;case"linear":return`output[global_idx] = ${i.length===2||i.length===4?"bilinearInterpolation":"trilinearInterpolation"}(output_indices);`;case"cubic":return"output[global_idx] = bicubicInterpolation(output_indices);";default:throw Error(`Unsupported resize mode: ${r.mode}`)}})()}; `} }`;return{name:"Resize",shaderCache:{hint:`${r.cacheKey}|${t}|${u.length>0?r.mode==="cubic"?u:u.length:""}|${o.length>0?o:""}|${a.length>0?a:""}|${f}|${r.mode==="nearest"?i.length:i}`,inputDependencies:["rank"]},getShaderSource:w,getRunData:()=>({outputs:[{dims:l,dataType:e.dataType}],dispatchGroup:{x:Math.ceil(c/64)},programUniforms:[{type:12,data:c},{type:1,data:u},{type:1,data:a},...st(i,l)]})}},Kf=e=>{let r=e.customDataBuffer;return new Uint32Array(r,r.byteOffset,1)[0]},Hf=(e,r)=>{let t=[],s=[],o=[],n=Kf(e);if(r.antialias!==0)throw Error("Only default value (0) for Antialias attribute is supported");Ff(e.inputs,r,n,t,s,o),e.compute(Gf(e.inputs[0],r,n,t,s,o),{inputs:[0]})},qf=e=>{let r=e.antialias,t=e.axes,s=e.coordinateTransformMode,o=e.cubicCoeffA,n=e.excludeOutside!==0,i=e.extrapolationValue,a=e.keepAspectRatioPolicy,l=e.mode,u=e.nearestMode===""?"simple":e.nearestMode;return St({antialias:r,axes:t,coordinateTransformMode:s,cubicCoeffA:o,excludeOutside:n,extrapolationValue:i,keepAspectRatioPolicy:a,mode:l,nearestMode:u})}}),Xf,Qf,Jf,ix=Be(()=>{ut(),mt(),ft(),Xf=e=>{if(!e||e.length<3)throw new Error("layerNorm requires at least 3 inputs.");let r=e[0],t=e[1],s=e[2];if(r.dataType!==t.dataType||r.dataType!==s.dataType)throw new Error("All inputs must have the same data type");if(r.dims.length!==3&&r.dims.length!==2)throw new Error("Input must be 2D or 3D");if(t.dims.length!==3&&t.dims.length!==2)throw new Error("Skip must be 2D or 3D");let o=r.dims[r.dims.length-1],n=r.dims[r.dims.length-2];if(t.dims[t.dims.length-1]!==o)throw new Error("Skip must have the same hidden size as input");if(t.dims[t.dims.length-2]!==n)throw new Error("Skip must have the same sequence length as input");if(s.dims.length!==1)throw new Error("Gamma must be 1D");if(s.dims[s.dims.length-1]!==o)throw new Error("Gamma must have the same hidden size as input");if(e.length>3){let i=e[3];if(i.dims.length!==1)throw new Error("Beta must be 1D");if(i.dims[i.dims.length-1]!==o)throw new Error("Beta must have the same hidden size as input")}if(e.length>4){let i=e[4];if(i.dims.length!==1)throw new Error("Bias must be 1D");if(i.dims[i.dims.length-1]!==o)throw new Error("Bias must have the same hidden size as input")}},Qf=(e,r,t,s)=>{let o=r.simplified,n=e[0].dims,i=Me.size(n),a=n,l=i,u=n.slice(-1)[0],p=s?n.slice(0,-1).concat(1):[],d=!o&&e.length>3,c=e.length>4,f=s&&t>1,_=s&&t>2,T=t>3,$=64,w=Kt(u),g=[{type:12,data:l},{type:12,data:w},{type:12,data:u},{type:1,data:r.epsilon}],S=y=>{let M=[{name:"output_size",type:"u32"},{name:"components",type:"u32"},{name:"hidden_size",type:"u32"},{name:"epsilon",type:"f32"}],v=[Pe("x",e[0].dataType,e[0].dims,w),Pe("skip",e[1].dataType,e[1].dims,w),Pe("gamma",e[2].dataType,e[2].dims,w)];d&&v.push(Pe("beta",e[3].dataType,e[3].dims,w)),c&&v.push(Pe("bias",e[4].dataType,e[4].dims,w)),v.push(Ye("output",e[0].dataType,a,w)),f&&v.push(Ye("mean_output",1,p)),_&&v.push(Ye("inv_std_output",1,p)),T&&v.push(Ye("input_skip_bias_sum",e[0].dataType,a,w));let C=lr(e[0].dataType),A=lr(1,w);return` ${y.registerUniforms(M).declareVariables(...v)} var sum_shared : array<${A}, ${$}>; var sum_squared_shared : array<${A}, ${$}>; ${y.mainStart([$,1,1])} let ix = local_id.x; let iy = global_id.x / ${$}; let hidden_size_vectorized: u32 = uniforms.hidden_size / uniforms.components; var stride = hidden_size_vectorized / ${$}; let offset = ix * stride + iy * hidden_size_vectorized; let offset1d = stride * ix; if (ix == ${$-1}) { stride = hidden_size_vectorized - stride * ix; } for (var i: u32 = 0; i < stride; i++) { let skip_value = skip[offset + i]; let bias_value = ${c?"bias[offset1d + i]":C+"(0.0)"}; let input_value = x[offset + i]; let value = input_value + skip_value + bias_value; ${T?"input_skip_bias_sum[offset + i] = value;":""} output[offset + i] = value; let f32_value = ${Un(C,w,"value")}; sum_shared[ix] += f32_value; sum_squared_shared[ix] += f32_value * f32_value; } workgroupBarrier(); var reduce_size : u32 = ${$}; for (var curr_size = reduce_size >> 1; curr_size > 0; curr_size = reduce_size >> 1) { reduce_size = curr_size + (reduce_size & 1); if (ix < curr_size) { sum_shared[ix] += sum_shared[ix + reduce_size]; sum_squared_shared[ix] += sum_squared_shared[ix + reduce_size]; } workgroupBarrier(); } let sum = sum_shared[0]; let square_sum = sum_squared_shared[0]; let mean = ${Ls("sum",w)} / f32(uniforms.hidden_size); let inv_std_dev = inverseSqrt(${Ls("square_sum",w)} / f32(uniforms.hidden_size) ${o?"":"- mean * mean"} + uniforms.epsilon); ${f?"mean_output[global_idx] = mean;":""} ${_?"inv_std_output[global_idx] = inv_std_dev;":""} for (var i: u32 = 0; i < stride; i++) { output[offset + i] = (output[offset + i] ${o?"":`- ${C}(mean)`}) * ${C}(inv_std_dev) * gamma[offset1d + i] ${d?"+ beta[offset1d + i]":""}; } }`},E=[{dims:a,dataType:e[0].dataType}];return t>1&&E.push({dims:p,dataType:1}),t>2&&E.push({dims:p,dataType:1}),t>3&&E.push({dims:n,dataType:e[0].dataType}),{name:"SkipLayerNormalization",shaderCache:{hint:`${w};${f};${_};${T}`,inputDependencies:e.map((y,M)=>"type")},getShaderSource:S,getRunData:()=>({outputs:E,dispatchGroup:{x:Math.ceil(l/u)},programUniforms:g})}},Jf=(e,r)=>{Xf(e.inputs);let t=[0];e.outputCount>1&&t.push(-3),e.outputCount>2&&t.push(-3),e.outputCount>3&&t.push(3),e.compute(Qf(e.inputs,r,e.outputCount,!1),{outputs:t})}}),Yf,yo,Zf,Ql,eg,tg,rg,sg,ax=Be(()=>{ut(),mt(),Xt(),ft(),Yf=(e,r)=>{if(!e||e.length<1)throw new Error("too few inputs");if(r.axes.length!==0){if(r.axes.length!==r.starts.length||r.axes.length!==r.ends.length)throw new Error("axes, starts and ends must have the same length")}else if(r.starts.length!==r.ends.length)throw new Error("starts and ends must have the same length");e.slice(1).forEach((t,s)=>{if(e[s+1].dataType!==6&&e[s+1].dataType!==7)throw new Error(`Input ${s} must be an array of int32 or int64`)})},yo=(e,r)=>{let t=[];if(e.length>r)if(e[r].dataType===7)e[r].getBigInt64Array().forEach(s=>t.push(Number(s)));else if(e[r].dataType===6)e[r].getInt32Array().forEach(s=>t.push(Number(s)));else throw new Error(`Input ${r} must be an array of int32 or int64`);return t},Zf=(e,r)=>{if(e.length>1){let t=yo(e,1),s=yo(e,2),o=yo(e,3);return o.length===0&&(o=[...Array(e[0].dims.length).keys()]),St({starts:t,ends:s,axes:o})}else return r},Ql=(e,r,t,s,o)=>{let n=e;return e<0&&(n+=t[s[r]]),o[r]<0?Math.max(0,Math.min(n,t[s[r]]-1)):Math.max(0,Math.min(n,t[s[r]]))},eg=(e,r,t)=>`fn calculateInputIndices(output_indices: ${r.type.indices}) -> ${e.type.indices} { var input_indices: ${e.type.indices}; var carry = 0u; for (var i = ${t.length}; i >= 0; i--) { let input_shape_i = ${et("uniforms.input_shape","i",t.length)}; let steps_i = ${et("uniforms.steps","i",t.length)}; let signs_i = ${et("uniforms.signs","i",t.length)}; let starts_i = ${et("uniforms.starts","i",t.length)}; var output_index = ${r.indicesGet("output_indices","i")}; var input_index = output_index * steps_i + starts_i + carry; carry = input_index / input_shape_i; input_index = input_index % input_shape_i; if (signs_i < 0) { input_index = input_shape_i - input_index - 1u + starts_i; } ${e.indicesSet("input_indices","i","input_index")}; } return input_indices; }`,tg=(e,r)=>{let t=e[0].dims,s=Me.size(t),o=r.axes.length>0?Me.normalizeAxes(r.axes,t.length):[...Array(t.length).keys()],n=yo(e,4);n.forEach(w=>w!==0||(()=>{throw new Error("step cannot be 0")})),n.length===0&&(n=Array(o.length).fill(1));let i=r.starts.map((w,g)=>Ql(w,g,t,o,n)),a=r.ends.map((w,g)=>Ql(w,g,t,o,n));if(o.length!==i.length||o.length!==a.length)throw new Error("start, ends and axes should have the same number of elements");if(o.length!==t.length)for(let w=0;wMath.sign(w));n.forEach((w,g,S)=>{if(w<0){let E=(a[g]-i[g])/w,y=i[g],M=y+E*n[g];i[g]=M,a[g]=y,S[g]=-w}});let u=t.slice(0);o.forEach((w,g)=>{u[w]=Math.ceil((a[w]-i[w])/n[w])});let p={dims:u,dataType:e[0].dataType},d=Ye("output",e[0].dataType,u.length),c=Pe("input",e[0].dataType,e[0].dims.length),f=Me.size(u),_=[{name:"outputSize",type:"u32"},{name:"starts",type:"u32",length:i.length},{name:"signs",type:"i32",length:l.length},{name:"steps",type:"u32",length:n.length}],T=[{type:12,data:f},{type:12,data:i},{type:6,data:l},{type:12,data:n},...st(e[0].dims,u)],$=w=>` ${w.registerUniforms(_).declareVariables(c,d)} ${eg(c,d,t)} ${w.mainStart()} ${w.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.outputSize")} let output_indices = ${d.offsetToIndices("global_idx")}; let input_indices = calculateInputIndices(output_indices); ${d.setByOffset("global_idx",c.getByIndices("input_indices"))} }`;return{name:"Slice",shaderCache:{hint:`${l.length}_${i.length}_${n.length}`,inputDependencies:["rank"]},getShaderSource:$,getRunData:()=>({outputs:[p],dispatchGroup:{x:Math.ceil(s/64)},programUniforms:T})}},rg=(e,r)=>{Yf(e.inputs,r);let t=Zf(e.inputs,r);e.compute(tg(e.inputs,t),{inputs:[0]})},sg=e=>{let r=e.starts,t=e.ends,s=e.axes;return St({starts:r,ends:t,axes:s})}}),ng,og,ig,ag,lx=Be(()=>{ut(),mt(),Xt(),zs(),ft(),ng=e=>{if(!e||e.length!==1)throw new Error("Softmax op requires 1 input.")},og=(e,r)=>{let t=e.inputs[0],s=t.dims,o=Me.size(s),n=s.length,i=Me.normalizeAxis(r.axis,n),a=iC),u[i]=n-1,u[n-1]=i,l=e.compute(Lr(t,u),{inputs:[t],outputs:[-1]})[0]):l=t;let p=l.dims,d=p[n-1],c=o/d,f=Kt(d),_=d/f,T=64;c===1&&(T=256);let $=(v,C)=>C===4?`max(max(${v}.x, ${v}.y), max(${v}.z, ${v}.w))`:C===2?`max(${v}.x, ${v}.y)`:C===3?`max(max(${v}.x, ${v}.y), ${v}.z)`:v,w=Pe("x",l.dataType,l.dims,f),g=Ye("result",l.dataType,l.dims,f),S=w.type.value,E=lr(l.dataType)==="f32"?`var threadMax = ${S}(-3.402823e+38f);`:`var threadMax = ${S}(-65504.0h);`,y=v=>` var rowMaxShared : ${S}; var rowSumShared : ${S}; var threadShared : array<${S}, ${T}>; fn getValue(row: i32, col: i32, row_stride: i32) -> ${S} { let index = row * row_stride + col; return x[index]; } fn setValue(row: i32, col: i32, row_stride: i32, value: ${S}) { let index = row * row_stride + col; result[index] = value; } ${v.registerUniform("packedCols","i32").declareVariables(w,g)} ${v.mainStart(T)} let gindex = i32(global_idx); let lindex = i32(local_idx); const wg = ${T}; let row = gindex / wg; let cols = uniforms.packedCols; let row_stride : i32 = uniforms.packedCols; // find the rows max ${E} for (var col = lindex; col < cols; col += wg) { let value = getValue(row, col, row_stride); threadMax = max(threadMax, value); } if (lindex < cols) { threadShared[lindex] = threadMax; } workgroupBarrier(); var reduceSize = min(cols, wg); for (var currSize = reduceSize >> 1; currSize > 0; currSize = reduceSize >> 1) { reduceSize = currSize + (reduceSize & 1); if (lindex < currSize) { threadShared[lindex] = max(threadShared[lindex], threadShared[lindex + reduceSize]); } workgroupBarrier(); } if (lindex == 0) { rowMaxShared = ${S}(${$("threadShared[0]",f)}); } workgroupBarrier(); // find the rows sum var threadSum = ${S}(0.0); for (var col = lindex; col < cols; col += wg) { let subExp = exp(getValue(row, col, row_stride) - rowMaxShared); threadSum += subExp; } threadShared[lindex] = threadSum; workgroupBarrier(); for (var currSize = wg >> 1; currSize > 0; currSize = currSize >> 1) { if (lindex < currSize) { threadShared[lindex] = threadShared[lindex] + threadShared[lindex + currSize]; } workgroupBarrier(); } if (lindex == 0) { rowSumShared = ${S}(${Ls("threadShared[0]",f)}); } workgroupBarrier(); // calculate final value for each element in the row for (var col = lindex; col < cols; col += wg) { let value = exp(getValue(row, col, row_stride) - rowMaxShared) / rowSumShared; setValue(row, col, row_stride, value); } }`,M=e.compute({name:"Softmax",shaderCache:{hint:`${f};${T}`,inputDependencies:["type"]},getRunData:()=>({outputs:[{dims:p,dataType:l.dataType}],dispatchGroup:{x:c},programUniforms:[{type:6,data:_}]}),getShaderSource:y},{inputs:[l],outputs:[a?-1:0]})[0];a&&e.compute(Lr(M,u),{inputs:[M]})},ig=(e,r)=>{ng(e.inputs),og(e,r)},ag=e=>St({axis:e.axis})}),Jl,lg,ug,dg,cg,ux=Be(()=>{ut(),mt(),ft(),Jl=e=>Array.from(e.getBigInt64Array(),Number),lg=e=>{if(!e||e.length!==2)throw new Error("Tile requires 2 inputs.");if(e[0].dataType!==1&&e[0].dataType!==10&&e[0].dataType!==6&&e[0].dataType!==12)throw new Error("Tile only support float, float16, int32, and uint32 data types");if(e[1].dataType!==7)throw new Error("Tile `repeats` input should be of int64 data type");if(e[1].dims.length!==1)throw new Error("Tile `repeats` input should be 1-D");if(Jl(e[1]).length!==e[0].dims.length)throw new Error("Tile `repeats` input should have same number of elements as rank of input data tensor")},ug=(e,r)=>{let t=[];for(let s=0;s{let t=e[0].dims,s=r??Jl(e[1]),o=ug(t,s),n=Me.size(o),i=e[0].dataType,a=Pe("input",i,t.length),l=Ye("output",i,o.length),u=p=>` const inputShape = ${a.indices(...t)}; ${p.registerUniform("output_size","u32").declareVariables(a,l)} ${p.mainStart()} ${p.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")} let output_indices = ${l.offsetToIndices("global_idx")}; var input_indices: ${a.type.indices}; for (var i = 0; i < ${t.length}; i++) { let input_dim_i = ${a.indicesGet("uniforms.input_shape","i")}; let input_dim_value = ${l.indicesGet("output_indices","i")} % input_dim_i; ${a.indicesSet("input_indices","i","input_dim_value")} } ${l.setByOffset("global_idx",a.getByIndices("input_indices"))} }`;return{name:"Tile",shaderCache:{hint:`${s}`,inputDependencies:["rank"]},getRunData:()=>({outputs:[{dims:o,dataType:e[0].dataType}],dispatchGroup:{x:Math.ceil(n/64)},programUniforms:[{type:12,data:n},...st(e[0].dims,o)]}),getShaderSource:u}},cg=e=>{lg(e.inputs),e.compute(dg(e.inputs),{inputs:[0]})}}),pg,hg,mg,dx=Be(()=>{ut(),mt(),ft(),pg=(e,r,t,s,o)=>{let n=Ye("output_data",o,t.length,4),i=Pe("a_data",r[1].dataType,r[1].dims.length,4),a=Pe("b_data",r[2].dataType,r[2].dims.length,4),l=Pe("c_data",r[0].dataType,r[0].dims.length,4),u,p=(d,c,f)=>`select(${c}, ${d}, ${f})`;if(!s)u=n.setByOffset("global_idx",p(i.getByOffset("global_idx"),a.getByOffset("global_idx"),l.getByOffset("global_idx")));else{let d=(c,f,_="")=>{let T=`a_data[index_a${f}][component_a${f}]`,$=`b_data[index_b${f}][component_b${f}]`,w=`bool(c_data[index_c${f}] & (0xffu << (component_c${f} * 8)))`;return` let output_indices${f} = ${n.offsetToIndices(`global_idx * 4u + ${f}u`)}; let offset_a${f} = ${i.broadcastedIndicesToOffset(`output_indices${f}`,n)}; let offset_b${f} = ${a.broadcastedIndicesToOffset(`output_indices${f}`,n)}; let offset_c${f} = ${l.broadcastedIndicesToOffset(`output_indices${f}`,n)}; let index_a${f} = offset_a${f} / 4u; let index_b${f} = offset_b${f} / 4u; let index_c${f} = offset_c${f} / 4u; let component_a${f} = offset_a${f} % 4u; let component_b${f} = offset_b${f} % 4u; let component_c${f} = offset_c${f} % 4u; ${c}[${f}] = ${_}(${p(T,$,w)}); `};o===9?u=` var data = vec4(0); ${d("data",0,"u32")} ${d("data",1,"u32")} ${d("data",2,"u32")} ${d("data",3,"u32")} output_data[global_idx] = dot(vec4(0x1, 0x100, 0x10000, 0x1000000), vec4(data));`:u=` ${d("output_data[global_idx]",0)} ${d("output_data[global_idx]",1)} ${d("output_data[global_idx]",2)} ${d("output_data[global_idx]",3)} `}return` ${e.registerUniform("vec_size","u32").declareVariables(l,i,a,n)} ${e.mainStart()} ${e.guardAgainstOutOfBoundsWorkgroupSizes("uniforms.vec_size")} ${u} }`},hg=e=>{let r=e[1].dims,t=e[2].dims,s=e[0].dims,o=e[1].dataType,n=!(Me.areEqual(r,t)&&Me.areEqual(t,s)),i=r,a=Me.size(r);if(n){let u=Nn.calcShape(Nn.calcShape(r,t,!1),s,!1);if(!u)throw new Error("Can't perform where op on the given tensors");i=u,a=Me.size(i)}let l=Math.ceil(a/4);return{name:"Where",shaderCache:{inputDependencies:["rank","rank","rank"]},getShaderSource:u=>pg(u,e,i,n,o),getRunData:()=>({outputs:[{dims:i,dataType:o}],dispatchGroup:{x:Math.ceil(a/64/4)},programUniforms:[{type:12,data:l},...st(s,r,t,i)]})}},mg=e=>{e.compute(hg(e.inputs))}}),_g,cx=Be(()=>{Ev(),cl(),Pv(),Cv(),Sv(),$v(),kv(),Dv(),zv(),Bv(),Rv(),jv(),Nv(),Vv(),Uv(),Wv(),Gv(),Kv(),Hv(),qv(),Xv(),Qv(),Jv(),Yv(),Zv(),P_(),ex(),tx(),rx(),sx(),nx(),ll(),ox(),L_(),ix(),ax(),lx(),F_(),ux(),zs(),_l(),dx(),_g=new Map([["Abs",[qp]],["Acos",[Xp]],["Acosh",[Qp]],["Add",[zh]],["ArgMax",[Fp,dl]],["ArgMin",[Ap,dl]],["Asin",[Jp]],["Asinh",[Yp]],["Atan",[Zp]],["Atanh",[eh]],["Attention",[Rp]],["AveragePool",[hf,pf]],["BatchNormalization",[Up]],["BiasAdd",[Kp]],["BiasSplitGelu",[Oh]],["Cast",[rh,th]],["Ceil",[oh]],["Clip",[nh]],["Concat",[Jh,Yh]],["Conv",[Sl,Pl]],["ConvTranspose",[Em,vm]],["Cos",[ih]],["Cosh",[ah]],["CumSum",[Cm,Sm]],["DepthToSpace",[Am,Fm]],["DequantizeLinear",[vf,xf]],["Div",[Bh]],["Einsum",[Rm,jm]],["Elu",[lh,_o]],["Equal",[Rh]],["Erf",[uh]],["Exp",[dh]],["Expand",[Wm]],["FastGelu",[Km]],["Floor",[ch]],["FusedConv",[Sl,Pl]],["Gather",[Qm,Xm]],["GatherElements",[a_,i_]],["GatherBlockQuantized",[r_,s_]],["GatherND",[Ym,Zm]],["Gelu",[ph]],["Gemm",[c_,d_]],["GlobalAveragePool",[_f,mf]],["GlobalMaxPool",[Mf,wf]],["Greater",[Uh]],["GreaterOrEqual",[Gh]],["GridSample",[b_,y_]],["GroupQueryAttention",[j_]],["HardSigmoid",[bh,Mh]],["InstanceNormalization",[U_]],["LayerNormalization",[K_]],["LeakyRelu",[hh,_o]],["Less",[Wh]],["LessOrEqual",[Kh]],["Log",[Sh]],["MatMul",[q_]],["MatMulNBits",[Y_,Z_]],["MaxPool",[ff,gf]],["Mul",[jh]],["MultiHeadAttention",[E_,x_]],["Neg",[_h]],["Not",[mh]],["Pad",[uf]],["Pow",[Nh]],["QuickGelu",[Ih,_o]],["Range",[Pf]],["Reciprocal",[fh]],["ReduceMin",[Cp]],["ReduceMean",[vp]],["ReduceMax",[Pp]],["ReduceSum",[$p]],["ReduceProd",[Sp]],["ReduceL1",[xp]],["ReduceL2",[Tp]],["ReduceLogSum",[Ip]],["ReduceLogSumExp",[Ep]],["ReduceSumSquare",[kp]],["Relu",[gh]],["Resize",[Hf,qf]],["RotaryEmbedding",[D_]],["ScatterND",[kf,$f]],["Sigmoid",[wh]],["Sin",[yh]],["Sinh",[vh]],["Slice",[rg,sg]],["SkipLayerNormalization",[Jf]],["Split",[I_,A_]],["Sqrt",[xh]],["Softmax",[ig,ag]],["Sub",[Vh]],["Tan",[Th]],["Tanh",[Eh]],["ThresholdedRelu",[Ch,_o]],["Tile",[cg]],["Transpose",[Uc,Wc]],["Where",[mg]]])}),fg,px=Be(()=>{ts(),Es(),ft(),fg=class{constructor(e){this.backend=e,this.repo=new Map,this.attributesBound=!1}getArtifact(e){return this.repo.get(e)}setArtifact(e,r){this.repo.set(e,r)}run(e,r,t,s,o){es(e.programInfo.name);let n=this.backend.device,i=this.backend.getComputePassEncoder();this.backend.writeTimestamp(this.backend.pendingDispatchNumber*2);let a=[];for(let u of r)a.push({binding:a.length,resource:{buffer:u.buffer}});for(let u of t)a.push({binding:a.length,resource:{buffer:u.buffer}});o&&a.push({binding:a.length,resource:o});let l=n.createBindGroup({layout:e.computePipeline.getBindGroupLayout(0),entries:a,label:e.programInfo.name});if(this.backend.sessionStatus==="capturing"){let u={kernelId:this.backend.currentKernelId,computePipeline:e.computePipeline,bindGroup:l,dispatchGroup:s};this.backend.capturedCommandList.get(this.backend.currentSessionId).push(u)}i.setPipeline(e.computePipeline),i.setBindGroup(0,l),i.dispatchWorkgroups(...s),this.backend.writeTimestamp(this.backend.pendingDispatchNumber*2+1),this.backend.pendingDispatchNumber++,(this.backend.pendingDispatchNumber>=this.backend.maxDispatchNumber||this.backend.queryType==="at-passes")&&this.backend.endComputePass(),this.backend.pendingDispatchNumber>=this.backend.maxDispatchNumber&&this.backend.flush(),Gr(e.programInfo.name)}dispose(){}build(e,r){es(e.name);let t=this.backend.device,s=[];[{feature:"shader-f16",extension:"f16"},{feature:"subgroups",extension:"subgroups"}].forEach(u=>{t.features.has(u.feature)&&s.push(`enable ${u.extension};`)});let o=zc(r,this.backend.device.limits),n=e.getShaderSource(o),i=`${s.join(` `)} ${o.additionalImplementations} ${n}`,a=t.createShaderModule({code:i,label:e.name});vt("verbose",()=>`[WebGPU] ${e.name} shader code: ${i}`);let l=t.createComputePipeline({compute:{module:a,entryPoint:"main"},layout:"auto",label:e.name});return Gr(e.name),{programInfo:e,computePipeline:l,uniformVariablesInfo:o.variablesInfo}}normalizeDispatchGroupSize(e){let r=typeof e=="number"?e:e.x,t=typeof e=="number"?1:e.y||1,s=typeof e=="number"?1:e.z||1,o=this.backend.device.limits.maxComputeWorkgroupsPerDimension;if(r<=o&&t<=o&&s<=o)return[r,t,s];let n=r*t*s,i=Math.ceil(Math.sqrt(n));if(i>o){if(i=Math.ceil(Math.cbrt(n)),i>o)throw new Error("Total dispatch size exceeds WebGPU maximum.");return[i,i,i]}else return[i,i,1]}}}),gg={};Rn(gg,{WebGpuBackend:()=>yg});var wg,Mg,bg,yg,hx=Be(()=>{ts(),ut(),Es(),xc(),xv(),cx(),px(),wg=(e,r)=>{if(r.length!==e.length)throw new Error(`inputDependencies length ${r.length} is not equal to inputTensors length ${e.length}.`);let t=[];for(let s=0;s{var o,n;let s=e.name;return(o=e.shaderCache)!=null&&o.hint&&(s+="["+e.shaderCache.hint+"]"),s+=":"+t+`:${wg(r,((n=e.shaderCache)==null?void 0:n.inputDependencies)??new Array(r.length).fill("dims"))}`,s},bg=class{constructor(e){e&&(this.architecture=e.architecture,this.vendor=e.vendor)}isArchitecture(e){return this.architecture===e}isVendor(e){return this.vendor===e}},yg=class{constructor(){this.currentSessionId=null,this.currentKernelId=null,this.commandEncoder=null,this.computePassEncoder=null,this.maxDispatchNumber=16,this.pendingDispatchNumber=0,this.pendingKernels=[],this.pendingQueries=new Map,this.sessionStatus="default",this.capturedCommandList=new Map,this.capturedPendingKernels=new Map,this.sessionExternalDataMapping=new Map}get currentKernelCustomData(){if(this.currentKernelId===null)throw new Error("currentKernelCustomData(): currentKernelId is null. (should not happen)");let e=this.kernelCustomData.get(this.currentKernelId);return e||(e={},this.kernelCustomData.set(this.currentKernelId,e)),e}async initialize(e,r){this.env=e;let t=[],s={requiredLimits:{maxComputeWorkgroupStorageSize:r.limits.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:r.limits.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:r.limits.maxStorageBufferBindingSize,maxBufferSize:r.limits.maxBufferSize,maxComputeInvocationsPerWorkgroup:r.limits.maxComputeInvocationsPerWorkgroup,maxComputeWorkgroupSizeX:r.limits.maxComputeWorkgroupSizeX,maxComputeWorkgroupSizeY:r.limits.maxComputeWorkgroupSizeY,maxComputeWorkgroupSizeZ:r.limits.maxComputeWorkgroupSizeZ},requiredFeatures:t},o=n=>r.features.has(n)&&t.push(n)&&!0;o("chromium-experimental-timestamp-query-inside-passes")||o("timestamp-query"),o("shader-f16"),o("subgroups"),this.device=await r.requestDevice(s),this.adapterInfo=new bg(r.info||await r.requestAdapterInfo()),this.gpuDataManager=Fc(this),this.programManager=new fg(this),this.kernels=new Map,this.kernelPersistentData=new Map,this.kernelCustomData=new Map,Ka(e.logLevel,!!e.debug),this.device.onuncapturederror=n=>{n.error instanceof GPUValidationError&&console.error(`An uncaught WebGPU validation error was raised: ${n.error.message}`)},Object.defineProperty(this.env.webgpu,"device",{value:this.device,writable:!1,enumerable:!0,configurable:!1}),Object.defineProperty(this.env.webgpu,"adapter",{value:r,writable:!1,enumerable:!0,configurable:!1}),this.setQueryType()}dispose(){typeof this.querySet<"u"&&this.querySet.destroy(),this.gpuDataManager.dispose()}getCommandEncoder(){return this.commandEncoder||(this.commandEncoder=this.device.createCommandEncoder()),this.commandEncoder}getComputePassEncoder(){if(!this.computePassEncoder){let e=this.getCommandEncoder(),r={};this.queryType==="at-passes"&&(r.timestampWrites={querySet:this.querySet,beginningOfPassWriteIndex:this.pendingDispatchNumber*2,endOfPassWriteIndex:this.pendingDispatchNumber*2+1}),this.computePassEncoder=e.beginComputePass(r)}return this.computePassEncoder}endComputePass(){this.computePassEncoder&&(this.computePassEncoder.end(),this.computePassEncoder=null)}flush(){if(!this.commandEncoder)return;es(),this.endComputePass();let e;this.queryType!=="none"&&(this.commandEncoder.resolveQuerySet(this.querySet,0,this.pendingDispatchNumber*2,this.queryResolveBuffer,0),e=this.device.createBuffer({size:this.pendingDispatchNumber*2*8,usage:GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST}),this.pendingQueries.set(e,this.pendingKernels),this.pendingKernels=[],this.commandEncoder.copyBufferToBuffer(this.queryResolveBuffer,0,e,0,this.pendingDispatchNumber*2*8)),this.device.queue.submit([this.commandEncoder.finish()]),this.gpuDataManager.refreshPendingBuffers(),this.commandEncoder=null,this.pendingDispatchNumber=0,this.queryType!=="none"&&e.mapAsync(GPUMapMode.READ).then(()=>{var s;let r=new BigUint64Array(e.getMappedRange()),t=this.pendingQueries.get(e);for(let o=0;o"u"&&(this.queryTimeBase=f);let T=Number(f-this.queryTimeBase),$=Number(_-this.queryTimeBase);if(!Number.isSafeInteger(T)||!Number.isSafeInteger($))throw new RangeError("incorrect timestamp range");if((s=this.env.webgpu.profiling)!=null&&s.ondata)this.env.webgpu.profiling.ondata({version:1,inputsMetadata:d.map(w=>({dims:w.dims,dataType:Ts(w.dataType)})),outputsMetadata:c.map(w=>({dims:w.dims,dataType:Ts(w.dataType)})),kernelId:i,kernelType:l,kernelName:u,programName:p,startTime:T,endTime:$});else{let w="";d.forEach((S,E)=>{w+=`input[${E}]: [${S.dims}] | ${Ts(S.dataType)}, `});let g="";c.forEach((S,E)=>{g+=`output[${E}]: [${S.dims}] | ${Ts(S.dataType)}, `}),console.log(`[profiling] kernel "${i}|${l}|${u}|${p}" ${w}${g}execution time: ${$-T} ns`)}uo("GPU",`${p}::${f}::${_}`)}e.unmap(),this.pendingQueries.delete(e)}),Gr()}run(e,r,t,s,o,n){es(e.name);let i=[];for(let g=0;gS):t;if(p.length!==a.length)throw new Error(`Output size ${p.length} must be equal to ${a.length}.`);let d=[],c=[];for(let g=0;g=n)throw new Error(`Invalid output index: ${p[g]}`);if(p[g]===-3)continue;let S=p[g]===-1,E=p[g]===-2,y=S||E?o(a[g].dataType,a[g].dims):s(p[g],a[g].dataType,a[g].dims);if(d.push(y),y.data===0)continue;let M=this.gpuDataManager.get(y.data);if(!M)throw new Error(`no GPU data for output: ${y.data}`);if(S&&this.temporaryData.push(M),E){let v=this.kernelPersistentData.get(this.currentKernelId);v||(v=[],this.kernelPersistentData.set(this.currentKernelId,v)),v.push(M)}c.push(M)}if(i.length!==r.length||c.length!==d.length){if(c.length===0)return Gr(e.name),d;throw new Error(`Program ${e.name} has zero-sized tensor(s) in inputs or outputs. This is not supported now.`)}let f;if(u){let g=0,S=[];u.forEach(v=>{let C=typeof v.data=="number"?[v.data]:v.data;if(C.length===0)return;let A=v.type===10?2:4,B,K;v.type===10?(K=C.length>4?16:C.length>2?8:C.length*A,B=C.length>4?16:A*C.length):(K=C.length<=2?C.length*A:16,B=16),g=Math.ceil(g/K)*K,S.push(g);let G=v.type===10?8:4;g+=C.length>4?Math.ceil(C.length/G)*B:C.length*A});let E=16;g=Math.ceil(g/E)*E;let y=new ArrayBuffer(g);u.forEach((v,C)=>{let A=S[C],B=typeof v.data=="number"?[v.data]:v.data;if(v.type===6)new Int32Array(y,A,B.length).set(B);else if(v.type===12)new Uint32Array(y,A,B.length).set(B);else if(v.type===10)new Uint16Array(y,A,B.length).set(B);else if(v.type===1)new Float32Array(y,A,B.length).set(B);else throw new Error(`Unsupported uniform type: ${Ts(v.type)}`)});let M=this.gpuDataManager.create(g,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.device.queue.writeBuffer(M.buffer,0,y,0,g),this.gpuDataManager.release(M.id),f={offset:0,size:g,buffer:M.buffer}}let _=this.programManager.normalizeDispatchGroupSize(l),T=_[1]===1&&_[2]===1,$=Mg(e,r,T),w=this.programManager.getArtifact($);if(w||(w=this.programManager.build(e,_),this.programManager.setArtifact($,w),vt("info",()=>`[artifact] key: ${$}, programName: ${e.name}`)),u&&w.uniformVariablesInfo){if(u.length!==w.uniformVariablesInfo.length)throw new Error(`Uniform variables count mismatch: expect ${w.uniformVariablesInfo.length}, got ${u.length} in program "${w.programInfo.name}".`);for(let g=0;g`[ProgramManager] run "${e.name}" (key=${$}) with ${_[0]}x${_[1]}x${_[2]}`),this.queryType!=="none"||this.sessionStatus==="capturing"){let g={kernelId:this.currentKernelId,programName:w.programInfo.name,inputTensorViews:r,outputTensorViews:d};this.pendingKernels.push(g),this.sessionStatus==="capturing"&&this.capturedPendingKernels.get(this.currentSessionId).push(g)}return this.programManager.run(w,i,c,_,f),Gr(e.name),d}upload(e,r){this.gpuDataManager.upload(e,r)}memcpy(e,r){this.gpuDataManager.memcpy(e,r)}async download(e,r){await this.gpuDataManager.download(e,r)}alloc(e){return this.gpuDataManager.create(e).id}free(e){return this.gpuDataManager.release(e)}createKernel(e,r,t,s){let o=_g.get(e);if(!o)throw new Error(`kernel not implemented: ${e}`);let n={kernelType:e,kernelName:s,kernelEntry:o[0],attributes:[o[1],t]};this.kernels.set(r,n)}releaseKernel(e){let r=this.kernelPersistentData.get(e);if(r){for(let t of r)this.gpuDataManager.release(t.id);this.kernelPersistentData.delete(e)}this.kernelCustomData.delete(e),this.kernels.delete(e)}computeKernel(e,r,t){let s=this.kernels.get(e);if(!s)throw new Error(`kernel not created: ${e}`);let o=s.kernelType,n=s.kernelName,i=s.kernelEntry,a=s.attributes;if(this.currentKernelId!==null)throw new Error(`kernel "[${o}] ${n}" is not allowed to be called recursively`);this.currentKernelId=e,a[0]&&(a[1]=a[0](a[1]),a[0]=void 0),vt("info",()=>`[WebGPU] Start to run kernel "[${o}] ${n}"...`);let l=this.env.debug;this.temporaryData=[];try{return l&&this.device.pushErrorScope("validation"),i(r,a[1]),0}catch(u){return t.push(Promise.resolve(`[WebGPU] Kernel "[${o}] ${n}" failed. ${u}`)),1}finally{l&&t.push(this.device.popErrorScope().then(u=>u?`GPU validation error for kernel "[${o}] ${n}": ${u.message}`:null));for(let u of this.temporaryData)this.gpuDataManager.release(u.id);this.temporaryData=[],this.currentKernelId=null}}registerBuffer(e,r,t,s){let o=this.sessionExternalDataMapping.get(e);o||(o=new Map,this.sessionExternalDataMapping.set(e,o));let n=o.get(r),i=this.gpuDataManager.registerExternalBuffer(t,s,n);return o.set(r,[i,t]),i}unregisterBuffers(e){let r=this.sessionExternalDataMapping.get(e);r&&(r.forEach(t=>this.gpuDataManager.unregisterExternalBuffer(t[0])),this.sessionExternalDataMapping.delete(e))}getBuffer(e){let r=this.gpuDataManager.get(e);if(!r)throw new Error(`no GPU data for buffer: ${e}`);return r.buffer}createDownloader(e,r,t){return async()=>{let s=await sl(this,e,r);return Ha(s.buffer,t)}}writeTimestamp(e){this.queryType==="inside-passes"&&this.computePassEncoder.writeTimestamp(this.querySet,e)}setQueryType(){var e;this.queryType="none",(((e=this.env.webgpu.profiling)==null?void 0:e.mode)==="default"||(typeof this.env.trace>"u"?this.env.wasm.trace:this.env.trace))&&(this.device.features.has("chromium-experimental-timestamp-query-inside-passes")?this.queryType="inside-passes":this.device.features.has("timestamp-query")&&(this.queryType="at-passes"),this.queryType!=="none"&&typeof this.querySet>"u"&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:this.maxDispatchNumber*2}),this.queryResolveBuffer=this.device.createBuffer({size:this.maxDispatchNumber*2*8,usage:GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE})))}captureBegin(){vt("info","captureBegin"),this.capturedCommandList.get(this.currentSessionId)||this.capturedCommandList.set(this.currentSessionId,[]),this.capturedPendingKernels.get(this.currentSessionId)||this.capturedPendingKernels.set(this.currentSessionId,[]),this.flush(),this.sessionStatus="capturing"}captureEnd(){vt("info","captureEnd"),this.flush(),this.sessionStatus="default"}replay(){vt("info","replay"),this.sessionStatus="replaying";let e=this.capturedCommandList.get(this.currentSessionId),r=this.capturedPendingKernels.get(this.currentSessionId),t=e.length;this.pendingKernels=[];for(let s=0;s=this.maxDispatchNumber||this.queryType==="at-passes")&&this.endComputePass(),this.pendingDispatchNumber>=this.maxDispatchNumber&&this.flush()}this.flush(),this.sessionStatus="default"}onCreateSession(){this.gpuDataManager.onCreateSession()}onReleaseSession(e){this.unregisterBuffers(e),this.capturedCommandList.has(e)&&this.capturedCommandList.delete(e),this.capturedPendingKernels.has(e)&&this.capturedPendingKernels.delete(e),this.gpuDataManager.onReleaseSession(e)}onRunStart(e){this.currentSessionId=e,this.setQueryType()}}}),vg={};Rn(vg,{init:()=>Tg});var gi,xg,Tg,mx=Be(()=>{ut(),Es(),mt(),vv(),gi=class z0{constructor(r,t,s,o){this.module=r,this.dataType=t,this.data=s,this.dims=o}getFloat32Array(){if(this.dataType!==1)throw new Error("Invalid data type");let r=Me.size(this.dims);return r===0?new Float32Array:new Float32Array(this.module.HEAP8.buffer,this.data,r)}getBigInt64Array(){if(this.dataType!==7)throw new Error("Invalid data type");let r=Me.size(this.dims);return r===0?new BigInt64Array:new BigInt64Array(this.module.HEAP8.buffer,this.data,r)}getInt32Array(){if(this.dataType!==6)throw new Error("Invalid data type");let r=Me.size(this.dims);return r===0?new Int32Array:new Int32Array(this.module.HEAP8.buffer,this.data,r)}getUint16Array(){if(this.dataType!==10&&this.dataType!==4)throw new Error("Invalid data type");let r=Me.size(this.dims);return r===0?new Uint16Array:new Uint16Array(this.module.HEAP8.buffer,this.data,r)}reshape(r){if(Me.size(r)!==Me.size(this.dims))throw new Error("Invalid new shape");return new z0(this.module,this.dataType,this.data,r)}},xg=class{constructor(e,r,t){this.module=e,this.backend=r,this.customDataOffset=0,this.customDataSize=0,this.adapterInfo=r.adapterInfo;let s=e.PTR_SIZE,o=t/e.PTR_SIZE,n=s===4?"i32":"i64";this.opKernelContext=Number(e.getValue(s*o++,n));let i=Number(e.getValue(s*o++,n));this.outputCount=Number(e.getValue(s*o++,n)),this.customDataOffset=Number(e.getValue(s*o++,"*")),this.customDataSize=Number(e.getValue(s*o++,n));let a=[];for(let l=0;ltypeof a=="number"?this.inputs[a]:a))??this.inputs,s=(r==null?void 0:r.outputs)??[],o=(a,l,u)=>new gi(this.module,l,this.output(a,u),u),n=(a,l)=>{let u=tn(a,l);if(!u)throw new Error(`Unsupported data type: ${a}`);let p=u>0?this.backend.gpuDataManager.create(u).id:0;return new gi(this.module,a,p,l)};return this.backend.run(e,t,s,o,n,this.outputCount)}output(e,r){let t=this.module.stackSave();try{let s=this.module.PTR_SIZE,o=s===4?"i32":"i64",n=this.module.stackAlloc((1+r.length)*s);this.module.setValue(n,r.length,o);for(let i=0;i{let o=r.jsepInit;if(!o)throw new Error("Failed to initialize JSEP. The WebAssembly module is not built with JSEP support.");if(e==="webgpu"){let n=(hx(),io(gg)).WebGpuBackend,i=new n;await i.initialize(t,s),o("webgpu",[i,a=>i.alloc(Number(a)),a=>i.free(a),(a,l,u,p=!1)=>{if(p)vt("verbose",()=>`[WebGPU] jsepCopyGpuToGpu: src=${Number(a)}, dst=${Number(l)}, size=${Number(u)}`),i.memcpy(Number(a),Number(l));else{vt("verbose",()=>`[WebGPU] jsepCopyCpuToGpu: dataOffset=${Number(a)}, gpuDataId=${Number(l)}, size=${Number(u)}`);let d=r.HEAPU8.subarray(Number(a>>>0),Number(a>>>0)+Number(u));i.upload(Number(l),d)}},async(a,l,u)=>{vt("verbose",()=>`[WebGPU] jsepCopyGpuToCpu: gpuDataId=${a}, dataOffset=${l}, size=${u}`),await i.download(Number(a),()=>r.HEAPU8.subarray(Number(l)>>>0,Number(l+u)>>>0))},(a,l,u)=>i.createKernel(a,Number(l),u,r.UTF8ToString(r._JsepGetNodeName(Number(l)))),a=>i.releaseKernel(a),(a,l,u,p)=>{vt("verbose",()=>`[WebGPU] jsepRun: sessionHandle=${u}, kernel=${a}, contextDataOffset=${l}`);let d=new xg(r,i,Number(l));return i.computeKernel(Number(a),d,p)},()=>i.captureBegin(),()=>i.captureEnd(),()=>i.replay()])}else{let n=new $c(t);o("webnn",[n,()=>n.reserveTensorId(),i=>n.releaseTensorId(i),async(i,a,l,u,p)=>n.ensureTensor(i,a,l,u,p),(i,a)=>{n.uploadTensor(i,a)},async(i,a)=>n.downloadTensor(i,a)])}}}),Eg,Yl,Zl,Bs,Pg,eu,wi,tu,ru,su,nu,ou,iu,Cg=Be(()=>{Mv(),bv(),ut(),en(),ja(),hc(),Eg=(e,r)=>{zt()._OrtInit(e,r)!==0&&At("Can't initialize onnxruntime.")},Yl=async e=>{Eg(e.wasm.numThreads,si(e.logLevel))},Zl=async(e,r)=>{var t,s;(s=(t=zt()).asyncInit)==null||s.call(t);{let o=(mx(),io(vg)).init;if(r==="webgpu"){if(typeof navigator>"u"||!navigator.gpu)throw new Error("WebGPU is not supported in current environment");let n=e.webgpu.adapter;if(n){if(typeof n.limits!="object"||typeof n.features!="object"||typeof n.requestDevice!="function")throw new Error("Invalid GPU adapter set in `env.webgpu.adapter`. It must be a GPUAdapter object.")}else{let i=e.webgpu.powerPreference;if(i!==void 0&&i!=="low-power"&&i!=="high-performance")throw new Error(`Invalid powerPreference setting: "${i}"`);let a=e.webgpu.forceFallbackAdapter;if(a!==void 0&&typeof a!="boolean")throw new Error(`Invalid forceFallbackAdapter setting: "${a}"`);if(n=await navigator.gpu.requestAdapter({powerPreference:i,forceFallbackAdapter:a}),!n)throw new Error('Failed to get GPU adapter. You may need to enable flag "--enable-unsafe-webgpu" if you are using Chrome.')}await o("webgpu",zt(),e,n)}if(r==="webnn"){if(typeof navigator>"u"||!navigator.ml)throw new Error("WebNN is not supported in current environment");await o("webnn",zt(),e)}}},Bs=new Map,Pg=e=>{let r=zt(),t=r.stackSave();try{let s=r.PTR_SIZE,o=r.stackAlloc(2*s);r._OrtGetInputOutputCount(e,o,o+s)!==0&&At("Can't get session input/output count.");let n=s===4?"i32":"i64";return[Number(r.getValue(o,n)),Number(r.getValue(o+s,n))]}finally{r.stackRestore(t)}},eu=(e,r)=>{let t=zt(),s=t.stackSave(),o=0;try{let n=t.PTR_SIZE,i=t.stackAlloc(2*n);t._OrtGetInputOutputMetadata(e,r,i,i+n)!==0&&At("Can't get session input/output metadata.");let a=Number(t.getValue(i,"*"));o=Number(t.getValue(i+n,"*"));let l=t.HEAP32[o/4];if(l===0)return[a,0];let u=t.HEAPU32[o/4+1],p=[];for(let d=0;d{let r=zt(),t=r._malloc(e.byteLength);if(t===0)throw new Error(`Can't create a session. failed to allocate a buffer of size ${e.byteLength}.`);return r.HEAPU8.set(e,t),[t,e.byteLength]},tu=async(e,r)=>{var d,c,f,_;let t,s,o=zt();Array.isArray(e)?[t,s]=e:e.buffer===o.HEAPU8.buffer?[t,s]=[e.byteOffset,e.byteLength]:[t,s]=wi(e);let n=0,i=0,a=0,l=[],u=[],p=[];try{if([i,l]=await pc(r),(r==null?void 0:r.externalData)&&o.mountExternalData){let C=[];for(let A of r.externalData){let B=typeof A=="string"?A:A.path;C.push(Ga(typeof A=="string"?A:A.data).then(K=>{o.mountExternalData(B,K)}))}await Promise.all(C)}for(let C of(r==null?void 0:r.executionProviders)??[])if((typeof C=="string"?C:C.name)==="webnn"){if(o.shouldTransferToMLTensor=!1,typeof C!="string"){let A=C,B=A==null?void 0:A.context,K=A==null?void 0:A.gpuDevice,G=A==null?void 0:A.deviceType,j=A==null?void 0:A.powerPreference;B?o.currentContext=B:K?o.currentContext=await o.webnnCreateMLContext(K):o.currentContext=await o.webnnCreateMLContext({deviceType:G,powerPreference:j})}else o.currentContext=await o.webnnCreateMLContext();break}n=await o._OrtCreateSession(t,s,i),(d=o.webgpuOnCreateSession)==null||d.call(o,n),n===0&&At("Can't create a session."),(c=o.jsepOnCreateSession)==null||c.call(o),o.currentContext&&(o.webnnRegisterMLContext(n,o.currentContext),o.currentContext=void 0,o.shouldTransferToMLTensor=!0);let[T,$]=Pg(n),w=!!(r!=null&&r.enableGraphCapture),g=[],S=[],E=[],y=[],M=[];for(let C=0;CC==="gpu-buffer"||C==="ml-tensor")&&(a=o._OrtCreateBinding(n),a===0&&At("Can't create IO binding."),v={handle:a,outputPreferredLocations:M,outputPreferredLocationsEncoded:M.map(C=>Wa(C))}),Bs.set(n,[n,u,p,v,w,!1]),[n,g,S,E,y]}catch(T){throw u.forEach($=>o._OrtFree($)),p.forEach($=>o._OrtFree($)),a!==0&&o._OrtReleaseBinding(a)!==0&&At("Can't release IO binding."),n!==0&&o._OrtReleaseSession(n)!==0&&At("Can't release session."),T}finally{o._free(t),i!==0&&o._OrtReleaseSessionOptions(i)!==0&&At("Can't release session options."),l.forEach(T=>o._free(T)),(_=o.unmountExternalData)==null||_.call(o)}},ru=e=>{var l,u,p;let r=zt(),t=Bs.get(e);if(!t)throw new Error(`cannot release session. invalid session id: ${e}`);let[s,o,n,i,a]=t;i&&(a&&r._OrtClearBoundOutputs(i.handle)!==0&&At("Can't clear bound outputs."),r._OrtReleaseBinding(i.handle)!==0&&At("Can't release IO binding.")),(l=r.jsepOnReleaseSession)==null||l.call(r,e),(u=r.webnnOnReleaseSession)==null||u.call(r,e),(p=r.webgpuOnReleaseSession)==null||p.call(r,e),o.forEach(d=>r._OrtFree(d)),n.forEach(d=>r._OrtFree(d)),r._OrtReleaseSession(s)!==0&&At("Can't release session."),Bs.delete(e)},su=async(e,r,t,s,o,n,i=!1)=>{if(!e){r.push(0);return}let a=zt(),l=a.PTR_SIZE,u=e[0],p=e[1],d=e[3],c=d,f,_;if(u==="string"&&(d==="gpu-buffer"||d==="ml-tensor"))throw new Error("String tensor is not supported on GPU.");if(i&&d!=="gpu-buffer")throw new Error(`External buffer must be provided for input/output index ${n} when enableGraphCapture is true.`);if(d==="gpu-buffer"){let w=e[2].gpuBuffer;_=tn(jn(u),p);{let g=a.jsepRegisterBuffer;if(!g)throw new Error('Tensor location "gpu-buffer" is not supported without using WebGPU.');f=g(s,n,w,_)}}else if(d==="ml-tensor"){let w=e[2].mlTensor;_=tn(jn(u),p);let g=a.webnnRegisterMLTensor;if(!g)throw new Error('Tensor location "ml-tensor" is not supported without using WebNN.');f=g(s,w,jn(u),p)}else{let w=e[2];if(Array.isArray(w)){_=l*w.length,f=a._malloc(_),t.push(f);for(let g=0;ga.setValue($+S*l,g,l===4?"i32":"i64"));let w=a._OrtCreateTensor(jn(u),f,_,$,p.length,Wa(c));w===0&&At(`Can't create tensor for input/output. session=${s}, index=${n}.`),r.push(w)}finally{a.stackRestore(T)}},nu=async(e,r,t,s,o,n)=>{var K,G,j,ee;let i=zt(),a=i.PTR_SIZE,l=Bs.get(e);if(!l)throw new Error(`cannot run inference. invalid session id: ${e}`);let u=l[0],p=l[1],d=l[2],c=l[3],f=l[4],_=l[5],T=r.length,$=s.length,w=0,g=[],S=[],E=[],y=[],M=i.stackSave(),v=i.stackAlloc(T*a),C=i.stackAlloc(T*a),A=i.stackAlloc($*a),B=i.stackAlloc($*a);try{[w,g]=ac(n);for(let X=0;Xq*R,1);F=Ts(_e);let we=c==null?void 0:c.outputPreferredLocations[s[X]];if(F==="string"){if(we==="gpu-buffer"||we==="ml-tensor")throw new Error("String tensor is not supported on GPU.");let q=[];for(let R=0;R0){let q=i.jsepGetBuffer;if(!q)throw new Error('preferredLocation "gpu-buffer" is not supported without using WebGPU.');let R=q(W),pe=tn(_e,Ue);if(pe===void 0||!Va(F))throw new Error(`Unsupported data type: ${F}`);V=!0,Z.push([F,$e,{gpuBuffer:R,download:i.jsepCreateDownloader(R,pe,F),dispose:()=>{i._OrtReleaseTensor(oe)!==0&&At("Can't release tensor.")}},"gpu-buffer"])}else if(we==="ml-tensor"&&Ue>0){let q=i.webnnEnsureTensor,R=i.webnnIsInt64Supported;if(!q||!R)throw new Error('preferredLocation "ml-tensor" is not supported without using WebNN.');if(tn(_e,Ue)===void 0||!Ua(F))throw new Error(`Unsupported data type: ${F}`);if(F==="int64"&&!R(e))throw new Error('preferredLocation "ml-tensor" for int64 output is not supported by current WebNN Context.');let pe=await q(e,W,_e,$e,!1);V=!0,Z.push([F,$e,{mlTensor:pe,download:i.webnnCreateMLTensorDownloader(W,F),dispose:()=>{i.webnnReleaseTensorId(W),i._OrtReleaseTensor(oe)}},"ml-tensor"])}else{let q=Na(F),R=new q(Ue);new Uint8Array(R.buffer,R.byteOffset,R.byteLength).set(i.HEAPU8.subarray(W,W+R.byteLength)),Z.push([F,$e,R,"cpu"])}}finally{i.stackRestore(me),F==="string"&&W&&i._free(W),V||i._OrtReleaseTensor(oe),(ee=i.webnnOnRunEnd)==null||ee.call(i,u)}}return c&&!f&&(i._OrtClearBoundOutputs(c.handle)!==0&&At("Can't clear bound outputs."),Bs.set(e,[u,p,d,c,f,!1])),Z}finally{i.stackRestore(M),S.forEach(H=>i._OrtReleaseTensor(H)),E.forEach(H=>i._OrtReleaseTensor(H)),y.forEach(H=>i._free(H)),w!==0&&i._OrtReleaseRunOptions(w),g.forEach(H=>i._free(H))}},ou=e=>{let r=zt(),t=Bs.get(e);if(!t)throw new Error("invalid session id");let s=t[0],o=r._OrtEndProfiling(s);o===0&&At("Can't get an profile file name."),r._OrtFree(o)},iu=e=>{let r=[];for(let t of e){let s=t[2];!Array.isArray(s)&&"buffer"in s&&r.push(s.buffer)}return r}}),Rs,kr,Wn,vo,xo,Mi,au,bi,un,dn,Sg,$g,kg,Ig,Ag,Fg,Og,Dg,Lg=Be(()=>{ts(),Cg(),en(),La(),Rs=()=>!!Bt.wasm.proxy&&typeof document<"u",Wn=!1,vo=!1,xo=!1,bi=new Map,un=(e,r)=>{let t=bi.get(e);t?t.push(r):bi.set(e,[r])},dn=()=>{if(Wn||!vo||xo||!kr)throw new Error("worker not ready")},Sg=e=>{switch(e.data.type){case"init-wasm":Wn=!1,e.data.err?(xo=!0,au[1](e.data.err)):(vo=!0,au[0]()),Mi&&(URL.revokeObjectURL(Mi),Mi=void 0);break;case"init-ep":case"copy-from":case"create":case"release":case"run":case"end-profiling":{let r=bi.get(e.data.type);e.data.err?r.shift()[1](e.data.err):r.shift()[0](e.data.out);break}}},$g=async()=>{if(!vo){if(Wn)throw new Error("multiple calls to 'initWasm()' detected.");if(xo)throw new Error("previous call to 'initWasm()' failed.");if(Wn=!0,Rs())return new Promise((e,r)=>{kr==null||kr.terminate(),rc().then(([t,s])=>{try{kr=s,kr.onerror=n=>r(n),kr.onmessage=Sg,au=[e,r];let o={type:"init-wasm",in:Bt};!o.in.wasm.wasmPaths&&(t||Aa)&&(o.in.wasm.wasmPaths={wasm:new URL("/assets/ort-wasm-simd-threaded.jsep-B0T3yYHD.wasm",self.location.href).href}),kr.postMessage(o),Mi=t}catch(o){r(o)}},r)});try{await Ra(Bt.wasm),await Yl(Bt),vo=!0}catch(e){throw xo=!0,e}finally{Wn=!1}}},kg=async e=>{if(Rs())return dn(),new Promise((r,t)=>{un("init-ep",[r,t]);let s={type:"init-ep",in:{epName:e,env:Bt}};kr.postMessage(s)});await Zl(Bt,e)},Ig=async e=>Rs()?(dn(),new Promise((r,t)=>{un("copy-from",[r,t]);let s={type:"copy-from",in:{buffer:e}};kr.postMessage(s,[e.buffer])})):wi(e),Ag=async(e,r)=>{if(Rs()){if(r!=null&&r.preferredOutputLocation)throw new Error('session option "preferredOutputLocation" is not supported for proxy.');return dn(),new Promise((t,s)=>{un("create",[t,s]);let o={type:"create",in:{model:e,options:{...r}}},n=[];e instanceof Uint8Array&&n.push(e.buffer),kr.postMessage(o,n)})}else return tu(e,r)},Fg=async e=>{if(Rs())return dn(),new Promise((r,t)=>{un("release",[r,t]);let s={type:"release",in:e};kr.postMessage(s)});ru(e)},Og=async(e,r,t,s,o,n)=>{if(Rs()){if(t.some(i=>i[3]!=="cpu"))throw new Error("input tensor on GPU is not supported for proxy.");if(o.some(i=>i))throw new Error("pre-allocated output tensor is not supported for proxy.");return dn(),new Promise((i,a)=>{un("run",[i,a]);let l=t,u={type:"run",in:{sessionId:e,inputIndices:r,inputs:l,outputIndices:s,options:n}};kr.postMessage(u,iu(l))})}else return nu(e,r,t,s,o,n)},Dg=async e=>{if(Rs())return dn(),new Promise((r,t)=>{un("end-profiling",[r,t]);let s={type:"end-profiling",in:e};kr.postMessage(s)});ou(e)}}),lu,zg,Bg,_x=Be(()=>{ts(),Lg(),ut(),Pa(),hc(),lu=(e,r)=>{switch(e.location){case"cpu":return[e.type,e.dims,e.data,"cpu"];case"gpu-buffer":return[e.type,e.dims,{gpuBuffer:e.gpuBuffer},"gpu-buffer"];case"ml-tensor":return[e.type,e.dims,{mlTensor:e.mlTensor},"ml-tensor"];default:throw new Error(`invalid data location: ${e.location} for ${r()}`)}},zg=e=>{switch(e[3]){case"cpu":return new Zr(e[0],e[2],e[1]);case"gpu-buffer":{let r=e[0];if(!Va(r))throw new Error(`not supported data type: ${r} for deserializing GPU tensor`);let{gpuBuffer:t,download:s,dispose:o}=e[2];return Zr.fromGpuBuffer(t,{dataType:r,dims:e[1],download:s,dispose:o})}case"ml-tensor":{let r=e[0];if(!Ua(r))throw new Error(`not supported data type: ${r} for deserializing MLTensor tensor`);let{mlTensor:t,download:s,dispose:o}=e[2];return Zr.fromMLTensor(t,{dataType:r,dims:e[1],download:s,dispose:o})}default:throw new Error(`invalid data location: ${e[3]}`)}},Bg=class{async fetchModelAndCopyToWasmMemory(e){return Ig(await Ga(e))}async loadModel(e,r){es();let t;typeof e=="string"?t=await this.fetchModelAndCopyToWasmMemory(e):t=e,[this.sessionId,this.inputNames,this.outputNames,this.inputMetadata,this.outputMetadata]=await Ag(t,r),Gr()}async dispose(){return Fg(this.sessionId)}async run(e,r,t){es();let s=[],o=[];Object.entries(e).forEach(d=>{let c=d[0],f=d[1],_=this.inputNames.indexOf(c);if(_===-1)throw new Error(`invalid input '${c}'`);s.push(f),o.push(_)});let n=[],i=[];Object.entries(r).forEach(d=>{let c=d[0],f=d[1],_=this.outputNames.indexOf(c);if(_===-1)throw new Error(`invalid output '${c}'`);n.push(f),i.push(_)});let a=s.map((d,c)=>lu(d,()=>`input "${this.inputNames[o[c]]}"`)),l=n.map((d,c)=>d?lu(d,()=>`output "${this.outputNames[i[c]]}"`):null),u=await Og(this.sessionId,o,a,i,l,t),p={};for(let d=0;ddu,initializeFlags:()=>uu,wasmBackend:()=>jg});var uu,du,jg,fx=Be(()=>{ts(),Lg(),_x(),uu=()=>{(typeof Bt.wasm.initTimeout!="number"||Bt.wasm.initTimeout<0)&&(Bt.wasm.initTimeout=0);let e=Bt.wasm.simd;if(typeof e!="boolean"&&e!==void 0&&e!=="fixed"&&e!=="relaxed"&&(console.warn(`Property "env.wasm.simd" is set to unknown value "${e}". Reset it to \`false\` and ignore SIMD feature checking.`),Bt.wasm.simd=!1),typeof Bt.wasm.proxy!="boolean"&&(Bt.wasm.proxy=!1),typeof Bt.wasm.trace!="boolean"&&(Bt.wasm.trace=!1),typeof Bt.wasm.numThreads!="number"||!Number.isInteger(Bt.wasm.numThreads)||Bt.wasm.numThreads<=0)if(typeof self<"u"&&!self.crossOriginIsolated)Bt.wasm.numThreads=1;else{let r=typeof navigator>"u"?rv("node:os").cpus().length:navigator.hardwareConcurrency;Bt.wasm.numThreads=Math.min(4,Math.ceil((r||1)/2))}},du=class{async init(e){uu(),await $g(),await kg(e)}async createInferenceSessionHandler(e,r){let t=new Bg;return await t.loadModel(e,r),t}},jg=new du});ts(),ts(),ts();var gx="1.22.0-dev.20250409-89f8206ba4",wx=Gd;{let e=(fx(),io(Rg)).wasmBackend;Ys("webgpu",e,5),Ys("webnn",e,5),Ys("cpu",e,10),Ys("wasm",e,10)}Object.defineProperty(Bt.versions,"web",{value:gx,enumerable:!0});/** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= *//** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= *//** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */var Mx=Object.freeze({__proto__:null,get InferenceSession(){return Ea},get TRACE(){return uo},get TRACE_FUNC_BEGIN(){return es},get TRACE_FUNC_END(){return Gr},get Tensor(){return Zr},default:wx,get env(){return Bt},get registerBackend(){return Ys}}),Cs={},bx={"onnxruntime-common":e=>{e.exports=Y0},"onnxruntime-web":e=>{e.exports=Mx},"?2ce3":()=>{},"?7a2c":()=>{},"?a42a":()=>{},"?2b25":()=>{},"?569f":()=>{},"?3f59":()=>{},"?154a":()=>{},"./node_modules/@huggingface/jinja/dist/index.js":(e,r,t)=>{t.r(r),t.d(r,{Environment:()=>Se,Interpreter:()=>Ae,Template:()=>Ve,parse:()=>V,tokenize:()=>d});var s=Object.freeze({Text:"Text",NumericLiteral:"NumericLiteral",BooleanLiteral:"BooleanLiteral",NullLiteral:"NullLiteral",StringLiteral:"StringLiteral",Identifier:"Identifier",Equals:"Equals",OpenParen:"OpenParen",CloseParen:"CloseParen",OpenStatement:"OpenStatement",CloseStatement:"CloseStatement",OpenExpression:"OpenExpression",CloseExpression:"CloseExpression",OpenSquareBracket:"OpenSquareBracket",CloseSquareBracket:"CloseSquareBracket",OpenCurlyBracket:"OpenCurlyBracket",CloseCurlyBracket:"CloseCurlyBracket",Comma:"Comma",Dot:"Dot",Colon:"Colon",Pipe:"Pipe",CallOperator:"CallOperator",AdditiveBinaryOperator:"AdditiveBinaryOperator",MultiplicativeBinaryOperator:"MultiplicativeBinaryOperator",ComparisonBinaryOperator:"ComparisonBinaryOperator",UnaryOperator:"UnaryOperator",Set:"Set",If:"If",For:"For",In:"In",Is:"Is",NotIn:"NotIn",Else:"Else",EndSet:"EndSet",EndIf:"EndIf",ElseIf:"ElseIf",EndFor:"EndFor",And:"And",Or:"Or",Not:"UnaryOperator",Macro:"Macro",EndMacro:"EndMacro"}),o=Object.freeze({set:s.Set,for:s.For,in:s.In,is:s.Is,if:s.If,else:s.Else,endset:s.EndSet,endif:s.EndIf,elif:s.ElseIf,endfor:s.EndFor,and:s.And,or:s.Or,not:s.Not,"not in":s.NotIn,macro:s.Macro,endmacro:s.EndMacro,true:s.BooleanLiteral,false:s.BooleanLiteral,none:s.NullLiteral,True:s.BooleanLiteral,False:s.BooleanLiteral,None:s.NullLiteral}),n=class{constructor(O,Y){this.value=O,this.type=Y}};function i(O){return/\w/.test(O)}function a(O){return/[0-9]/.test(O)}var l=[["{%",s.OpenStatement],["%}",s.CloseStatement],["{{",s.OpenExpression],["}}",s.CloseExpression],["(",s.OpenParen],[")",s.CloseParen],["{",s.OpenCurlyBracket],["}",s.CloseCurlyBracket],["[",s.OpenSquareBracket],["]",s.CloseSquareBracket],[",",s.Comma],[".",s.Dot],[":",s.Colon],["|",s.Pipe],["<=",s.ComparisonBinaryOperator],[">=",s.ComparisonBinaryOperator],["==",s.ComparisonBinaryOperator],["!=",s.ComparisonBinaryOperator],["<",s.ComparisonBinaryOperator],[">",s.ComparisonBinaryOperator],["+",s.AdditiveBinaryOperator],["-",s.AdditiveBinaryOperator],["*",s.MultiplicativeBinaryOperator],["/",s.MultiplicativeBinaryOperator],["%",s.MultiplicativeBinaryOperator],["=",s.Equals]],u=new Map([["n",` `],["t"," "],["r","\r"],["b","\b"],["f","\f"],["v","\v"],["'","'"],['"','"'],["\\","\\"]]);function p(O,Y={}){return O.endsWith(` `)&&(O=O.slice(0,-1)),O=O.replace(/{#.*?#}/gs,"{##}"),Y.lstrip_blocks&&(O=O.replace(/^[ \t]*({[#%])/gm,"$1")),Y.trim_blocks&&(O=O.replace(/([#%]})\n/g,"$1")),O.replace(/{##}/g,"").replace(/-%}\s*/g,"%}").replace(/\s*{%-/g,"{%").replace(/-}}\s*/g,"}}").replace(/\s*{{-/g,"{{")}function d(O,Y={}){var Ee,ke,Ie;const z=[],J=p(O,Y);let le=0;const ye=Re=>{let Xe="";for(;Re(J[le]);){if(J[le]==="\\"){if(++le,le>=J.length)throw new SyntaxError("Unexpected end of input");const Ge=J[le++],lt=u.get(Ge);if(lt===void 0)throw new SyntaxError(`Unexpected escaped character: ${Ge}`);Xe+=lt;continue}if(Xe+=J[le++],le>=J.length)throw new SyntaxError("Unexpected end of input")}return Xe};e:for(;le0){z.push(new n(Ge,s.Text));continue}}ye(Ge=>/\s/.test(Ge));const Xe=J[le];if(Xe==="-"||Xe==="+"){const Ge=(ke=z.at(-1))==null?void 0:ke.type;if(Ge===s.Text||Ge===void 0)throw new SyntaxError(`Unexpected character: ${Xe}`);switch(Ge){case s.Identifier:case s.NumericLiteral:case s.BooleanLiteral:case s.NullLiteral:case s.StringLiteral:case s.CloseParen:case s.CloseSquareBracket:break;default:{++le;const lt=ye(a);z.push(new n(`${Xe}${lt}`,lt.length>0?s.NumericLiteral:s.UnaryOperator));continue}}}for(const[Ge,lt]of l)if(J.slice(le,le+Ge.length)===Ge){z.push(new n(Ge,lt)),le+=Ge.length;continue e}if(Xe==="'"||Xe==='"'){++le;const Ge=ye(lt=>lt!==Xe);z.push(new n(Ge,s.StringLiteral)),++le;continue}if(a(Xe)){const Ge=ye(a);z.push(new n(Ge,s.NumericLiteral));continue}if(i(Xe)){const Ge=ye(i),lt=Object.hasOwn(o,Ge)?o[Ge]:s.Identifier;lt===s.In&&((Ie=z.at(-1))==null?void 0:Ie.type)===s.Not?(z.pop(),z.push(new n("not in",s.NotIn))):z.push(new n(Ge,lt));continue}throw new SyntaxError(`Unexpected character: ${Xe}`)}return z}var c=class{constructor(){te(this,"type","Statement")}},f=class extends c{constructor(Y){super();te(this,"type","Program");this.body=Y}},_=class extends c{constructor(Y,z,J){super();te(this,"type","If");this.test=Y,this.body=z,this.alternate=J}},T=class extends c{constructor(Y,z,J,le){super();te(this,"type","For");this.loopvar=Y,this.iterable=z,this.body=J,this.defaultBlock=le}},$=class extends c{constructor(Y,z,J){super();te(this,"type","Set");this.assignee=Y,this.value=z,this.body=J}},w=class extends c{constructor(Y,z,J){super();te(this,"type","Macro");this.name=Y,this.args=z,this.body=J}},g=class extends c{constructor(){super(...arguments);te(this,"type","Expression")}},S=class extends g{constructor(Y,z,J){super();te(this,"type","MemberExpression");this.object=Y,this.property=z,this.computed=J}},E=class extends g{constructor(Y,z){super();te(this,"type","CallExpression");this.callee=Y,this.args=z}},y=class extends g{constructor(Y){super();te(this,"type","Identifier");this.value=Y}},M=class extends g{constructor(Y){super();te(this,"type","Literal");this.value=Y}},v=class extends M{constructor(){super(...arguments);te(this,"type","NumericLiteral")}},C=class extends M{constructor(){super(...arguments);te(this,"type","StringLiteral")}},A=class extends M{constructor(){super(...arguments);te(this,"type","BooleanLiteral")}},B=class extends M{constructor(){super(...arguments);te(this,"type","NullLiteral")}},K=class extends M{constructor(){super(...arguments);te(this,"type","ArrayLiteral")}},G=class extends M{constructor(){super(...arguments);te(this,"type","TupleLiteral")}},j=class extends M{constructor(){super(...arguments);te(this,"type","ObjectLiteral")}},ee=class extends g{constructor(Y,z,J){super();te(this,"type","BinaryExpression");this.operator=Y,this.left=z,this.right=J}},H=class extends g{constructor(Y,z){super();te(this,"type","FilterExpression");this.operand=Y,this.filter=z}},Z=class extends g{constructor(Y,z){super();te(this,"type","SelectExpression");this.iterable=Y,this.test=z}},X=class extends g{constructor(Y,z,J){super();te(this,"type","TestExpression");this.operand=Y,this.negate=z,this.test=J}},oe=class extends g{constructor(Y,z){super();te(this,"type","UnaryExpression");this.operator=Y,this.argument=z}},me=class extends g{constructor(Y=void 0,z=void 0,J=void 0){super();te(this,"type","SliceExpression");this.start=Y,this.stop=z,this.step=J}},ae=class extends g{constructor(Y,z){super();te(this,"type","KeywordArgumentExpression");this.key=Y,this.value=z}};function V(O){const Y=new f([]);let z=0;function J(De,Qe){const tt=O[z++];if(!tt||tt.type!==De)throw new Error(`Parser Error: ${Qe}. ${tt.type} !== ${De}.`);return tt}function le(){switch(O[z].type){case s.Text:return ke();case s.OpenStatement:return Ie();case s.OpenExpression:return Re();default:throw new SyntaxError(`Unexpected token type: ${O[z].type}`)}}function ye(...De){return z+De.length<=O.length&&De.some((Qe,tt)=>Qe!==O[z+tt].type)}function Ee(...De){return z+De.length<=O.length&&De.every((Qe,tt)=>Qe===O[z+tt].type)}function ke(){return new C(J(s.Text,"Expected text token").value)}function Ie(){J(s.OpenStatement,"Expected opening statement token");let De;switch(O[z].type){case s.Set:++z,De=Xe(),J(s.CloseStatement,"Expected closing statement token");break;case s.If:++z,De=Ge(),J(s.OpenStatement,"Expected {% token"),J(s.EndIf,"Expected endif token"),J(s.CloseStatement,"Expected %} token");break;case s.Macro:++z,De=lt(),J(s.OpenStatement,"Expected {% token"),J(s.EndMacro,"Expected endmacro token"),J(s.CloseStatement,"Expected %} token");break;case s.For:++z,De=Gt(),J(s.OpenStatement,"Expected {% token"),J(s.EndFor,"Expected endfor token"),J(s.CloseStatement,"Expected %} token");break;default:throw new SyntaxError(`Unknown statement type: ${O[z].type}`)}return De}function Re(){J(s.OpenExpression,"Expected opening expression token");const De=Ot();return J(s.CloseExpression,"Expected closing expression token"),De}function Xe(){var Qe,tt;const De=Ot();if(Ee(s.Equals)){++z;const Rt=Ot();return new $(De,Rt,[])}else{const Rt=[];for(J(s.CloseStatement,"Expected %} token");!(((Qe=O[z])==null?void 0:Qe.type)===s.OpenStatement&&((tt=O[z+1])==null?void 0:tt.type)===s.EndSet);){const zr=le();Rt.push(zr)}return J(s.OpenStatement,"Expected {% token"),J(s.EndSet,"Expected endset token"),new $(De,null,Rt)}}function Ge(){var Rt,zr,Sr,ps,hs,Kr,ms,_s;const De=Ot();J(s.CloseStatement,"Expected closing statement token");const Qe=[],tt=[];for(;!(((Rt=O[z])==null?void 0:Rt.type)===s.OpenStatement&&(((zr=O[z+1])==null?void 0:zr.type)===s.ElseIf||((Sr=O[z+1])==null?void 0:Sr.type)===s.Else||((ps=O[z+1])==null?void 0:ps.type)===s.EndIf));)Qe.push(le());if(((hs=O[z])==null?void 0:hs.type)===s.OpenStatement&&((Kr=O[z+1])==null?void 0:Kr.type)!==s.EndIf)if(++z,Ee(s.ElseIf))J(s.ElseIf,"Expected elseif token"),tt.push(Ge());else for(J(s.Else,"Expected else token"),J(s.CloseStatement,"Expected closing statement token");!(((ms=O[z])==null?void 0:ms.type)===s.OpenStatement&&((_s=O[z+1])==null?void 0:_s.type)===s.EndIf);)tt.push(le());return new _(De,Qe,tt)}function lt(){const De=Qt();if(De.type!=="Identifier")throw new SyntaxError("Expected identifier following macro statement");const Qe=us();J(s.CloseStatement,"Expected closing statement token");const tt=[];for(;ye(s.OpenStatement,s.EndMacro);)tt.push(le());return new w(De,Qe,tt)}function wt(De=!1){const Qe=De?Qt:Ot,tt=[Qe()],Rt=Ee(s.Comma);for(;Rt&&(++z,tt.push(Qe()),!!Ee(s.Comma)););return Rt?new G(tt):tt[0]}function Gt(){const De=wt(!0);if(!(De instanceof y||De instanceof G))throw new SyntaxError(`Expected identifier/tuple for the loop variable, got ${De.type} instead`);J(s.In,"Expected `in` keyword following loop variable");const Qe=Ot();J(s.CloseStatement,"Expected closing statement token");const tt=[];for(;ye(s.OpenStatement,s.EndFor)&&ye(s.OpenStatement,s.Else);)tt.push(le());const Rt=[];if(Ee(s.OpenStatement,s.Else))for(++z,++z,J(s.CloseStatement,"Expected closing statement token");ye(s.OpenStatement,s.EndFor);)Rt.push(le());return new T(De,Qe,tt,Rt)}function Ot(){return ur()}function ur(){const De=ls();if(Ee(s.If)){++z;const Qe=ls();if(Ee(s.Else)){++z;const tt=ls();return new _(Qe,[De],[tt])}else return new Z(De,Qe)}return De}function ls(){let De=Ms();for(;Ee(s.Or);){const Qe=O[z];++z;const tt=Ms();De=new ee(Qe,De,tt)}return De}function Ms(){let De=Ir();for(;Ee(s.And);){const Qe=O[z];++z;const tt=Ir();De=new ee(Qe,De,tt)}return De}function Ir(){let De;for(;Ee(s.Not);){const Qe=O[z];++z;const tt=Ir();De=new oe(Qe,tt)}return De??js()}function js(){let De=Ss();for(;Ee(s.ComparisonBinaryOperator)||Ee(s.In)||Ee(s.NotIn);){const Qe=O[z];++z;const tt=Ss();De=new ee(Qe,De,tt)}return De}function Ss(){let De=ds();for(;Ee(s.AdditiveBinaryOperator);){const Qe=O[z];++z;const tt=ds();De=new ee(Qe,De,tt)}return De}function Ns(){const De=Ft(Qt());return Ee(s.OpenParen)?at(De):De}function at(De){let Qe=new E(De,us());return Qe=Ft(Qe),Ee(s.OpenParen)&&(Qe=at(Qe)),Qe}function us(){J(s.OpenParen,"Expected opening parenthesis for arguments list");const De=Ar();return J(s.CloseParen,"Expected closing parenthesis for arguments list"),De}function Ar(){const De=[];for(;!Ee(s.CloseParen);){let Qe=Ot();if(Ee(s.Equals)){if(++z,!(Qe instanceof y))throw new SyntaxError("Expected identifier for keyword argument");const tt=Ot();Qe=new ae(Qe,tt)}De.push(Qe),Ee(s.Comma)&&++z}return De}function bs(){const De=[];let Qe=!1;for(;!Ee(s.CloseSquareBracket);)Ee(s.Colon)?(De.push(void 0),++z,Qe=!0):(De.push(Ot()),Ee(s.Colon)&&(++z,Qe=!0));if(De.length===0)throw new SyntaxError("Expected at least one argument for member/slice expression");if(Qe){if(De.length>3)throw new SyntaxError("Expected 0-3 arguments for slice expression");return new me(...De)}return De[0]}function Ft(De){for(;Ee(s.Dot)||Ee(s.OpenSquareBracket);){const Qe=O[z];++z;let tt;const Rt=Qe.type!==s.Dot;if(Rt)tt=bs(),J(s.CloseSquareBracket,"Expected closing square bracket");else if(tt=Qt(),tt.type!=="Identifier")throw new SyntaxError("Expected identifier following dot operator");De=new S(De,tt,Rt)}return De}function ds(){let De=cs();for(;Ee(s.MultiplicativeBinaryOperator);){const Qe=O[z];++z;const tt=cs();De=new ee(Qe,De,tt)}return De}function cs(){let De=ys();for(;Ee(s.Is);){++z;const Qe=Ee(s.Not);Qe&&++z;let tt=Qt();if(tt instanceof A?tt=new y(tt.value.toString()):tt instanceof B&&(tt=new y("none")),!(tt instanceof y))throw new SyntaxError("Expected identifier for the test");De=new X(De,Qe,tt)}return De}function ys(){let De=Ns();for(;Ee(s.Pipe);){++z;let Qe=Qt();if(!(Qe instanceof y))throw new SyntaxError("Expected identifier for the filter");Ee(s.OpenParen)&&(Qe=at(Qe)),De=new H(De,Qe)}return De}function Qt(){const De=O[z];switch(De.type){case s.NumericLiteral:return++z,new v(Number(De.value));case s.StringLiteral:return++z,new C(De.value);case s.BooleanLiteral:return++z,new A(De.value.toLowerCase()==="true");case s.NullLiteral:return++z,new B(null);case s.Identifier:return++z,new y(De.value);case s.OpenParen:{++z;const Qe=wt();if(O[z].type!==s.CloseParen)throw new SyntaxError(`Expected closing parenthesis, got ${O[z].type} instead`);return++z,Qe}case s.OpenSquareBracket:{++z;const Qe=[];for(;!Ee(s.CloseSquareBracket);)Qe.push(Ot()),Ee(s.Comma)&&++z;return++z,new K(Qe)}case s.OpenCurlyBracket:{++z;const Qe=new Map;for(;!Ee(s.CloseCurlyBracket);){const tt=Ot();J(s.Colon,"Expected colon between key and value in object literal");const Rt=Ot();Qe.set(tt,Rt),Ee(s.Comma)&&++z}return++z,new j(Qe)}default:throw new SyntaxError(`Unexpected token: ${De.type}`)}}for(;z=0?(Y=(Y??(Y=0))<0?Math.max(O.length+Y,0):Math.min(Y,O.length),z=(z??(z=O.length))<0?Math.max(O.length+z,0):Math.min(z,O.length)):(Y=(Y??(Y=O.length-1))<0?Math.max(O.length+Y,-1):Math.min(Y,O.length-1),z=(z??(z=-1))<-1?Math.max(O.length+z,-1):Math.min(z,O.length-1));const ye=[];for(let Ee=Y;le*EeY.toUpperCase())}var _e=class{constructor(O=void 0){te(this,"type","RuntimeValue");te(this,"value");te(this,"builtins",new Map);this.value=O}__bool__(){return new $e(!!this.value)}},se=class extends _e{constructor(){super(...arguments);te(this,"type","NumericValue")}},ce=class extends _e{constructor(){super(...arguments);te(this,"type","StringValue");te(this,"builtins",new Map([["upper",new pe(()=>new ce(this.value.toUpperCase()))],["lower",new pe(()=>new ce(this.value.toLowerCase()))],["strip",new pe(()=>new ce(this.value.trim()))],["title",new pe(()=>new ce(re(this.value)))],["length",new se(this.value.length)],["rstrip",new pe(()=>new ce(this.value.trimEnd()))],["lstrip",new pe(()=>new ce(this.value.trimStart()))],["split",new pe(Y=>{const z=Y[0]??new xe;if(!(z instanceof ce||z instanceof xe))throw new Error("sep argument must be a string or null");const J=Y[1]??new se(-1);if(!(J instanceof se))throw new Error("maxsplit argument must be a number");let le=[];if(z instanceof xe){const ye=this.value.trimStart();for(const{0:Ee,index:ke}of ye.matchAll(/\S+/g)){if(J.value!==-1&&le.length>=J.value&&ke!==void 0){le.push(Ee+ye.slice(ke+Ee.length));break}le.push(Ee)}}else{if(z.value==="")throw new Error("empty separator");le=this.value.split(z.value),J.value!==-1&&le.length>J.value&&le.push(le.splice(J.value).join(z.value))}return new q(le.map(ye=>new ce(ye)))})]]))}},$e=class extends _e{constructor(){super(...arguments);te(this,"type","BooleanValue")}},Ue=class extends _e{constructor(){super(...arguments);te(this,"type","ObjectValue");te(this,"builtins",new Map([["get",new pe(([Y,z])=>{if(!(Y instanceof ce))throw new Error(`Object key must be a string: got ${Y.type}`);return this.value.get(Y.value)??z??new xe})],["items",new pe(()=>new q(Array.from(this.value.entries()).map(([Y,z])=>new q([new ce(Y),z]))))]]))}__bool__(){return new $e(this.value.size>0)}},we=class extends Ue{constructor(){super(...arguments);te(this,"type","KeywordArgumentsValue")}},q=class extends _e{constructor(){super(...arguments);te(this,"type","ArrayValue");te(this,"builtins",new Map([["length",new se(this.value.length)]]))}__bool__(){return new $e(this.value.length>0)}},R=class extends q{constructor(){super(...arguments);te(this,"type","TupleValue")}},pe=class extends _e{constructor(){super(...arguments);te(this,"type","FunctionValue")}},xe=class extends _e{constructor(){super(...arguments);te(this,"type","NullValue")}},be=class extends _e{constructor(){super(...arguments);te(this,"type","UndefinedValue")}},Se=class{constructor(O){te(this,"variables",new Map([["namespace",new pe(O=>{if(O.length===0)return new Ue(new Map);if(O.length!==1||!(O[0]instanceof Ue))throw new Error("`namespace` expects either zero arguments or a single object argument");return O[0]})]]));te(this,"tests",new Map([["boolean",O=>O.type==="BooleanValue"],["callable",O=>O instanceof pe],["odd",O=>{if(O.type!=="NumericValue")throw new Error(`Cannot apply test "odd" to type: ${O.type}`);return O.value%2!==0}],["even",O=>{if(O.type!=="NumericValue")throw new Error(`Cannot apply test "even" to type: ${O.type}`);return O.value%2===0}],["false",O=>O.type==="BooleanValue"&&!O.value],["true",O=>O.type==="BooleanValue"&&O.value],["none",O=>O.type==="NullValue"],["string",O=>O.type==="StringValue"],["number",O=>O.type==="NumericValue"],["integer",O=>O.type==="NumericValue"&&Number.isInteger(O.value)],["iterable",O=>O.type==="ArrayValue"||O.type==="StringValue"],["mapping",O=>O.type==="ObjectValue"],["lower",O=>{const Y=O.value;return O.type==="StringValue"&&Y===Y.toLowerCase()}],["upper",O=>{const Y=O.value;return O.type==="StringValue"&&Y===Y.toUpperCase()}],["none",O=>O.type==="NullValue"],["defined",O=>O.type!=="UndefinedValue"],["undefined",O=>O.type==="UndefinedValue"],["equalto",(O,Y)=>O.value===Y.value],["eq",(O,Y)=>O.value===Y.value]]));this.parent=O}set(O,Y){return this.declareVariable(O,Fe(Y))}declareVariable(O,Y){if(this.variables.has(O))throw new SyntaxError(`Variable already declared: ${O}`);return this.variables.set(O,Y),Y}setVariable(O,Y){return this.variables.set(O,Y),Y}resolve(O){if(this.variables.has(O))return this;if(this.parent)return this.parent.resolve(O);throw new Error(`Unknown variable: ${O}`)}lookupVariable(O){try{return this.resolve(O).variables.get(O)??new be}catch{return new be}}},Ae=class{constructor(O){te(this,"global");this.global=O??new Se}run(O){return this.evaluate(O,this.global)}evaluateBinaryExpression(O,Y){const z=this.evaluate(O.left,Y);switch(O.operator.value){case"and":return z.__bool__().value?this.evaluate(O.right,Y):z;case"or":return z.__bool__().value?z:this.evaluate(O.right,Y)}const J=this.evaluate(O.right,Y);switch(O.operator.value){case"==":return new $e(z.value==J.value);case"!=":return new $e(z.value!=J.value)}if(z instanceof be||J instanceof be)throw new Error("Cannot perform operation on undefined values");if(z instanceof xe||J instanceof xe)throw new Error("Cannot perform operation on null values");if(z instanceof se&&J instanceof se)switch(O.operator.value){case"+":return new se(z.value+J.value);case"-":return new se(z.value-J.value);case"*":return new se(z.value*J.value);case"/":return new se(z.value/J.value);case"%":return new se(z.value%J.value);case"<":return new $e(z.value":return new $e(z.value>J.value);case">=":return new $e(z.value>=J.value);case"<=":return new $e(z.value<=J.value)}else if(z instanceof q&&J instanceof q)switch(O.operator.value){case"+":return new q(z.value.concat(J.value))}else if(J instanceof q){const le=J.value.find(ye=>ye.value===z.value)!==void 0;switch(O.operator.value){case"in":return new $e(le);case"not in":return new $e(!le)}}if(z instanceof ce||J instanceof ce)switch(O.operator.value){case"+":return new ce(z.value.toString()+J.value.toString())}if(z instanceof ce&&J instanceof ce)switch(O.operator.value){case"in":return new $e(J.value.includes(z.value));case"not in":return new $e(!J.value.includes(z.value))}if(z instanceof ce&&J instanceof Ue)switch(O.operator.value){case"in":return new $e(J.value.has(z.value));case"not in":return new $e(!J.value.has(z.value))}throw new SyntaxError(`Unknown operator "${O.operator.value}" between ${z.type} and ${J.type}`)}evaluateArguments(O,Y){const z=[],J=new Map;for(const le of O)if(le.type==="KeywordArgumentExpression"){const ye=le;J.set(ye.key.value,this.evaluate(ye.value,Y))}else{if(J.size>0)throw new Error("Positional arguments must come before keyword arguments");z.push(this.evaluate(le,Y))}return[z,J]}evaluateFilterExpression(O,Y){const z=this.evaluate(O.operand,Y);if(O.filter.type==="Identifier"){const J=O.filter;if(J.value==="tojson")return new ce(ze(z));if(z instanceof q)switch(J.value){case"list":return z;case"first":return z.value[0];case"last":return z.value[z.value.length-1];case"length":return new se(z.value.length);case"reverse":return new q(z.value.reverse());case"sort":return new q(z.value.sort((le,ye)=>{if(le.type!==ye.type)throw new Error(`Cannot compare different types: ${le.type} and ${ye.type}`);switch(le.type){case"NumericValue":return le.value-ye.value;case"StringValue":return le.value.localeCompare(ye.value);default:throw new Error(`Cannot compare type: ${le.type}`)}}));case"join":return new ce(z.value.map(le=>le.value).join(""));case"string":return new ce(ze(z));default:throw new Error(`Unknown ArrayValue filter: ${J.value}`)}else if(z instanceof ce)switch(J.value){case"length":return new se(z.value.length);case"upper":return new ce(z.value.toUpperCase());case"lower":return new ce(z.value.toLowerCase());case"title":return new ce(re(z.value));case"capitalize":return new ce(z.value.charAt(0).toUpperCase()+z.value.slice(1));case"trim":return new ce(z.value.trim());case"indent":return new ce(z.value.split(` `).map((le,ye)=>ye===0||le.length===0?le:" "+le).join(` `));case"join":case"string":return z;default:throw new Error(`Unknown StringValue filter: ${J.value}`)}else if(z instanceof se)switch(J.value){case"abs":return new se(Math.abs(z.value));default:throw new Error(`Unknown NumericValue filter: ${J.value}`)}else if(z instanceof Ue)switch(J.value){case"items":return new q(Array.from(z.value.entries()).map(([le,ye])=>new q([new ce(le),ye])));case"length":return new se(z.value.size);default:throw new Error(`Unknown ObjectValue filter: ${J.value}`)}throw new Error(`Cannot apply filter "${J.value}" to type: ${z.type}`)}else if(O.filter.type==="CallExpression"){const J=O.filter;if(J.callee.type!=="Identifier")throw new Error(`Unknown filter: ${J.callee.type}`);const le=J.callee.value;if(le==="tojson"){const[,ye]=this.evaluateArguments(J.args,Y),Ee=ye.get("indent")??new xe;if(!(Ee instanceof se||Ee instanceof xe))throw new Error("If set, indent must be a number");return new ce(ze(z,Ee.value))}else if(le==="join"){let ye;if(z instanceof ce)ye=Array.from(z.value);else if(z instanceof q)ye=z.value.map(Re=>Re.value);else throw new Error(`Cannot apply filter "${le}" to type: ${z.type}`);const[Ee,ke]=this.evaluateArguments(J.args,Y),Ie=Ee.at(0)??ke.get("separator")??new ce("");if(!(Ie instanceof ce))throw new Error("separator must be a string");return new ce(ye.join(Ie.value))}if(z instanceof q){switch(le){case"selectattr":case"rejectattr":{const ye=le==="selectattr";if(z.value.some(Ge=>!(Ge instanceof Ue)))throw new Error(`\`${le}\` can only be applied to array of objects`);if(J.args.some(Ge=>Ge.type!=="StringLiteral"))throw new Error(`arguments of \`${le}\` must be strings`);const[Ee,ke,Ie]=J.args.map(Ge=>this.evaluate(Ge,Y));let Re;if(ke){const Ge=Y.tests.get(ke.value);if(!Ge)throw new Error(`Unknown test: ${ke.value}`);Re=Ge}else Re=(...Ge)=>Ge[0].__bool__().value;const Xe=z.value.filter(Ge=>{const lt=Ge.value.get(Ee.value),wt=lt?Re(lt,Ie):!1;return ye?wt:!wt});return new q(Xe)}case"map":{const[,ye]=this.evaluateArguments(J.args,Y);if(ye.has("attribute")){const Ee=ye.get("attribute");if(!(Ee instanceof ce))throw new Error("attribute must be a string");const ke=ye.get("default"),Ie=z.value.map(Re=>{if(!(Re instanceof Ue))throw new Error("items in map must be an object");return Re.value.get(Ee.value)??ke??new be});return new q(Ie)}else throw new Error("`map` expressions without `attribute` set are not currently supported.")}}throw new Error(`Unknown ArrayValue filter: ${le}`)}else if(z instanceof ce){switch(le){case"indent":{const[ye,Ee]=this.evaluateArguments(J.args,Y),ke=ye.at(0)??Ee.get("width")??new se(4);if(!(ke instanceof se))throw new Error("width must be a number");const Ie=ye.at(1)??Ee.get("first")??new $e(!1),Re=ye.at(2)??Ee.get("blank")??new $e(!1),Xe=z.value.split(` `),Ge=" ".repeat(ke.value),lt=Xe.map((wt,Gt)=>!Ie.value&&Gt===0||!Re.value&&wt.length===0?wt:Ge+wt);return new ce(lt.join(` `))}}throw new Error(`Unknown StringValue filter: ${le}`)}else throw new Error(`Cannot apply filter "${le}" to type: ${z.type}`)}throw new Error(`Unknown filter: ${O.filter.type}`)}evaluateTestExpression(O,Y){const z=this.evaluate(O.operand,Y),J=Y.tests.get(O.test.value);if(!J)throw new Error(`Unknown test: ${O.test.value}`);const le=J(z);return new $e(O.negate?!le:le)}evaluateUnaryExpression(O,Y){const z=this.evaluate(O.argument,Y);switch(O.operator.value){case"not":return new $e(!z.value);default:throw new SyntaxError(`Unknown operator: ${O.operator.value}`)}}evalProgram(O,Y){return this.evaluateBlock(O.body,Y)}evaluateBlock(O,Y){let z="";for(const J of O){const le=this.evaluate(J,Y);le.type!=="NullValue"&&le.type!=="UndefinedValue"&&(z+=le.value)}return new ce(z)}evaluateIdentifier(O,Y){return Y.lookupVariable(O.value)}evaluateCallExpression(O,Y){const[z,J]=this.evaluateArguments(O.args,Y);J.size>0&&z.push(new we(J));const le=this.evaluate(O.callee,Y);if(le.type!=="FunctionValue")throw new Error(`Cannot call something that is not a function: got ${le.type}`);return le.value(z,Y)}evaluateSliceExpression(O,Y,z){if(!(O instanceof q||O instanceof ce))throw new Error("Slice object must be an array or string");const J=this.evaluate(Y.start,z),le=this.evaluate(Y.stop,z),ye=this.evaluate(Y.step,z);if(!(J instanceof se||J instanceof be))throw new Error("Slice start must be numeric or undefined");if(!(le instanceof se||le instanceof be))throw new Error("Slice stop must be numeric or undefined");if(!(ye instanceof se||ye instanceof be))throw new Error("Slice step must be numeric or undefined");return O instanceof q?new q(W(O.value,J.value,le.value,ye.value)):new ce(W(Array.from(O.value),J.value,le.value,ye.value).join(""))}evaluateMemberExpression(O,Y){const z=this.evaluate(O.object,Y);let J;if(O.computed){if(O.property.type==="SliceExpression")return this.evaluateSliceExpression(z,O.property,Y);J=this.evaluate(O.property,Y)}else J=new ce(O.property.value);let le;if(z instanceof Ue){if(!(J instanceof ce))throw new Error(`Cannot access property with non-string: got ${J.type}`);le=z.value.get(J.value)??z.builtins.get(J.value)}else if(z instanceof q||z instanceof ce)if(J instanceof se)le=z.value.at(J.value),z instanceof ce&&(le=new ce(z.value.at(J.value)));else if(J instanceof ce)le=z.builtins.get(J.value);else throw new Error(`Cannot access property with non-string/non-number: got ${J.type}`);else{if(!(J instanceof ce))throw new Error(`Cannot access property with non-string: got ${J.type}`);le=z.builtins.get(J.value)}return le instanceof _e?le:new be}evaluateSet(O,Y){const z=O.value?this.evaluate(O.value,Y):this.evaluateBlock(O.body,Y);if(O.assignee.type==="Identifier"){const J=O.assignee.value;Y.setVariable(J,z)}else if(O.assignee.type==="MemberExpression"){const J=O.assignee,le=this.evaluate(J.object,Y);if(!(le instanceof Ue))throw new Error("Cannot assign to member of non-object");if(J.property.type!=="Identifier")throw new Error("Cannot assign to member with non-identifier property");le.value.set(J.property.value,z)}else throw new Error(`Invalid LHS inside assignment expression: ${JSON.stringify(O.assignee)}`);return new xe}evaluateIf(O,Y){const z=this.evaluate(O.test,Y);return this.evaluateBlock(z.__bool__().value?O.body:O.alternate,Y)}evaluateFor(O,Y){const z=new Se(Y);let J,le;if(O.iterable.type==="SelectExpression"){const Re=O.iterable;le=this.evaluate(Re.iterable,z),J=Re.test}else le=this.evaluate(O.iterable,z);if(!(le instanceof q))throw new Error(`Expected iterable type in for loop: got ${le.type}`);const ye=[],Ee=[];for(let Re=0;Rewt.setVariable(O.loopvar.value,Ge);else if(O.loopvar.type==="TupleLiteral"){const wt=O.loopvar;if(Ge.type!=="ArrayValue")throw new Error(`Cannot unpack non-iterable type: ${Ge.type}`);const Gt=Ge;if(wt.value.length!==Gt.value.length)throw new Error(`Too ${wt.value.length>Gt.value.length?"few":"many"} items to unpack`);lt=Ot=>{for(let ur=0;ur0?ye[Re-1]:new be],["nextitem",Re{var Ee;const le=new Se(J);z=z.slice();let ye;((Ee=z.at(-1))==null?void 0:Ee.type)==="KeywordArgumentsValue"&&(ye=z.pop());for(let ke=0;kethis.evaluate(z,Y)));case"TupleLiteral":return new R(O.value.map(z=>this.evaluate(z,Y)));case"ObjectLiteral":{const z=new Map;for(const[J,le]of O.value){const ye=this.evaluate(J,Y);if(!(ye instanceof ce))throw new Error(`Object keys must be strings: got ${ye.type}`);z.set(ye.value,this.evaluate(le,Y))}return new Ue(z)}case"Identifier":return this.evaluateIdentifier(O,Y);case"CallExpression":return this.evaluateCallExpression(O,Y);case"MemberExpression":return this.evaluateMemberExpression(O,Y);case"UnaryExpression":return this.evaluateUnaryExpression(O,Y);case"BinaryExpression":return this.evaluateBinaryExpression(O,Y);case"FilterExpression":return this.evaluateFilterExpression(O,Y);case"TestExpression":return this.evaluateTestExpression(O,Y);default:throw new SyntaxError(`Unknown node type: ${O.type}`)}}};function Fe(O){switch(typeof O){case"number":return new se(O);case"string":return new ce(O);case"boolean":return new $e(O);case"undefined":return new be;case"object":return O===null?new xe:Array.isArray(O)?new q(O.map(Fe)):new Ue(new Map(Object.entries(O).map(([Y,z])=>[Y,Fe(z)])));case"function":return new pe((Y,z)=>{const J=O(...Y.map(le=>le.value))??null;return Fe(J)});default:throw new Error(`Cannot convert to runtime value: ${O}`)}}function ze(O,Y,z){const J=z??0;switch(O.type){case"NullValue":case"UndefinedValue":return"null";case"NumericValue":case"StringValue":case"BooleanValue":return JSON.stringify(O.value);case"ArrayValue":case"ObjectValue":{const le=Y?" ".repeat(Y):"",ye=` `+le.repeat(J),Ee=ye+le;if(O.type==="ArrayValue"){const ke=O.value.map(Ie=>ze(Ie,Y,J+1));return Y?`[${Ee}${ke.join(`,${Ee}`)}${ye}]`:`[${ke.join(", ")}]`}else{const ke=Array.from(O.value.entries()).map(([Ie,Re])=>{const Xe=`"${Ie}": ${ze(Re,Y,J+1)}`;return Y?`${Ee}${Xe}`:Xe});return Y?`{${ke.join(",")}${ye}}`:`{${ke.join(", ")}}`}}default:throw new Error(`Cannot convert to JSON: ${O.type}`)}}var Ve=class{constructor(O){te(this,"parsed");const Y=d(O,{lstrip_blocks:!0,trim_blocks:!0});this.parsed=V(Y)}render(O){const Y=new Se;if(Y.set("false",!1),Y.set("true",!0),Y.set("raise_exception",le=>{throw new Error(le)}),Y.set("range",F),O)for(const[le,ye]of Object.entries(O))Y.set(le,ye);return new Ae(Y).run(this.parsed).value}}},"./src/backends/onnx.js":(e,r,t)=>{var s;t.r(r),t.d(r,{Tensor:()=>a.Tensor,createInferenceSession:()=>$,deviceToExecutionProviders:()=>_,isONNXProxy:()=>S,isONNXTensor:()=>w});var o=t("./src/env.js"),n=t("?2ce3"),i=t("onnxruntime-web"),a=t("onnxruntime-common");const l=Object.freeze({auto:null,gpu:null,cpu:"cpu",wasm:"wasm",webgpu:"webgpu",cuda:"cuda",dml:"dml",webnn:{name:"webnn",deviceType:"cpu"},"webnn-npu":{name:"webnn",deviceType:"npu"},"webnn-gpu":{name:"webnn",deviceType:"gpu"},"webnn-cpu":{name:"webnn",deviceType:"cpu"}}),u=[];let p,d;const c=Symbol.for("onnxruntime");if(c in globalThis)d=globalThis[c];else if(o.apis.IS_NODE_ENV){switch(d=n??(s||(s=t.t(n,2))),process.platform){case"win32":u.push("dml");break;case"linux":process.arch==="x64"&&u.push("cuda");break}u.push("cpu"),p=["cpu"]}else d=i,o.apis.IS_WEBNN_AVAILABLE&&u.push("webnn-npu","webnn-gpu","webnn-cpu","webnn"),o.apis.IS_WEBGPU_AVAILABLE&&u.push("webgpu"),u.push("wasm"),p=["wasm"];const f=d.InferenceSession;function _(E=null){if(!E)return p;switch(E){case"auto":return u;case"gpu":return u.filter(y=>["webgpu","cuda","dml","webnn-gpu"].includes(y))}if(u.includes(E))return[l[E]??E];throw new Error(`Unsupported device: "${E}". Should be one of: ${u.join(", ")}.`)}let T=null;async function $(E,y,M){T&&await T;const v=f.create(E,y);T??(T=v);const C=await v;return C.config=M,C}function w(E){return E instanceof d.Tensor}const g=d==null?void 0:d.env;g!=null&&g.wasm&&(!(typeof ServiceWorkerGlobalScope<"u"&&self instanceof ServiceWorkerGlobalScope)&&!g.wasm.wasmPaths&&(g.wasm.wasmPaths=`https://cdn.jsdelivr.net/npm/@huggingface/transformers@${o.env.version}/dist/`),g.wasm.proxy=!1),g!=null&&g.webgpu&&(g.webgpu.powerPreference="high-performance");function S(){var E;return(E=g==null?void 0:g.wasm)==null?void 0:E.proxy}o.env.backends.onnx=g},"./src/base/feature_extraction_utils.js":(e,r,t)=>{t.r(r),t.d(r,{FeatureExtractor:()=>i,validate_audio_inputs:()=>a});var s=t("./src/utils/constants.js"),o=t("./src/utils/generic.js"),n=t("./src/utils/hub.js");class i extends o.Callable{constructor(u){super(),this.config=u}static async from_pretrained(u,p){const d=await(0,n.getModelJSON)(u,s.FEATURE_EXTRACTOR_NAME,!0,p);return new this(d)}}function a(l,u){var p;if(!(l instanceof Float32Array||l instanceof Float64Array))throw new Error(`${u} expects input to be a Float32Array or a Float64Array, but got ${((p=l==null?void 0:l.constructor)==null?void 0:p.name)??typeof l} instead. If using the feature extractor directly, remember to use \`read_audio(url, sampling_rate)\` to obtain the raw audio data of the file/url.`)}},"./src/base/image_processors_utils.js":(e,r,t)=>{t.r(r),t.d(r,{ImageProcessor:()=>E,center_to_corners_format:()=>d,post_process_instance_segmentation:()=>S,post_process_object_detection:()=>c,post_process_panoptic_segmentation:()=>g,post_process_semantic_segmentation:()=>f});var s=t("./src/utils/generic.js"),o=t("./src/utils/tensor.js"),n=t("./src/utils/maths.js");t("./src/utils/image.js");var i=t("./src/utils/core.js"),a=t("./src/utils/hub.js"),l=t("./src/utils/constants.js");function u(y,M,v=0,C=null){const A=y/M;let B=(0,n.bankers_round)(A)*M;return C!==null&&B>C&&(B=Math.floor(A)*M),BM&&F.push(re)}else{let re=(0,n.max)(V.data)[1];if(re===j-1||(W=(0,n.softmax)(V.data),W[re]se*Z[(ce+1)%2])),X.boxes.push(_e),X.classes.push(re),X.scores.push(W[re])}}ee.push(X)}return ee}function f(y,M=null){const v=y.logits,C=v.dims[0];if(M!==null&&M.length!==C)throw Error("Make sure that you pass in as many target sizes as the batch dimension of the logits");const A=[];for(let B=0;BZ[F]&&(Z[F]=V[F],X[F]=ae)}const oe=new Array(G.dims[0]);for(let ae=0;aeae!==void 0);A.push({segmentation:H,labels:me})}return A}function _(y,M,v,C){const A=[],B=[],K=[];for(let G=0;Gv&&(A.push(ee),B.push(X),K.push(H))}return[A,B,K]}function T(y,M,v,C=.5,A=.8){const B=[];let K=0,G=0;const j=M[v].data;for(let H=0;H=C&&++G;let ee=K>0&&G>0;return ee&&(ee=K/G>A),[ee,B]}function $(y,M,v,C,A,B=null,K=null){const[G,j]=K??y[0].dims,ee=new o.Tensor("int32",new Int32Array(G*j),[G,j]),H=[];if(K!==null)for(let ae=0;aeX[W]&&(Z[W]=ae,X[W]=F[W])}let oe=0;const me=ee.data;for(let ae=0;ae200)throw new Error(`absolute aspect ratio must be smaller than 200, got ${Math.max(y,M)/Math.min(y,M)}`);let B=Math.round(y/v)*v,K=Math.round(M/v)*v;if(B*K>A){const G=Math.sqrt(y*M/A);B=Math.floor(y/G/v)*v,K=Math.floor(M/G/v)*v}else if(B*KB?ee=Math.floor(B*j/A):B>A&&(j=Math.floor(A*ee/B)),await M.resize(ee,j,{resample:C}))}async crop_margin(M,v=200){const C=M.clone().grayscale(),A=(0,n.min)(C.data)[0],K=(0,n.max)(C.data)[0]-A;if(K===0)return M;const G=v/255;let j=C.width,ee=C.height,H=0,Z=0;const X=C.data;for(let oe=0;oethis.preprocess(B)));return{pixel_values:(0,o.stack)(C.map(B=>B.pixel_values),0),original_sizes:C.map(B=>B.original_size),reshaped_input_sizes:C.map(B=>B.reshaped_input_size)}}static async from_pretrained(M,v){const C=await(0,a.getModelJSON)(M,l.IMAGE_PROCESSOR_NAME,!0,v);return new this(C)}}},"./src/base/processing_utils.js":(e,r,t)=>{t.r(r),t.d(r,{Processor:()=>i});var s=t("./src/utils/constants.js"),o=t("./src/utils/generic.js"),n=t("./src/utils/hub.js");class i extends o.Callable{constructor(l,u){super(),this.config=l,this.components=u}get image_processor(){return this.components.image_processor}get tokenizer(){return this.components.tokenizer}get feature_extractor(){return this.components.feature_extractor}apply_chat_template(l,u={}){if(!this.tokenizer)throw new Error("Unable to apply chat template without a tokenizer.");return this.tokenizer.apply_chat_template(l,{tokenize:!1,...u})}batch_decode(...l){if(!this.tokenizer)throw new Error("Unable to decode without a tokenizer.");return this.tokenizer.batch_decode(...l)}decode(...l){if(!this.tokenizer)throw new Error("Unable to decode without a tokenizer.");return this.tokenizer.decode(...l)}async _call(l,...u){for(const p of[this.image_processor,this.feature_extractor,this.tokenizer])if(p)return p(l,...u);throw new Error("No image processor, feature extractor, or tokenizer found.")}static async from_pretrained(l,u){const[p,d]=await Promise.all([this.uses_processor_config?(0,n.getModelJSON)(l,s.PROCESSOR_NAME,!0,u):{},Promise.all(this.classes.filter(c=>c in this).map(async c=>{const f=await this[c].from_pretrained(l,u);return[c.replace(/_class$/,""),f]})).then(Object.fromEntries)]);return new this(p,d)}}te(i,"classes",["image_processor_class","tokenizer_class","feature_extractor_class"]),te(i,"uses_processor_config",!1)},"./src/configs.js":(e,r,t)=>{t.r(r),t.d(r,{AutoConfig:()=>u,PretrainedConfig:()=>l,getKeyValueShapes:()=>a});var s=t("./src/utils/core.js"),o=t("./src/utils/hub.js");async function n(p,d){return await(0,o.getModelJSON)(p,"config.json",!0,d)}function i(p){const d={};let c={};switch(p.model_type){case"llava":case"paligemma":case"gemma3":case"florence2":case"llava_onevision":case"idefics3":case"ultravox":case"smolvlm":c=i(p.text_config);break;case"moondream1":c=i(p.phi_config);break;case"musicgen":c=i(p.decoder);break;case"multi_modality":c=i(p.language_config);break;case"gpt2":case"gptj":case"jais":case"codegen":case"gpt_bigcode":d.num_heads="n_head",d.num_layers="n_layer",d.hidden_size="n_embd";break;case"gpt_neox":case"stablelm":case"opt":case"falcon":d.num_heads="num_attention_heads",d.num_layers="num_hidden_layers",d.hidden_size="hidden_size";break;case"llama":case"olmo":case"olmo2":case"mobilellm":case"granite":case"cohere":case"mistral":case"starcoder2":case"qwen2":case"qwen2_vl":case"phi":case"phi3":case"phi3_v":d.num_heads="num_key_value_heads",d.num_layers="num_hidden_layers",d.hidden_size="hidden_size",d.num_attention_heads="num_attention_heads";break;case"gemma":case"gemma2":case"gemma3_text":case"glm":case"helium":d.num_heads="num_key_value_heads",d.num_layers="num_hidden_layers",d.dim_kv="head_dim";break;case"openelm":d.num_heads="num_kv_heads",d.num_layers="num_transformer_layers",d.dim_kv="head_dim";break;case"gpt_neo":case"donut-swin":d.num_heads="num_heads",d.num_layers="num_layers",d.hidden_size="hidden_size";break;case"bloom":d.num_heads="n_head",d.num_layers="n_layer",d.hidden_size="hidden_size";break;case"mpt":d.num_heads="n_heads",d.num_layers="n_layers",d.hidden_size="d_model";break;case"exaone":d.num_heads="num_key_value_heads",d.num_layers="num_layers",d.dim_kv="head_dim",d.num_attention_heads="num_attention_heads";break;case"t5":case"mt5":case"longt5":d.num_decoder_layers="num_decoder_layers",d.num_decoder_heads="num_heads",d.decoder_dim_kv="d_kv",d.num_encoder_layers="num_layers",d.num_encoder_heads="num_heads",d.encoder_dim_kv="d_kv";break;case"bart":case"mbart":case"marian":case"whisper":case"lite-whisper":case"m2m_100":case"blenderbot":case"blenderbot-small":case"florence2_language":d.num_decoder_layers="decoder_layers",d.num_decoder_heads="decoder_attention_heads",d.decoder_hidden_size="d_model",d.num_encoder_layers="encoder_layers",d.num_encoder_heads="encoder_attention_heads",d.encoder_hidden_size="d_model";break;case"speecht5":d.num_decoder_layers="decoder_layers",d.num_decoder_heads="decoder_attention_heads",d.decoder_hidden_size="hidden_size",d.num_encoder_layers="encoder_layers",d.num_encoder_heads="encoder_attention_heads",d.encoder_hidden_size="hidden_size";break;case"trocr":d.num_encoder_layers=d.num_decoder_layers="decoder_layers",d.num_encoder_heads=d.num_decoder_heads="decoder_attention_heads",d.encoder_hidden_size=d.decoder_hidden_size="d_model";break;case"musicgen_decoder":d.num_encoder_layers=d.num_decoder_layers="num_hidden_layers",d.num_encoder_heads=d.num_decoder_heads="num_attention_heads",d.encoder_hidden_size=d.decoder_hidden_size="hidden_size";break;case"moonshine":d.num_decoder_layers="decoder_num_hidden_layers",d.num_decoder_heads="decoder_num_key_value_heads",d.num_encoder_layers="encoder_num_hidden_layers",d.num_encoder_heads="encoder_num_key_value_heads",d.encoder_hidden_size=d.decoder_hidden_size="hidden_size";break;case"vision-encoder-decoder":const _=i(p.decoder),T="num_decoder_layers"in _,$=(0,s.pick)(p,["model_type","is_encoder_decoder"]);return T?($.num_decoder_layers=_.num_decoder_layers,$.num_decoder_heads=_.num_decoder_heads,$.decoder_hidden_size=_.decoder_hidden_size,$.num_encoder_layers=_.num_encoder_layers,$.num_encoder_heads=_.num_encoder_heads,$.encoder_hidden_size=_.encoder_hidden_size):($.num_layers=_.num_layers,$.num_heads=_.num_heads,$.hidden_size=_.hidden_size),$}const f={...c,...(0,s.pick)(p,["model_type","multi_query","is_encoder_decoder"])};for(const _ in d)f[_]=p[d[_]];return f}function a(p,{prefix:d="past_key_values",batch_size:c=1}={}){const f={},_=p.normalized_config;if(_.is_encoder_decoder&&"num_encoder_heads"in _&&"num_decoder_heads"in _){const T=_.encoder_dim_kv??_.encoder_hidden_size/_.num_encoder_heads,$=_.decoder_dim_kv??_.decoder_hidden_size/_.num_decoder_heads,w=[c,_.num_encoder_heads,0,T],g=[c,_.num_decoder_heads,0,$];for(let S=0;S<_.num_decoder_layers;++S)f[`${d}.${S}.encoder.key`]=w,f[`${d}.${S}.encoder.value`]=w,f[`${d}.${S}.decoder.key`]=g,f[`${d}.${S}.decoder.value`]=g}else{const T=_.num_heads,$=_.num_layers,w=_.dim_kv??_.hidden_size/(_.num_attention_heads??T);if(_.model_type==="falcon"){const g=[c*T,0,w];for(let S=0;S<$;++S)f[`${d}.${S}.key`]=g,f[`${d}.${S}.value`]=g}else if(_.multi_query){const g=[c*T,0,2*w];for(let S=0;S<$;++S)f[`${d}.${S}.key_value`]=g}else if(_.model_type==="bloom"){const g=[c*T,w,0],S=[c*T,0,w];for(let E=0;E<$;++E)f[`${d}.${E}.key`]=g,f[`${d}.${E}.value`]=S}else if(_.model_type==="openelm")for(let g=0;g<$;++g){const S=[c,T[g],0,w];f[`${d}.${g}.key`]=S,f[`${d}.${g}.value`]=S}else{const g=[c,T,0,w];for(let S=0;S<$;++S)f[`${d}.${S}.key`]=g,f[`${d}.${S}.value`]=g}}return f}class l{constructor(d){te(this,"model_type",null);te(this,"is_encoder_decoder",!1);te(this,"max_position_embeddings");te(this,"transformers.js_config");Object.assign(this,d),this.normalized_config=i(this)}static async from_pretrained(d,{progress_callback:c=null,config:f=null,cache_dir:_=null,local_files_only:T=!1,revision:$="main"}={}){f&&!(f instanceof l)&&(f=new l(f));const w=f??await n(d,{progress_callback:c,config:f,cache_dir:_,local_files_only:T,revision:$});return new this(w)}}class u{static async from_pretrained(...d){return l.from_pretrained(...d)}}},"./src/env.js":(e,r,t)=>{var C,A;t.r(r),t.d(r,{apis:()=>$,env:()=>M});var s=t("?569f"),o=t("?3f59"),n=t("?154a");const i="3.5.0",a=typeof window<"u"&&typeof window.document<"u",l=typeof self<"u"&&((C=self.constructor)==null?void 0:C.name)==="DedicatedWorkerGlobalScope",u=typeof self<"u"&&"caches"in self,p=typeof navigator<"u"&&"gpu"in navigator,d=typeof navigator<"u"&&"ml"in navigator,c=typeof process<"u",f=c&&((A=process==null?void 0:process.release)==null?void 0:A.name)==="node",_=!v(s),T=!v(o),$=Object.freeze({IS_BROWSER_ENV:a,IS_WEBWORKER_ENV:l,IS_WEB_CACHE_AVAILABLE:u,IS_WEBGPU_AVAILABLE:p,IS_WEBNN_AVAILABLE:d,IS_PROCESS_AVAILABLE:c,IS_NODE_ENV:f,IS_FS_AVAILABLE:_,IS_PATH_AVAILABLE:T}),w=_&&T;let g="./";if(w){const B=Object({url:self.location.href}).url;B?g=o.dirname(o.dirname(n.fileURLToPath(B))):typeof __dirname<"u"&&(g=o.dirname(__dirname))}const S=w?o.join(g,"/.cache/"):null,E="/models/",y=w?o.join(g,E):E,M={version:i,backends:{onnx:{}},allowRemoteModels:!0,remoteHost:"https://huggingface.co/",remotePathTemplate:"{model}/resolve/{revision}/",allowLocalModels:!(a||l),localModelPath:y,useFS:_,useBrowserCache:u,useFSCache:_,cacheDir:S,useCustomCache:!1,customCache:null};function v(B){return Object.keys(B).length===0}},"./src/generation/configuration_utils.js":(e,r,t)=>{t.r(r),t.d(r,{GenerationConfig:()=>o});var s=t("./src/utils/core.js");class o{constructor(i){te(this,"max_length",20);te(this,"max_new_tokens",null);te(this,"min_length",0);te(this,"min_new_tokens",null);te(this,"early_stopping",!1);te(this,"max_time",null);te(this,"do_sample",!1);te(this,"num_beams",1);te(this,"num_beam_groups",1);te(this,"penalty_alpha",null);te(this,"use_cache",!0);te(this,"temperature",1);te(this,"top_k",50);te(this,"top_p",1);te(this,"typical_p",1);te(this,"epsilon_cutoff",0);te(this,"eta_cutoff",0);te(this,"diversity_penalty",0);te(this,"repetition_penalty",1);te(this,"encoder_repetition_penalty",1);te(this,"length_penalty",1);te(this,"no_repeat_ngram_size",0);te(this,"bad_words_ids",null);te(this,"force_words_ids",null);te(this,"renormalize_logits",!1);te(this,"constraints",null);te(this,"forced_bos_token_id",null);te(this,"forced_eos_token_id",null);te(this,"remove_invalid_values",!1);te(this,"exponential_decay_length_penalty",null);te(this,"suppress_tokens",null);te(this,"streamer",null);te(this,"begin_suppress_tokens",null);te(this,"forced_decoder_ids",null);te(this,"guidance_scale",null);te(this,"num_return_sequences",1);te(this,"output_attentions",!1);te(this,"output_hidden_states",!1);te(this,"output_scores",!1);te(this,"return_dict_in_generate",!1);te(this,"pad_token_id",null);te(this,"bos_token_id",null);te(this,"eos_token_id",null);te(this,"encoder_no_repeat_ngram_size",0);te(this,"decoder_start_token_id",null);te(this,"generation_kwargs",{});Object.assign(this,(0,s.pick)(i,Object.getOwnPropertyNames(this)))}}},"./src/generation/logits_process.js":(e,r,t)=>{t.r(r),t.d(r,{ClassifierFreeGuidanceLogitsProcessor:()=>w,ForcedBOSTokenLogitsProcessor:()=>l,ForcedEOSTokenLogitsProcessor:()=>u,LogitsProcessor:()=>n,LogitsProcessorList:()=>a,LogitsWarper:()=>i,MinLengthLogitsProcessor:()=>_,MinNewTokensLengthLogitsProcessor:()=>T,NoBadWordsLogitsProcessor:()=>$,NoRepeatNGramLogitsProcessor:()=>c,RepetitionPenaltyLogitsProcessor:()=>f,SuppressTokensAtBeginLogitsProcessor:()=>p,TemperatureLogitsWarper:()=>g,TopKLogitsWarper:()=>E,TopPLogitsWarper:()=>S,WhisperTimeStampLogitsProcessor:()=>d});var s=t("./src/utils/generic.js");t("./src/utils/tensor.js");var o=t("./src/utils/maths.js");class n extends s.Callable{_call(M,v){throw Error("`_call` should be implemented in a subclass")}}class i extends s.Callable{_call(M,v){throw Error("`_call` should be implemented in a subclass")}}class a extends s.Callable{constructor(){super(),this.processors=[]}push(M){this.processors.push(M)}extend(M){this.processors.push(...M)}_call(M,v){let C=v;for(const A of this.processors)C=A(M,C);return C}[Symbol.iterator](){return this.processors.values()}}class l extends n{constructor(M){super(),this.bos_token_id=M}_call(M,v){for(let C=0;C=1&&B[B.length-1]>=this.timestamp_begin,G=B.length<2||B[B.length-2]>=this.timestamp_begin;if(K&&(G?A.subarray(this.timestamp_begin).fill(-1/0):A.subarray(0,this.eos_token_id).fill(-1/0)),M[C].length===this.begin_index&&this.max_initial_timestamp_index!==null){const Z=this.timestamp_begin+this.max_initial_timestamp_index;A.subarray(Z+1).fill(-1/0)}const j=(0,o.log_softmax)(A),ee=Math.log(j.subarray(this.timestamp_begin).map(Math.exp).reduce((Z,X)=>Z+X)),H=(0,o.max)(j.subarray(0,this.timestamp_begin))[0];ee>H&&A.subarray(0,this.timestamp_begin).fill(-1/0)}return v}}class c extends n{constructor(M){super(),this.no_repeat_ngram_size=M}getNgrams(M){const v=M.length,C=[];for(let B=0;B1 to use the classifier free guidance processor, got guidance scale ${M}.`);this.guidance_scale=M}_call(M,v){if(v.dims[0]!==2*M.length)throw new Error(`Logits should have twice the batch size of the input ids, the first half of batches corresponding to the conditional inputs, and the second half of batches corresponding to the unconditional inputs. Got batch size ${v.dims[0]} for the logits and ${M.length} for the input ids.`);const C=M.length,A=v.slice([0,C],null),B=v.slice([C,v.dims[0]],null);for(let K=0;K1)throw new Error(`\`top_p\` must be a float > 0 and < 1, but is ${M}`);if(!Number.isInteger(C)||C<1)throw new Error(`\`min_tokens_to_keep\` must be a positive integer, but is ${C}`);this.top_p=M,this.filter_value=v,this.min_tokens_to_keep=C}}class E extends i{constructor(M,{filter_value:v=-1/0,min_tokens_to_keep:C=1}={}){if(super(),!Number.isInteger(M)||M<0)throw new Error(`\`top_k\` must be a positive integer, but is ${M}`);this.top_k=Math.max(M,C),this.filter_value=v}}},"./src/generation/logits_sampler.js":(e,r,t)=>{t.r(r),t.d(r,{LogitsSampler:()=>i});var s=t("./src/utils/generic.js"),o=t("./src/utils/tensor.js"),n=t("./src/utils/maths.js");t("./src/generation/configuration_utils.js");class i extends s.Callable{constructor(d){super(),this.generation_config=d}async _call(d){return this.sample(d)}async sample(d){throw Error("sample should be implemented in subclasses.")}getLogits(d,c){let f=d.dims.at(-1),_=d.data;if(c===-1)_=_.slice(-f);else{let T=c*f;_=_.slice(T,T+f)}return _}randomSelect(d){let c=0;for(let _=0;_1)return new u(d);if(d.num_return_sequences>1)throw Error(`num_return_sequences has to be 1 when doing greedy search, but is ${d.num_return_sequences}.`);return new a(d)}}class a extends i{async sample(d){const c=(0,n.max)(d.data)[1];return[[BigInt(c),0]]}}class l extends i{async sample(d){let c=d.dims.at(-1);this.generation_config.top_k>0&&(c=Math.min(this.generation_config.top_k,c));const[f,_]=await(0,o.topk)(d,c),T=(0,n.softmax)(f.data);return Array.from({length:this.generation_config.num_beams},()=>{const $=this.randomSelect(T);return[_.data[$],Math.log(T[$])]})}}class u extends i{async sample(d){let c=d.dims.at(-1);this.generation_config.top_k>0&&(c=Math.min(this.generation_config.top_k,c));const[f,_]=await(0,o.topk)(d,c),T=(0,n.softmax)(f.data);return Array.from({length:this.generation_config.num_beams},($,w)=>[_.data[w],Math.log(T[w])])}}},"./src/generation/stopping_criteria.js":(e,r,t)=>{t.r(r),t.d(r,{EosTokenCriteria:()=>a,InterruptableStoppingCriteria:()=>l,MaxLengthCriteria:()=>i,StoppingCriteria:()=>o,StoppingCriteriaList:()=>n});var s=t("./src/utils/generic.js");class o extends s.Callable{_call(p,d){throw Error("StoppingCriteria needs to be subclassed")}}class n extends s.Callable{constructor(){super(),this.criteria=[]}push(p){this.criteria.push(p)}extend(p){p instanceof n?p=p.criteria:p instanceof o&&(p=[p]),this.criteria.push(...p)}_call(p,d){const c=new Array(p.length).fill(!1);for(const f of this.criteria){const _=f(p,d);for(let T=0;Td.length>=this.max_length)}}class a extends o{constructor(p){super(),Array.isArray(p)||(p=[p]),this.eos_token_id=p}_call(p,d){return p.map(c=>{const f=c.at(-1);return this.eos_token_id.some(_=>f==_)})}}class l extends o{constructor(){super(),this.interrupted=!1}interrupt(){this.interrupted=!0}reset(){this.interrupted=!1}_call(p,d){return new Array(p.length).fill(this.interrupted)}}},"./src/generation/streamers.js":(e,r,t)=>{t.r(r),t.d(r,{BaseStreamer:()=>i,TextStreamer:()=>l,WhisperTextStreamer:()=>u});var s=t("./src/utils/core.js"),o=t("./src/tokenizers.js"),n=t("./src/env.js");class i{put(d){throw Error("Not implemented")}end(){throw Error("Not implemented")}}const a=n.apis.IS_PROCESS_AVAILABLE?p=>process.stdout.write(p):p=>console.log(p);class l extends i{constructor(d,{skip_prompt:c=!1,callback_function:f=null,token_callback_function:_=null,skip_special_tokens:T=!0,decode_kwargs:$={},...w}={}){super(),this.tokenizer=d,this.skip_prompt=c,this.callback_function=f??a,this.token_callback_function=_,this.decode_kwargs={skip_special_tokens:T,...$,...w},this.token_cache=[],this.print_len=0,this.next_tokens_are_prompt=!0}put(d){var $;if(d.length>1)throw Error("TextStreamer only supports batch size of 1");const c=this.next_tokens_are_prompt;if(c&&(this.next_tokens_are_prompt=!1,this.skip_prompt))return;const f=d[0];($=this.token_callback_function)==null||$.call(this,f),this.token_cache=(0,s.mergeArrays)(this.token_cache,f);const _=this.tokenizer.decode(this.token_cache,this.decode_kwargs);let T;c||_.endsWith(` `)?(T=_.slice(this.print_len),this.token_cache=[],this.print_len=0):_.length>0&&(0,o.is_chinese_char)(_.charCodeAt(_.length-1))?(T=_.slice(this.print_len),this.print_len+=T.length):(T=_.slice(this.print_len,_.lastIndexOf(" ")+1),this.print_len+=T.length),this.on_finalized_text(T,!1)}end(){let d;this.token_cache.length>0?(d=this.tokenizer.decode(this.token_cache,this.decode_kwargs).slice(this.print_len),this.token_cache=[],this.print_len=0):d="",this.next_tokens_are_prompt=!0,this.on_finalized_text(d,!0)}on_finalized_text(d,c){var f,_;d.length>0&&((f=this.callback_function)==null||f.call(this,d)),c&&this.callback_function===a&&n.apis.IS_PROCESS_AVAILABLE&&((_=this.callback_function)==null||_.call(this,` `))}}class u extends l{constructor(d,{skip_prompt:c=!1,callback_function:f=null,token_callback_function:_=null,on_chunk_start:T=null,on_chunk_end:$=null,on_finalize:w=null,time_precision:g=.02,skip_special_tokens:S=!0,decode_kwargs:E={}}={}){super(d,{skip_prompt:c,skip_special_tokens:S,callback_function:f,token_callback_function:_,decode_kwargs:E}),this.timestamp_begin=d.timestamp_begin,this.on_chunk_start=T,this.on_chunk_end=$,this.on_finalize=w,this.time_precision=g,this.waiting_for_timestamp=!1}put(d){var f,_;if(d.length>1)throw Error("WhisperTextStreamer only supports batch size of 1");const c=d[0];if(c.length===1){const T=Number(c[0])-this.timestamp_begin;if(T>=0){const $=T*this.time_precision;this.waiting_for_timestamp?(f=this.on_chunk_end)==null||f.call(this,$):(_=this.on_chunk_start)==null||_.call(this,$),this.waiting_for_timestamp=!this.waiting_for_timestamp,d=[[]]}}return super.put(d)}end(){var d;super.end(),(d=this.on_finalize)==null||d.call(this)}}},"./src/models.js":(e,r,t)=>{t.r(r),t.d(r,{ASTForAudioClassification:()=>Ii,ASTModel:()=>ki,ASTPreTrainedModel:()=>To,AlbertForMaskedLM:()=>N,AlbertForQuestionAnswering:()=>k,AlbertForSequenceClassification:()=>he,AlbertModel:()=>vn,AlbertPreTrainedModel:()=>xs,AutoModel:()=>fd,AutoModelForAudioClassification:()=>M0,AutoModelForAudioFrameClassification:()=>y0,AutoModelForAudioTextToText:()=>k0,AutoModelForCTC:()=>w0,AutoModelForCausalLM:()=>a0,AutoModelForDepthEstimation:()=>E0,AutoModelForDocumentQuestionAnswering:()=>v0,AutoModelForImageClassification:()=>c0,AutoModelForImageFeatureExtraction:()=>S0,AutoModelForImageMatting:()=>x0,AutoModelForImageSegmentation:()=>p0,AutoModelForImageTextToText:()=>$0,AutoModelForImageToImage:()=>T0,AutoModelForMaskGeneration:()=>g0,AutoModelForMaskedLM:()=>l0,AutoModelForNormalEstimation:()=>P0,AutoModelForObjectDetection:()=>_0,AutoModelForPoseEstimation:()=>C0,AutoModelForQuestionAnswering:()=>u0,AutoModelForSemanticSegmentation:()=>h0,AutoModelForSeq2SeqLM:()=>s0,AutoModelForSequenceClassification:()=>t0,AutoModelForSpeechSeq2Seq:()=>n0,AutoModelForTextToSpectrogram:()=>o0,AutoModelForTextToWaveform:()=>i0,AutoModelForTokenClassification:()=>r0,AutoModelForUniversalSegmentation:()=>m0,AutoModelForVision2Seq:()=>d0,AutoModelForXVector:()=>b0,AutoModelForZeroShotObjectDetection:()=>f0,BartForConditionalGeneration:()=>jt,BartForSequenceClassification:()=>kt,BartModel:()=>Pt,BartPretrainedModel:()=>xt,BaseModelOutput:()=>xe,BeitForImageClassification:()=>Rw,BeitModel:()=>Bw,BeitPreTrainedModel:()=>Ou,BertForMaskedLM:()=>Ae,BertForQuestionAnswering:()=>Ve,BertForSequenceClassification:()=>Fe,BertForTokenClassification:()=>ze,BertModel:()=>Se,BertPreTrainedModel:()=>be,BlenderbotForConditionalGeneration:()=>rr,BlenderbotModel:()=>Dt,BlenderbotPreTrainedModel:()=>Xr,BlenderbotSmallForConditionalGeneration:()=>Rr,BlenderbotSmallModel:()=>Qr,BlenderbotSmallPreTrainedModel:()=>wr,BloomForCausalLM:()=>aw,BloomModel:()=>iw,BloomPreTrainedModel:()=>vu,CLIPModel:()=>Ni,CLIPPreTrainedModel:()=>Fs,CLIPSegForImageSegmentation:()=>zo,CLIPSegModel:()=>Lo,CLIPSegPreTrainedModel:()=>qn,CLIPTextModel:()=>pu,CLIPTextModelWithProjection:()=>Vi,CLIPVisionModel:()=>hu,CLIPVisionModelWithProjection:()=>Ui,CamembertForMaskedLM:()=>Ft,CamembertForQuestionAnswering:()=>ys,CamembertForSequenceClassification:()=>ds,CamembertForTokenClassification:()=>cs,CamembertModel:()=>bs,CamembertPreTrainedModel:()=>Ar,CausalLMOutput:()=>In,CausalLMOutputWithPast:()=>Vx,ChineseCLIPModel:()=>Gi,ChineseCLIPPreTrainedModel:()=>Wi,ClapAudioModelWithProjection:()=>zb,ClapModel:()=>Db,ClapPreTrainedModel:()=>ta,ClapTextModelWithProjection:()=>Lb,CodeGenForCausalLM:()=>$n,CodeGenModel:()=>Go,CodeGenPreTrainedModel:()=>Zn,CohereForCausalLM:()=>Ug,CohereModel:()=>Vg,CoherePreTrainedModel:()=>mu,ConvBertForMaskedLM:()=>Ot,ConvBertForQuestionAnswering:()=>Ms,ConvBertForSequenceClassification:()=>ur,ConvBertForTokenClassification:()=>ls,ConvBertModel:()=>Gt,ConvBertPreTrainedModel:()=>wt,ConvNextForImageClassification:()=>IM,ConvNextModel:()=>kM,ConvNextPreTrainedModel:()=>qu,ConvNextV2ForImageClassification:()=>FM,ConvNextV2Model:()=>AM,ConvNextV2PreTrainedModel:()=>Xu,DPTForDepthEstimation:()=>pM,DPTModel:()=>cM,DPTPreTrainedModel:()=>Gu,DacDecoderModel:()=>Ey,DacDecoderOutput:()=>vy,DacEncoderModel:()=>Ty,DacEncoderOutput:()=>yy,DacModel:()=>xy,DacPreTrainedModel:()=>la,DebertaForMaskedLM:()=>Qe,DebertaForQuestionAnswering:()=>zr,DebertaForSequenceClassification:()=>tt,DebertaForTokenClassification:()=>Rt,DebertaModel:()=>De,DebertaPreTrainedModel:()=>Qt,DebertaV2ForMaskedLM:()=>hs,DebertaV2ForQuestionAnswering:()=>_s,DebertaV2ForSequenceClassification:()=>Kr,DebertaV2ForTokenClassification:()=>ms,DebertaV2Model:()=>ps,DebertaV2PreTrainedModel:()=>Sr,DecisionTransformerModel:()=>ny,DecisionTransformerPreTrainedModel:()=>sy,DeiTForImageClassification:()=>tM,DeiTModel:()=>eM,DeiTPreTrainedModel:()=>Nu,DepthAnythingForDepthEstimation:()=>mM,DepthAnythingPreTrainedModel:()=>hM,DepthProForDepthEstimation:()=>MM,DepthProPreTrainedModel:()=>wM,DetrForObjectDetection:()=>Nw,DetrForSegmentation:()=>Du,DetrModel:()=>jw,DetrObjectDetectionOutput:()=>Lu,DetrPreTrainedModel:()=>qi,DetrSegmentationOutput:()=>Vw,Dinov2ForImageClassification:()=>DM,Dinov2Model:()=>OM,Dinov2PreTrainedModel:()=>Qu,Dinov2WithRegistersForImageClassification:()=>zM,Dinov2WithRegistersModel:()=>LM,Dinov2WithRegistersPreTrainedModel:()=>Ju,DistilBertForMaskedLM:()=>ks,DistilBertForQuestionAnswering:()=>$s,DistilBertForSequenceClassification:()=>cn,DistilBertForTokenClassification:()=>xr,DistilBertModel:()=>vr,DistilBertPreTrainedModel:()=>Hr,DonutSwinModel:()=>$M,DonutSwinPreTrainedModel:()=>SM,EfficientNetForImageClassification:()=>Wb,EfficientNetModel:()=>Ub,EfficientNetPreTrainedModel:()=>ad,ElectraForMaskedLM:()=>Ss,ElectraForQuestionAnswering:()=>us,ElectraForSequenceClassification:()=>Ns,ElectraForTokenClassification:()=>at,ElectraModel:()=>js,ElectraPreTrainedModel:()=>Ir,EsmForMaskedLM:()=>pn,EsmForSequenceClassification:()=>Fr,EsmForTokenClassification:()=>hn,EsmModel:()=>Vs,EsmPreTrainedModel:()=>fr,ExaoneForCausalLM:()=>L,ExaoneModel:()=>I,ExaonePreTrainedModel:()=>x,FalconForCausalLM:()=>Ob,FalconModel:()=>Fb,FalconPreTrainedModel:()=>nd,FastViTForImageClassification:()=>Cw,FastViTModel:()=>Pw,FastViTPreTrainedModel:()=>$u,Florence2ForConditionalGeneration:()=>ko,Florence2PreTrainedModel:()=>Li,GLPNForDepthEstimation:()=>CM,GLPNModel:()=>PM,GLPNPreTrainedModel:()=>Hu,GPT2LMHeadModel:()=>Bo,GPT2Model:()=>Ki,GPT2PreTrainedModel:()=>Xn,GPTBigCodeForCausalLM:()=>Wo,GPTBigCodeModel:()=>Yn,GPTBigCodePreTrainedModel:()=>Jn,GPTJForCausalLM:()=>Uo,GPTJModel:()=>Vo,GPTJPreTrainedModel:()=>Sn,GPTNeoForCausalLM:()=>No,GPTNeoModel:()=>jo,GPTNeoPreTrainedModel:()=>Ro,GPTNeoXForCausalLM:()=>Cn,GPTNeoXModel:()=>Nr,GPTNeoXPreTrainedModel:()=>Xs,Gemma2ForCausalLM:()=>Hg,Gemma2Model:()=>Kg,Gemma2PreTrainedModel:()=>fu,Gemma3ForCausalLM:()=>Xg,Gemma3Model:()=>qg,Gemma3PreTrainedModel:()=>gu,GemmaForCausalLM:()=>Gg,GemmaModel:()=>Wg,GemmaPreTrainedModel:()=>_u,GlmForCausalLM:()=>h,GlmModel:()=>Xo,GlmPreTrainedModel:()=>ro,GraniteForCausalLM:()=>Hi,GraniteModel:()=>Os,GranitePreTrainedModel:()=>sr,GroundingDinoForObjectDetection:()=>RM,GroundingDinoPreTrainedModel:()=>BM,GroupViTModel:()=>Ew,GroupViTPreTrainedModel:()=>Tw,HeliumForCausalLM:()=>qo,HeliumModel:()=>Ho,HeliumPreTrainedModel:()=>to,HieraForImageClassification:()=>sM,HieraModel:()=>rM,HieraPreTrainedModel:()=>Vu,HubertForCTC:()=>_b,HubertForSequenceClassification:()=>fb,HubertModel:()=>mb,HubertPreTrainedModel:()=>Sx,IJepaForImageClassification:()=>_w,IJepaModel:()=>mw,IJepaPreTrainedModel:()=>Pu,Idefics3ForConditionalGeneration:()=>Ks,Idefics3PreTrainedModel:()=>Ri,ImageMattingOutput:()=>A0,JAISLMHeadModel:()=>nt,JAISModel:()=>Pn,JAISPreTrainedModel:()=>Qn,JinaCLIPModel:()=>Hn,JinaCLIPPreTrainedModel:()=>qs,JinaCLIPTextModel:()=>Oo,JinaCLIPVisionModel:()=>Do,LiteWhisperForConditionalGeneration:()=>Fi,LlamaForCausalLM:()=>Ko,LlamaModel:()=>eo,LlamaPreTrainedModel:()=>kn,LlavaForConditionalGeneration:()=>Tn,LlavaOnevisionForConditionalGeneration:()=>$o,LlavaPreTrainedModel:()=>Di,LongT5ForConditionalGeneration:()=>He,LongT5Model:()=>je,LongT5PreTrainedModel:()=>ve,M2M100ForConditionalGeneration:()=>XM,M2M100Model:()=>qM,M2M100PreTrainedModel:()=>ed,MBartForCausalLM:()=>Nt,MBartForConditionalGeneration:()=>cr,MBartForSequenceClassification:()=>pr,MBartModel:()=>br,MBartPreTrainedModel:()=>Ht,MPNetForMaskedLM:()=>_n,MPNetForQuestionAnswering:()=>wn,MPNetForSequenceClassification:()=>fn,MPNetForTokenClassification:()=>gn,MPNetModel:()=>mn,MPNetPreTrainedModel:()=>Br,MT5ForConditionalGeneration:()=>dt,MT5Model:()=>Je,MT5PreTrainedModel:()=>We,MarianMTModel:()=>HM,MarianModel:()=>KM,MarianPreTrainedModel:()=>Zu,MaskFormerForInstanceSegmentation:()=>EM,MaskFormerModel:()=>TM,MaskFormerPreTrainedModel:()=>Ku,MaskedLMOutput:()=>Mr,Metric3DForDepthEstimation:()=>yM,Metric3DPreTrainedModel:()=>bM,Metric3Dv2ForDepthEstimation:()=>xM,Metric3Dv2PreTrainedModel:()=>vM,MgpstrForSceneTextRecognition:()=>uy,MgpstrModelOutput:()=>ay,MgpstrPreTrainedModel:()=>ly,MimiDecoderModel:()=>by,MimiDecoderOutput:()=>gy,MimiEncoderModel:()=>My,MimiEncoderOutput:()=>fy,MimiModel:()=>wy,MimiPreTrainedModel:()=>aa,MistralForCausalLM:()=>kb,MistralModel:()=>$b,MistralPreTrainedModel:()=>rd,MobileBertForMaskedLM:()=>Is,MobileBertForQuestionAnswering:()=>gr,MobileBertForSequenceClassification:()=>dr,MobileBertModel:()=>Tr,MobileBertPreTrainedModel:()=>qr,MobileLLMForCausalLM:()=>Te,MobileLLMModel:()=>ue,MobileLLMPreTrainedModel:()=>U,MobileNetV1ForImageClassification:()=>Kb,MobileNetV1ForSemanticSegmentation:()=>Hb,MobileNetV1Model:()=>Gb,MobileNetV1PreTrainedModel:()=>sa,MobileNetV2ForImageClassification:()=>Xb,MobileNetV2ForSemanticSegmentation:()=>Qb,MobileNetV2Model:()=>qb,MobileNetV2PreTrainedModel:()=>na,MobileNetV3ForImageClassification:()=>Yb,MobileNetV3ForSemanticSegmentation:()=>Zb,MobileNetV3Model:()=>Jb,MobileNetV3PreTrainedModel:()=>oa,MobileNetV4ForImageClassification:()=>ty,MobileNetV4ForSemanticSegmentation:()=>ry,MobileNetV4Model:()=>ey,MobileNetV4PreTrainedModel:()=>ia,MobileViTForImageClassification:()=>Iw,MobileViTModel:()=>kw,MobileViTPreTrainedModel:()=>ku,MobileViTV2ForImageClassification:()=>Fw,MobileViTV2Model:()=>Aw,MobileViTV2PreTrainedModel:()=>Iu,ModelOutput:()=>pe,ModernBertForMaskedLM:()=>z,ModernBertForSequenceClassification:()=>J,ModernBertForTokenClassification:()=>le,ModernBertModel:()=>Y,ModernBertPreTrainedModel:()=>O,Moondream1ForConditionalGeneration:()=>Gs,MoonshineForConditionalGeneration:()=>Co,MoonshineModel:()=>Oi,MoonshinePreTrainedModel:()=>Gn,MptForCausalLM:()=>uw,MptModel:()=>lw,MptPreTrainedModel:()=>xu,MultiModalityCausalLM:()=>iy,MultiModalityPreTrainedModel:()=>oy,MusicgenForCausalLM:()=>Ax,MusicgenForConditionalGeneration:()=>ud,MusicgenModel:()=>Ix,MusicgenPreTrainedModel:()=>ld,NomicBertModel:()=>Ee,NomicBertPreTrainedModel:()=>ye,OPTForCausalLM:()=>cw,OPTModel:()=>dw,OPTPreTrainedModel:()=>Tu,Olmo2ForCausalLM:()=>It,Olmo2Model:()=>Tt,Olmo2PreTrainedModel:()=>ht,OlmoForCausalLM:()=>Ze,OlmoModel:()=>Ke,OlmoPreTrainedModel:()=>Oe,OpenELMForCausalLM:()=>Jg,OpenELMModel:()=>Qg,OpenELMPreTrainedModel:()=>wu,OwlViTForObjectDetection:()=>Dw,OwlViTModel:()=>Ow,OwlViTPreTrainedModel:()=>Au,Owlv2ForObjectDetection:()=>zw,Owlv2Model:()=>Lw,Owlv2PreTrainedModel:()=>Fu,PaliGemmaForConditionalGeneration:()=>Bi,PaliGemmaPreTrainedModel:()=>zi,PatchTSMixerForPrediction:()=>hy,PatchTSMixerModel:()=>py,PatchTSMixerPreTrainedModel:()=>cd,PatchTSTForPrediction:()=>cy,PatchTSTModel:()=>dy,PatchTSTPreTrainedModel:()=>dd,Phi3ForCausalLM:()=>ow,Phi3Model:()=>nw,Phi3PreTrainedModel:()=>yu,Phi3VForCausalLM:()=>Io,Phi3VPreTrainedModel:()=>ji,PhiForCausalLM:()=>sw,PhiModel:()=>rw,PhiPreTrainedModel:()=>bu,PreTrainedModel:()=>R,PretrainedMixin:()=>Ct,PvtForImageClassification:()=>Mw,PvtModel:()=>ww,PvtPreTrainedModel:()=>Cu,PyAnnoteForAudioFrameClassification:()=>tb,PyAnnoteModel:()=>eb,PyAnnotePreTrainedModel:()=>td,QuestionAnsweringModelOutput:()=>Er,Qwen2ForCausalLM:()=>Zg,Qwen2Model:()=>Yg,Qwen2PreTrainedModel:()=>Mu,Qwen2VLForConditionalGeneration:()=>tw,Qwen2VLPreTrainedModel:()=>ew,RFDetrForObjectDetection:()=>Xw,RFDetrModel:()=>qw,RFDetrObjectDetectionOutput:()=>Qw,RFDetrPreTrainedModel:()=>Ru,RTDetrForObjectDetection:()=>Ww,RTDetrModel:()=>Uw,RTDetrObjectDetectionOutput:()=>Xi,RTDetrPreTrainedModel:()=>zu,RTDetrV2ForObjectDetection:()=>Kw,RTDetrV2Model:()=>Gw,RTDetrV2ObjectDetectionOutput:()=>Hw,RTDetrV2PreTrainedModel:()=>Bu,ResNetForImageClassification:()=>oM,ResNetModel:()=>nM,ResNetPreTrainedModel:()=>Uu,RoFormerForMaskedLM:()=>Re,RoFormerForQuestionAnswering:()=>lt,RoFormerForSequenceClassification:()=>Xe,RoFormerForTokenClassification:()=>Ge,RoFormerModel:()=>Ie,RoFormerPreTrainedModel:()=>ke,RobertaForMaskedLM:()=>or,RobertaForQuestionAnswering:()=>er,RobertaForSequenceClassification:()=>Vt,RobertaForTokenClassification:()=>Zt,RobertaModel:()=>jr,RobertaPreTrainedModel:()=>Yt,SamImageSegmentationOutput:()=>GM,SamModel:()=>WM,SamPreTrainedModel:()=>UM,SapiensForDepthEstimation:()=>fM,SapiensForNormalEstimation:()=>gM,SapiensForSemanticSegmentation:()=>_M,SapiensPreTrainedModel:()=>Ji,SegformerForImageClassification:()=>Rb,SegformerForSemanticSegmentation:()=>jb,SegformerModel:()=>kx,SegformerPreTrainedModel:()=>ra,Seq2SeqLMOutput:()=>Nx,SequenceClassifierOutput:()=>_t,SiglipModel:()=>En,SiglipPreTrainedModel:()=>Ao,SiglipTextModel:()=>Hs,SiglipVisionModel:()=>Fo,SmolVLMForConditionalGeneration:()=>Kn,SnacDecoderModel:()=>Sy,SnacEncoderModel:()=>Cy,SnacModel:()=>Py,SnacPreTrainedModel:()=>ua,SpeechT5ForSpeechToText:()=>Tb,SpeechT5ForTextToSpeech:()=>Eb,SpeechT5HifiGan:()=>Pb,SpeechT5Model:()=>$x,SpeechT5PreTrainedModel:()=>ea,SqueezeBertForMaskedLM:()=>Us,SqueezeBertForQuestionAnswering:()=>yn,SqueezeBertForSequenceClassification:()=>bn,SqueezeBertModel:()=>Mn,SqueezeBertPreTrainedModel:()=>vs,StableLmForCausalLM:()=>Vb,StableLmModel:()=>Nb,StableLmPreTrainedModel:()=>id,Starcoder2ForCausalLM:()=>Ab,Starcoder2Model:()=>Ib,Starcoder2PreTrainedModel:()=>sd,StyleTextToSpeech2Model:()=>xb,StyleTextToSpeech2PreTrainedModel:()=>vb,Swin2SRForImageSuperResolution:()=>dM,Swin2SRModel:()=>uM,Swin2SRPreTrainedModel:()=>Wu,SwinForImageClassification:()=>aM,SwinForSemanticSegmentation:()=>lM,SwinModel:()=>iM,SwinPreTrainedModel:()=>Qi,T5ForConditionalGeneration:()=>de,T5Model:()=>ie,T5PreTrainedModel:()=>Q,TableTransformerForObjectDetection:()=>Yw,TableTransformerModel:()=>Jw,TableTransformerObjectDetectionOutput:()=>Zw,TableTransformerPreTrainedModel:()=>ju,TokenClassifierOutput:()=>hr,TrOCRForCausalLM:()=>Sb,TrOCRPreTrainedModel:()=>Cb,UltravoxModel:()=>_y,UltravoxPreTrainedModel:()=>my,UniSpeechForCTC:()=>ob,UniSpeechForSequenceClassification:()=>ib,UniSpeechModel:()=>nb,UniSpeechPreTrainedModel:()=>Yi,UniSpeechSatForAudioFrameClassification:()=>db,UniSpeechSatForCTC:()=>lb,UniSpeechSatForSequenceClassification:()=>ub,UniSpeechSatModel:()=>ab,UniSpeechSatPreTrainedModel:()=>Qo,ViTForImageClassification:()=>hw,ViTMAEModel:()=>yw,ViTMAEPreTrainedModel:()=>bw,ViTMSNForImageClassification:()=>xw,ViTMSNModel:()=>vw,ViTMSNPreTrainedModel:()=>Su,ViTModel:()=>pw,ViTPreTrainedModel:()=>Eu,VisionEncoderDecoderModel:()=>So,VitMatteForImageMatting:()=>$w,VitMattePreTrainedModel:()=>Sw,VitPoseForPoseEstimation:()=>gw,VitPosePreTrainedModel:()=>fw,VitsModel:()=>od,VitsModelOutput:()=>F0,VitsPreTrainedModel:()=>Bb,Wav2Vec2BertForCTC:()=>pb,Wav2Vec2BertForSequenceClassification:()=>hb,Wav2Vec2BertModel:()=>cb,Wav2Vec2BertPreTrainedModel:()=>Zi,Wav2Vec2ForAudioFrameClassification:()=>ZM,Wav2Vec2ForCTC:()=>JM,Wav2Vec2ForSequenceClassification:()=>YM,Wav2Vec2Model:()=>QM,Wav2Vec2PreTrainedModel:()=>Qs,WavLMForAudioFrameClassification:()=>yb,WavLMForCTC:()=>wb,WavLMForSequenceClassification:()=>Mb,WavLMForXVector:()=>bb,WavLMModel:()=>gb,WavLMPreTrainedModel:()=>so,WeSpeakerResNetModel:()=>sb,WeSpeakerResNetPreTrainedModel:()=>rb,WhisperForConditionalGeneration:()=>Po,WhisperModel:()=>Ai,WhisperPreTrainedModel:()=>Eo,XLMForQuestionAnswering:()=>Ti,XLMForSequenceClassification:()=>vi,XLMForTokenClassification:()=>xi,XLMModel:()=>Ws,XLMPreTrainedModel:()=>tr,XLMRobertaForMaskedLM:()=>Pi,XLMRobertaForQuestionAnswering:()=>$i,XLMRobertaForSequenceClassification:()=>Ci,XLMRobertaForTokenClassification:()=>Si,XLMRobertaModel:()=>Ei,XLMRobertaPreTrainedModel:()=>As,XLMWithLMHeadModel:()=>xn,XVectorOutput:()=>I0,YolosForObjectDetection:()=>NM,YolosModel:()=>jM,YolosObjectDetectionOutput:()=>VM,YolosPreTrainedModel:()=>Yu});var s=t("./src/configs.js"),o=t("./src/backends/onnx.js"),n=t("./src/utils/dtypes.js"),i=t("./src/utils/generic.js"),a=t("./src/utils/core.js"),l=t("./src/utils/hub.js"),u=t("./src/utils/constants.js"),p=t("./src/generation/logits_process.js"),d=t("./src/generation/configuration_utils.js"),c=t("./src/utils/tensor.js"),f=t("./src/utils/image.js"),_=t("./src/utils/maths.js"),T=t("./src/generation/stopping_criteria.js"),$=t("./src/generation/logits_sampler.js"),w=t("./src/env.js"),g=t("./src/models/whisper/generation_whisper.js"),S=t("./src/models/whisper/common_whisper.js");const E={EncoderOnly:0,EncoderDecoder:1,Seq2Seq:2,Vision2Seq:3,DecoderOnly:4,MaskGeneration:5,ImageTextToText:6,Musicgen:7,MultiModality:8,Phi3V:9,AudioTextToText:10,AutoEncoder:11},y=new Map,M=new Map,v=new Map;async function C(b,P,D){var mr;let ne=((mr=D.config)==null?void 0:mr["transformers.js_config"])??{},ge=D.device??ne.device;ge&&typeof ge!="string"&&(ge.hasOwnProperty(P)?ge=ge[P]:(console.warn(`device not specified for "${P}". Using the default device.`),ge=null));const fe=ge??(w.apis.IS_NODE_ENV?"cpu":"wasm"),Ce=(0,o.deviceToExecutionProviders)(fe),Le=ne.device_config??{};Le.hasOwnProperty(fe)&&(ne={...ne,...Le[fe]});let Ne=D.dtype??ne.dtype;if(typeof Ne!="string"&&(Ne&&Ne.hasOwnProperty(P)?Ne=Ne[P]:(Ne=n.DEFAULT_DEVICE_DTYPE_MAPPING[fe]??n.DATA_TYPES.fp32,console.warn(`dtype not specified for "${P}". Using the default dtype (${Ne}) for this device (${fe}).`))),Ne===n.DATA_TYPES.auto){let bt=ne.dtype;typeof bt!="string"&&(bt=bt==null?void 0:bt[P]),bt&&bt!==n.DATA_TYPES.auto&&n.DATA_TYPES.hasOwnProperty(bt)?Ne=bt:Ne=n.DEFAULT_DEVICE_DTYPE_MAPPING[fe]??n.DATA_TYPES.fp32}const qe=Ne;if(n.DEFAULT_DTYPE_SUFFIX_MAPPING.hasOwnProperty(qe)){if(qe===n.DATA_TYPES.fp16&&fe==="webgpu"&&!await(0,n.isWebGpuFp16Supported)())throw new Error(`The device (${fe}) does not support fp16.`)}else throw new Error(`Invalid dtype: ${qe}. Should be one of: ${Object.keys(n.DATA_TYPES).join(", ")}`);const it=ne.kv_cache_dtype,pt=it?typeof it=="string"?it:it[qe]??"float32":void 0;if(pt&&!["float32","float16"].includes(pt))throw new Error(`Invalid kv_cache_dtype: ${pt}. Should be one of: float32, float16`);const ot={dtype:qe,kv_cache_dtype:pt},Mt=n.DEFAULT_DTYPE_SUFFIX_MAPPING[qe],ct=`${P}${Mt}.onnx`,gt=`${D.subfolder??""}/${ct}`,rt={...D.session_options};rt.executionProviders??(rt.executionProviders=Ce);const yt=ne.free_dimension_overrides;yt?rt.freeDimensionOverrides??(rt.freeDimensionOverrides=yt):fe.startsWith("webnn")&&!rt.freeDimensionOverrides&&console.warn(`WebNN does not currently support dynamic shapes and requires 'free_dimension_overrides' to be set in config.json, preferably as a field within config["transformers.js_config"]["device_config"]["${fe}"]. When 'free_dimension_overrides' is not set, you may experience significant performance degradation.`);const Lt=w.apis.IS_NODE_ENV&&w.env.useFSCache,Ut=(0,l.getModelFile)(b,gt,!0,D,Lt),Jt=D.use_external_data_format??ne.use_external_data_format;let qt=[];if(Jt){let bt;typeof Jt=="object"?Jt.hasOwnProperty(ct)?bt=Jt[ct]:Jt.hasOwnProperty(P)?bt=Jt[P]:bt=!1:bt=Jt;const ir=+bt;if(ir>l.MAX_EXTERNAL_DATA_CHUNKS)throw new Error(`The number of external data chunks (${ir}) exceeds the maximum allowed value (${l.MAX_EXTERNAL_DATA_CHUNKS}).`);for(let Vr=0;Vr{const Fn=await(0,l.getModelFile)(b,$r,!0,D,Lt);Jr(Fn instanceof Uint8Array?{path:An,data:Fn}:An)}))}}else rt.externalData!==void 0&&(qt=rt.externalData.map(async bt=>{if(typeof bt.data=="string"){const ir=await(0,l.getModelFile)(b,bt.data,!0,D);return{...bt,data:ir}}return bt}));if(qt.length>0){const bt=await Promise.all(qt);w.apis.IS_NODE_ENV||(rt.externalData=bt)}if(fe==="webgpu"){const bt=(0,s.getKeyValueShapes)(D.config,{prefix:"present"});if(Object.keys(bt).length>0&&!(0,o.isONNXProxy)()){const ir={};for(const Vr in bt)ir[Vr]="gpu-buffer";rt.preferredOutputLocation=ir}}return{buffer_or_path:await Ut,session_options:rt,session_config:ot}}async function A(b,P,D){return Object.fromEntries(await Promise.all(Object.keys(P).map(async ne=>{const{buffer_or_path:ge,session_options:fe,session_config:Ce}=await C(b,P[ne],D),Le=await(0,o.createInferenceSession)(ge,fe,Ce);return[ne,Le]})))}async function B(b,P,D){return Object.fromEntries(await Promise.all(Object.keys(P).map(async ne=>{const ge=await(0,l.getModelJSON)(b,P[ne],!1,D);return[ne,ge]})))}function K(b,P){const D=Object.create(null),ne=[];for(const Ce of b.inputNames){const Le=P[Ce];if(!(Le instanceof c.Tensor)){ne.push(Ce);continue}D[Ce]=(0,o.isONNXProxy)()?Le.clone():Le}if(ne.length>0)throw new Error(`An error occurred during model execution: "Missing the following inputs: ${ne.join(", ")}.`);const ge=Object.keys(P).length,fe=b.inputNames.length;if(ge>fe){let Ce=Object.keys(P).filter(Le=>!b.inputNames.includes(Le));console.warn(`WARNING: Too many inputs were provided (${ge} > ${fe}). The following inputs will be ignored: "${Ce.join(", ")}".`)}return D}async function G(b,P){const D=K(b,P);try{const ne=Object.fromEntries(Object.entries(D).map(([fe,Ce])=>[fe,Ce.ort_tensor]));let ge=await b.run(ne);return ge=j(ge),ge}catch(ne){const ge=Object.fromEntries(Object.entries(D).map(([fe,{type:Ce,dims:Le,data:Ne}])=>[fe,{type:Ce,dims:Le,data:Ne}]));throw console.error(`An error occurred during model execution: "${ne}".`),console.error("Inputs given to model:",ge),ne}}function j(b){for(let P in b)(0,o.isONNXTensor)(b[P])?b[P]=new c.Tensor(b[P]):typeof b[P]=="object"&&j(b[P]);return b}function ee(b){if(b instanceof c.Tensor)return b;if(b.length===0)throw Error("items must be non-empty");if(Array.isArray(b[0])){if(b.some(P=>P.length!==b[0].length))throw Error("Unable to create tensor, you should probably activate truncation and/or padding with 'padding=True' and/or 'truncation=True' to have batched tensors with the same length.");return new c.Tensor("int64",BigInt64Array.from(b.flat().map(P=>BigInt(P))),[b.length,b[0].length])}else return new c.Tensor("int64",BigInt64Array.from(b.map(P=>BigInt(P))),[1,b.length])}function H(b){return new c.Tensor("bool",[b],[1])}async function Z(b,P){let{encoder_outputs:D,input_ids:ne,decoder_input_ids:ge,...fe}=P;if(!D){const Le=(0,a.pick)(P,b.sessions.model.inputNames);D=(await X(b,Le)).last_hidden_state}return fe.input_ids=ge,fe.encoder_hidden_states=D,b.sessions.decoder_model_merged.inputNames.includes("encoder_attention_mask")&&(fe.encoder_attention_mask=P.attention_mask),await me(b,fe,!0)}async function X(b,P){const D=b.sessions.model,ne=(0,a.pick)(P,D.inputNames);if(D.inputNames.includes("inputs_embeds")&&!ne.inputs_embeds){if(!P.input_ids)throw new Error("Both `input_ids` and `inputs_embeds` are missing in the model inputs.");ne.inputs_embeds=await b.encode_text({input_ids:P.input_ids})}if(D.inputNames.includes("token_type_ids")&&!ne.token_type_ids){if(!ne.input_ids)throw new Error("Both `input_ids` and `token_type_ids` are missing in the model inputs.");ne.token_type_ids=(0,c.zeros_like)(ne.input_ids)}if(D.inputNames.includes("pixel_mask")&&!ne.pixel_mask){if(!ne.pixel_values)throw new Error("Both `pixel_values` and `pixel_mask` are missing in the model inputs.");const ge=ne.pixel_values.dims;ne.pixel_mask=(0,c.ones)([ge[0],ge[2],ge[3]])}return await G(D,ne)}async function oe(b,P){const D=await b.encode(P);return await b.decode(D)}async function me(b,P,D=!1){const ne=b.sessions[D?"decoder_model_merged":"model"],{past_key_values:ge,...fe}=P;if(ne.inputNames.includes("use_cache_branch")&&(fe.use_cache_branch=H(!!ge)),ne.inputNames.includes("position_ids")&&fe.attention_mask&&!fe.position_ids){const Le=["paligemma","gemma3_text","gemma3"].includes(b.config.model_type)?1:0;fe.position_ids=ce(fe,ge,Le)}b.addPastKeyValues(fe,ge);const Ce=(0,a.pick)(fe,ne.inputNames);return await G(ne,Ce)}function ae({modality_token_id:b,inputs_embeds:P,modality_features:D,input_ids:ne,attention_mask:ge}){const fe=ne.tolist().map(qe=>qe.reduce((it,pt,ot)=>(pt==b&&it.push(ot),it),[])),Ce=fe.reduce((qe,it)=>qe+it.length,0),Le=D.dims[0];if(Ce!==Le)throw new Error(`Number of tokens and features do not match: tokens: ${Ce}, features ${Le}`);let Ne=0;for(let qe=0;qefe.dims[1])){if(geLe==b.config.image_token_index)){const Le=b.config.num_image_tokens;if(!Le)throw new Error("`num_image_tokens` is missing in the model configuration.");const Ne=fe.dims[1]-(ge-Le);D.input_ids=fe.slice(null,[-Ne,null]),D.attention_mask=(0,c.ones)([1,ge+Ne])}}}return D}function Ue(b,P,D,ne){return D.past_key_values&&(P=P.map(ge=>[ge.at(-1)])),{...D,decoder_input_ids:ee(P)}}function we(b,...P){return b.config.is_encoder_decoder?Ue(b,...P):$e(b,...P)}function q(b,P,D,ne){const ge=!!D.past_key_values;return ne.guidance_scale!==null&&ne.guidance_scale>1&&(ge?D.input_ids=(0,c.cat)([D.input_ids,D.input_ids],0):(D.input_ids=(0,c.cat)([D.input_ids,(0,c.full_like)(D.input_ids,BigInt(ne.pad_token_id))],0),D.attention_mask=(0,c.cat)([D.attention_mask,(0,c.full_like)(D.attention_mask,0n)],0))),(ge||!D.pixel_values)&&(D.pixel_values=(0,c.full)([0,0,3,384,384],1)),ge&&(D.images_seq_mask=new c.Tensor("bool",new Array(1).fill(!0).fill(!1,0,1),[1,1]),D.images_emb_mask=new c.Tensor("bool",new Array(0).fill(!1),[1,1,0])),D}class R extends i.Callable{constructor(D,ne,ge){super();te(this,"main_input_name","input_ids");te(this,"forward_params",["input_ids","attention_mask"]);this.config=D,this.sessions=ne,this.configs=ge;const fe=v.get(this.constructor),Ce=y.get(fe);switch(this.can_generate=!1,this._forward=null,this._prepare_inputs_for_generation=null,Ce){case E.DecoderOnly:this.can_generate=!0,this._forward=me,this._prepare_inputs_for_generation=$e;break;case E.Seq2Seq:case E.Vision2Seq:case E.Musicgen:this.can_generate=!0,this._forward=Z,this._prepare_inputs_for_generation=Ue;break;case E.EncoderDecoder:this._forward=Z;break;case E.ImageTextToText:this.can_generate=!0,this._forward=_e,this._prepare_inputs_for_generation=we;break;case E.AudioTextToText:this.can_generate=!0,this._forward=re,this._prepare_inputs_for_generation=we;break;case E.Phi3V:this.can_generate=!0,this._prepare_inputs_for_generation=we;break;case E.MultiModality:this.can_generate=!0,this._prepare_inputs_for_generation=q;break;case E.AutoEncoder:this._forward=oe;break;default:this._forward=X;break}this.can_generate&&this.forward_params.push("past_key_values"),this.custom_config=this.config["transformers.js_config"]??{}}async dispose(){var ne;const D=[];for(const ge of Object.values(this.sessions))(ne=ge==null?void 0:ge.handler)!=null&&ne.dispose&&D.push(ge.handler.dispose());return await Promise.all(D)}static async from_pretrained(D,{progress_callback:ne=null,config:ge=null,cache_dir:fe=null,local_files_only:Ce=!1,revision:Le="main",model_file_name:Ne=null,subfolder:qe="onnx",device:it=null,dtype:pt=null,use_external_data_format:ot=null,session_options:Mt={}}={}){let ct={progress_callback:ne,config:ge,cache_dir:fe,local_files_only:Ce,revision:Le,model_file_name:Ne,subfolder:qe,device:it,dtype:pt,use_external_data_format:ot,session_options:Mt};const gt=v.get(this),rt=y.get(gt);ge=ct.config=await s.AutoConfig.from_pretrained(D,ct);let yt;if(rt===E.DecoderOnly)yt=await Promise.all([A(D,{model:ct.model_file_name??"model"},ct),B(D,{generation_config:"generation_config.json"},ct)]);else if(rt===E.Seq2Seq||rt===E.Vision2Seq)yt=await Promise.all([A(D,{model:"encoder_model",decoder_model_merged:"decoder_model_merged"},ct),B(D,{generation_config:"generation_config.json"},ct)]);else if(rt===E.MaskGeneration)yt=await Promise.all([A(D,{model:"vision_encoder",prompt_encoder_mask_decoder:"prompt_encoder_mask_decoder"},ct)]);else if(rt===E.EncoderDecoder)yt=await Promise.all([A(D,{model:"encoder_model",decoder_model_merged:"decoder_model_merged"},ct)]);else if(rt===E.ImageTextToText){const Lt={embed_tokens:"embed_tokens",vision_encoder:"vision_encoder",decoder_model_merged:"decoder_model_merged"};ge.is_encoder_decoder&&(Lt.model="encoder_model"),yt=await Promise.all([A(D,Lt,ct),B(D,{generation_config:"generation_config.json"},ct)])}else if(rt===E.AudioTextToText){const Lt={embed_tokens:"embed_tokens",audio_encoder:"audio_encoder",decoder_model_merged:"decoder_model_merged"};yt=await Promise.all([A(D,Lt,ct),B(D,{generation_config:"generation_config.json"},ct)])}else if(rt===E.Musicgen)yt=await Promise.all([A(D,{model:"text_encoder",decoder_model_merged:"decoder_model_merged",encodec_decode:"encodec_decode"},ct),B(D,{generation_config:"generation_config.json"},ct)]);else if(rt===E.MultiModality)yt=await Promise.all([A(D,{prepare_inputs_embeds:"prepare_inputs_embeds",model:"language_model",lm_head:"lm_head",gen_head:"gen_head",gen_img_embeds:"gen_img_embeds",image_decode:"image_decode"},ct),B(D,{generation_config:"generation_config.json"},ct)]);else if(rt===E.Phi3V)yt=await Promise.all([A(D,{prepare_inputs_embeds:"prepare_inputs_embeds",model:"model",vision_encoder:"vision_encoder"},ct),B(D,{generation_config:"generation_config.json"},ct)]);else if(rt===E.AutoEncoder)yt=await Promise.all([A(D,{encoder_model:"encoder_model",decoder_model:"decoder_model"},ct)]);else{if(rt!==E.EncoderOnly){const Lt=gt??(ge==null?void 0:ge.model_type);Lt!=="custom"&&console.warn(`Model type for '${Lt}' not found, assuming encoder-only architecture. Please report this at ${u.GITHUB_ISSUE_URL}.`)}yt=await Promise.all([A(D,{model:ct.model_file_name??"model"},ct)])}return new this(ge,...yt)}async _call(D){return await this.forward(D)}async forward(D){return await this._forward(this,D)}get generation_config(){var D;return((D=this.configs)==null?void 0:D.generation_config)??null}_get_logits_warper(D){const ne=new p.LogitsProcessorList;return D.temperature!==null&&D.temperature!==1&&ne.push(new p.TemperatureLogitsWarper(D.temperature)),D.top_k!==null&&D.top_k!==0&&ne.push(new p.TopKLogitsWarper(D.top_k)),D.top_p!==null&&D.top_p<1&&ne.push(new p.TopPLogitsWarper(D.top_p)),ne}_get_logits_processor(D,ne,ge=null){const fe=new p.LogitsProcessorList;if(D.repetition_penalty!==null&&D.repetition_penalty!==1&&fe.push(new p.RepetitionPenaltyLogitsProcessor(D.repetition_penalty)),D.no_repeat_ngram_size!==null&&D.no_repeat_ngram_size>0&&fe.push(new p.NoRepeatNGramLogitsProcessor(D.no_repeat_ngram_size)),D.bad_words_ids!==null&&fe.push(new p.NoBadWordsLogitsProcessor(D.bad_words_ids,D.eos_token_id)),D.min_length!==null&&D.eos_token_id!==null&&D.min_length>0&&fe.push(new p.MinLengthLogitsProcessor(D.min_length,D.eos_token_id)),D.min_new_tokens!==null&&D.eos_token_id!==null&&D.min_new_tokens>0&&fe.push(new p.MinNewTokensLengthLogitsProcessor(ne,D.min_new_tokens,D.eos_token_id)),D.forced_bos_token_id!==null&&fe.push(new p.ForcedBOSTokenLogitsProcessor(D.forced_bos_token_id)),D.forced_eos_token_id!==null&&fe.push(new p.ForcedEOSTokenLogitsProcessor(D.max_length,D.forced_eos_token_id)),D.begin_suppress_tokens!==null){const Ce=ne>1||D.forced_bos_token_id===null?ne:ne+1;fe.push(new p.SuppressTokensAtBeginLogitsProcessor(D.begin_suppress_tokens,Ce))}return D.guidance_scale!==null&&D.guidance_scale>1&&fe.push(new p.ClassifierFreeGuidanceLogitsProcessor(D.guidance_scale)),ge!==null&&fe.extend(ge),fe}_prepare_generation_config(D,ne,ge=d.GenerationConfig){const fe={...this.config};for(const Le of["decoder","generator","text_config"])Le in fe&&Object.assign(fe,fe[Le]);const Ce=new ge(fe);return Object.assign(Ce,this.generation_config??{}),D&&Object.assign(Ce,D),ne&&Object.assign(Ce,(0,a.pick)(ne,Object.getOwnPropertyNames(Ce))),Ce}_get_stopping_criteria(D,ne=null){const ge=new T.StoppingCriteriaList;return D.max_length!==null&&ge.push(new T.MaxLengthCriteria(D.max_length,this.config.max_position_embeddings??null)),D.eos_token_id!==null&&ge.push(new T.EosTokenCriteria(D.eos_token_id)),ne&&ge.extend(ne),ge}_validate_model_class(){if(!this.can_generate){const D=[md,_d,hd,pd],ne=v.get(this.constructor),ge=new Set,fe=this.config.model_type;for(const Le of D){const Ne=Le.get(fe);Ne&&ge.add(Ne[0])}let Ce=`The current model class (${ne}) is not compatible with \`.generate()\`, as it doesn't have a language model head.`;throw ge.size>0&&(Ce+=` Please use the following class instead: ${[...ge].join(", ")}`),Error(Ce)}}prepare_inputs_for_generation(...D){return this._prepare_inputs_for_generation(this,...D)}_update_model_kwargs_for_generation({generated_input_ids:D,outputs:ne,model_inputs:ge,is_encoder_decoder:fe}){return ge.past_key_values=this.getPastKeyValues(ne,ge.past_key_values),ge.input_ids=new c.Tensor("int64",D.flat(),[D.length,1]),fe||(ge.attention_mask=(0,c.cat)([ge.attention_mask,(0,c.ones)([ge.attention_mask.dims[0],1])],1)),ge.position_ids=null,ge}_prepare_model_inputs({inputs:D,bos_token_id:ne,model_kwargs:ge}){const fe=(0,a.pick)(ge,this.forward_params),Ce=this.main_input_name;if(Ce in fe){if(D)throw new Error("`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. Make sure to either pass {inputs} or {input_name}=...")}else fe[Ce]=D;return{inputs_tensor:fe[Ce],model_inputs:fe,model_input_name:Ce}}async _prepare_encoder_decoder_kwargs_for_generation({inputs_tensor:D,model_inputs:ne,model_input_name:ge,generation_config:fe}){if(this.sessions.model.inputNames.includes("inputs_embeds")&&!ne.inputs_embeds&&"_prepare_inputs_embeds"in this){const{input_ids:Le,pixel_values:Ne,attention_mask:qe,...it}=ne,pt=await this._prepare_inputs_embeds(ne);ne={...it,...(0,a.pick)(pt,["inputs_embeds","attention_mask"])}}let{last_hidden_state:Ce}=await X(this,ne);if(fe.guidance_scale!==null&&fe.guidance_scale>1)Ce=(0,c.cat)([Ce,(0,c.full_like)(Ce,0)],0),"attention_mask"in ne&&(ne.attention_mask=(0,c.cat)([ne.attention_mask,(0,c.zeros_like)(ne.attention_mask)],0));else if(ne.decoder_input_ids){const Le=ee(ne.decoder_input_ids).dims[0];if(Le!==Ce.dims[0]){if(Ce.dims[0]!==1)throw new Error(`The encoder outputs have a different batch size (${Ce.dims[0]}) than the decoder inputs (${Le}).`);Ce=(0,c.cat)(Array.from({length:Le},()=>Ce),0)}}return ne.encoder_outputs=Ce,ne}_prepare_decoder_input_ids_for_generation({batch_size:D,model_input_name:ne,model_kwargs:ge,decoder_start_token_id:fe,bos_token_id:Ce,generation_config:Le}){let{decoder_input_ids:Ne,...qe}=ge;if(!(Ne instanceof c.Tensor)){if(Ne)Array.isArray(Ne[0])||(Ne=Array.from({length:D},()=>Ne));else if(fe??(fe=Ce),this.config.model_type==="musicgen")Ne=Array.from({length:D*this.config.decoder.num_codebooks},()=>[fe]);else if(Array.isArray(fe)){if(fe.length!==D)throw new Error(`\`decoder_start_token_id\` expcted to have length ${D} but got ${fe.length}`);Ne=fe}else Ne=Array.from({length:D},()=>[fe]);Ne=ee(Ne)}return ge.decoder_attention_mask=(0,c.ones_like)(Ne),{input_ids:Ne,model_inputs:qe}}async generate({inputs:D=null,generation_config:ne=null,logits_processor:ge=null,stopping_criteria:fe=null,streamer:Ce=null,...Le}){this._validate_model_class(),ne=this._prepare_generation_config(ne,Le);let{inputs_tensor:Ne,model_inputs:qe,model_input_name:it}=this._prepare_model_inputs({inputs:D,model_kwargs:Le});const pt=this.config.is_encoder_decoder;pt&&("encoder_outputs"in qe||(qe=await this._prepare_encoder_decoder_kwargs_for_generation({inputs_tensor:Ne,model_inputs:qe,model_input_name:it,generation_config:ne})));let ot;pt?{input_ids:ot,model_inputs:qe}=this._prepare_decoder_input_ids_for_generation({batch_size:qe[it].dims.at(0),model_input_name:it,model_kwargs:qe,decoder_start_token_id:ne.decoder_start_token_id,bos_token_id:ne.bos_token_id,generation_config:ne}):ot=qe[it];let Mt=ot.dims.at(-1);ne.max_new_tokens!==null&&(ne.max_length=Mt+ne.max_new_tokens);const ct=this._get_logits_processor(ne,Mt,ge),gt=this._get_stopping_criteria(ne,fe),rt=qe[it].dims.at(0),yt=$.LogitsSampler.getSampler(ne),Lt=new Array(rt).fill(0),Ut=ot.tolist();Ce&&Ce.put(Ut);let Jt,qt={};for(;;){if(qe=this.prepare_inputs_for_generation(Ut,qe,ne),Jt=await this.forward(qe),ne.output_attentions&&ne.return_dict_in_generate){const $r=this.getAttentions(Jt);for(const Jr in $r)Jr in qt||(qt[Jr]=[]),qt[Jr].push($r[Jr])}const bt=Jt.logits.slice(null,-1,null),ir=ct(Ut,bt),Vr=[];for(let $r=0;$r$r))break;qe=this._update_model_kwargs_for_generation({generated_input_ids:Vr,outputs:Jt,model_inputs:qe,is_encoder_decoder:pt})}Ce&&Ce.end();const nr=this.getPastKeyValues(Jt,qe.past_key_values,!0),mr=new c.Tensor("int64",Ut.flat(),[Ut.length,Ut[0].length]);if(ne.return_dict_in_generate)return{sequences:mr,past_key_values:nr,...qt};for(const bt of Object.values(Jt))bt.location==="gpu-buffer"&&bt.dispose();return mr}getPastKeyValues(D,ne,ge=!1){const fe=Object.create(null);for(const Ce in D)if(Ce.startsWith("present")){const Le=Ce.replace("present","past_key_values"),Ne=Ce.includes("encoder");if(Ne&&ne?fe[Le]=ne[Le]:fe[Le]=D[Ce],ne&&(!Ne||ge)){const qe=ne[Le];qe.location==="gpu-buffer"&&qe.dispose()}}return fe}getAttentions(D){const ne={};for(const ge of["cross_attentions","encoder_attentions","decoder_attentions"])for(const fe in D)fe.startsWith(ge)&&(ge in ne||(ne[ge]=[]),ne[ge].push(D[fe]));return ne}addPastKeyValues(D,ne){var ge,fe,Ce;if(ne)Object.assign(D,ne);else{const Le=this.sessions.decoder_model_merged??this.sessions.model,Ne=((ge=Le==null?void 0:Le.config)==null?void 0:ge.kv_cache_dtype)??"float32",qe=Ne==="float16"?new c.DataTypeMap.float16:[],it=((Ce=(fe=D[this.main_input_name]??D.attention_mask)==null?void 0:fe.dims)==null?void 0:Ce[0])??1,pt=(0,s.getKeyValueShapes)(this.config,{batch_size:it});for(const ot in pt)D[ot]=new c.Tensor(Ne,qe,pt[ot])}}async encode_image({pixel_values:D}){const ne=(await G(this.sessions.vision_encoder,{pixel_values:D})).image_features;return this.config.num_image_tokens||(console.warn(`The number of image tokens was not set in the model configuration. Setting it to the number of features detected by the vision encoder (${ne.dims[1]}).`),this.config.num_image_tokens=ne.dims[1]),ne}async encode_text({input_ids:D}){return(await G(this.sessions.embed_tokens,{input_ids:D})).inputs_embeds}async encode_audio({audio_values:D}){return(await G(this.sessions.audio_encoder,{audio_values:D})).audio_features}}class pe{}class xe extends pe{constructor({last_hidden_state:P,hidden_states:D=null,attentions:ne=null}){super(),this.last_hidden_state=P,this.hidden_states=D,this.attentions=ne}}class be extends R{}class Se extends be{}class Ae extends be{async _call(P){return new Mr(await super._call(P))}}class Fe extends be{async _call(P){return new _t(await super._call(P))}}class ze extends be{async _call(P){return new hr(await super._call(P))}}class Ve extends be{async _call(P){return new Er(await super._call(P))}}class O extends R{}class Y extends O{}class z extends O{async _call(P){return new Mr(await super._call(P))}}class J extends O{async _call(P){return new _t(await super._call(P))}}class le extends O{async _call(P){return new hr(await super._call(P))}}class ye extends R{}class Ee extends ye{}class ke extends R{}class Ie extends ke{}class Re extends ke{async _call(P){return new Mr(await super._call(P))}}class Xe extends ke{async _call(P){return new _t(await super._call(P))}}class Ge extends ke{async _call(P){return new hr(await super._call(P))}}class lt extends ke{async _call(P){return new Er(await super._call(P))}}class wt extends R{}class Gt extends wt{}class Ot extends wt{async _call(P){return new Mr(await super._call(P))}}class ur extends wt{async _call(P){return new _t(await super._call(P))}}class ls extends wt{async _call(P){return new hr(await super._call(P))}}class Ms extends wt{async _call(P){return new Er(await super._call(P))}}class Ir extends R{}class js extends Ir{}class Ss extends Ir{async _call(P){return new Mr(await super._call(P))}}class Ns extends Ir{async _call(P){return new _t(await super._call(P))}}class at extends Ir{async _call(P){return new hr(await super._call(P))}}class us extends Ir{async _call(P){return new Er(await super._call(P))}}class Ar extends R{}class bs extends Ar{}class Ft extends Ar{async _call(P){return new Mr(await super._call(P))}}class ds extends Ar{async _call(P){return new _t(await super._call(P))}}class cs extends Ar{async _call(P){return new hr(await super._call(P))}}class ys extends Ar{async _call(P){return new Er(await super._call(P))}}class Qt extends R{}class De extends Qt{}class Qe extends Qt{async _call(P){return new Mr(await super._call(P))}}class tt extends Qt{async _call(P){return new _t(await super._call(P))}}class Rt extends Qt{async _call(P){return new hr(await super._call(P))}}class zr extends Qt{async _call(P){return new Er(await super._call(P))}}class Sr extends R{}class ps extends Sr{}class hs extends Sr{async _call(P){return new Mr(await super._call(P))}}class Kr extends Sr{async _call(P){return new _t(await super._call(P))}}class ms extends Sr{async _call(P){return new hr(await super._call(P))}}class _s extends Sr{async _call(P){return new Er(await super._call(P))}}class Hr extends R{}class vr extends Hr{}class cn extends Hr{async _call(P){return new _t(await super._call(P))}}class xr extends Hr{async _call(P){return new hr(await super._call(P))}}class $s extends Hr{async _call(P){return new Er(await super._call(P))}}class ks extends Hr{async _call(P){return new Mr(await super._call(P))}}class fr extends R{}class Vs extends fr{}class pn extends fr{async _call(P){return new Mr(await super._call(P))}}class Fr extends fr{async _call(P){return new _t(await super._call(P))}}class hn extends fr{async _call(P){return new hr(await super._call(P))}}class qr extends R{}class Tr extends qr{}class Is extends qr{async _call(P){return new Mr(await super._call(P))}}class dr extends qr{async _call(P){return new _t(await super._call(P))}}class gr extends qr{async _call(P){return new Er(await super._call(P))}}class Br extends R{}class mn extends Br{}class _n extends Br{async _call(P){return new Mr(await super._call(P))}}class fn extends Br{async _call(P){return new _t(await super._call(P))}}class gn extends Br{async _call(P){return new hr(await super._call(P))}}class wn extends Br{async _call(P){return new Er(await super._call(P))}}class vs extends R{}class Mn extends vs{}class Us extends vs{async _call(P){return new Mr(await super._call(P))}}class bn extends vs{async _call(P){return new _t(await super._call(P))}}class yn extends vs{async _call(P){return new Er(await super._call(P))}}class xs extends R{}class vn extends xs{}class he extends xs{async _call(P){return new _t(await super._call(P))}}class k extends xs{async _call(P){return new Er(await super._call(P))}}class N extends xs{async _call(P){return new Mr(await super._call(P))}}class Q extends R{constructor(){super(...arguments);te(this,"forward_params",["input_ids","attention_mask","encoder_outputs","decoder_input_ids","decoder_attention_mask","past_key_values"])}}class ie extends Q{}class de extends Q{}class ve extends R{}class je extends ve{}class He extends ve{}class We extends R{}class Je extends We{}class dt extends We{}class xt extends R{}class Pt extends xt{}class jt extends xt{}class kt extends xt{async _call(P){return new _t(await super._call(P))}}class Ht extends R{}class br extends Ht{}class cr extends Ht{}class pr extends Ht{async _call(P){return new _t(await super._call(P))}}class Nt extends Ht{}class Xr extends R{}class Dt extends Xr{}class rr extends Xr{}class wr extends R{}class Qr extends wr{}class Rr extends wr{}class Yt extends R{}class jr extends Yt{}class or extends Yt{async _call(P){return new Mr(await super._call(P))}}class Vt extends Yt{async _call(P){return new _t(await super._call(P))}}class Zt extends Yt{async _call(P){return new hr(await super._call(P))}}class er extends Yt{async _call(P){return new Er(await super._call(P))}}class tr extends R{}class Ws extends tr{}class xn extends tr{async _call(P){return new Mr(await super._call(P))}}class vi extends tr{async _call(P){return new _t(await super._call(P))}}class xi extends tr{async _call(P){return new hr(await super._call(P))}}class Ti extends tr{async _call(P){return new Er(await super._call(P))}}class As extends R{}class Ei extends As{}class Pi extends As{async _call(P){return new Mr(await super._call(P))}}class Ci extends As{async _call(P){return new _t(await super._call(P))}}class Si extends As{async _call(P){return new hr(await super._call(P))}}class $i extends As{async _call(P){return new Er(await super._call(P))}}class To extends R{}class ki extends To{}class Ii extends To{}class Eo extends R{constructor(){super(...arguments);te(this,"requires_attention_mask",!1);te(this,"main_input_name","input_features");te(this,"forward_params",["input_features","attention_mask","decoder_input_ids","decoder_attention_mask","past_key_values"])}}class Ai extends Eo{}class Po extends Eo{_prepare_generation_config(P,D){return super._prepare_generation_config(P,D,g.WhisperGenerationConfig)}_retrieve_init_tokens(P){const D=[P.decoder_start_token_id];let ne=P.language;const ge=P.task;if(P.is_multilingual){ne||(console.warn("No language specified - defaulting to English (en)."),ne="en");const Ce=`<|${(0,S.whisper_language_to_code)(ne)}|>`;D.push(P.lang_to_id[Ce]),D.push(P.task_to_id[ge??"transcribe"])}else if(ne||ge)throw new Error("Cannot specify `task` or `language` for an English-only model. If the model is intended to be multilingual, pass `is_multilingual=true` to generate, or update the generation config.");return!P.return_timestamps&&P.no_timestamps_token_id&&D.at(-1)!==P.no_timestamps_token_id?D.push(P.no_timestamps_token_id):P.return_timestamps&&D.at(-1)===P.no_timestamps_token_id&&(console.warn("<|notimestamps|> prompt token is removed from generation_config since `return_timestamps` is set to `true`."),D.pop()),D.filter(fe=>fe!=null)}async generate({inputs:P=null,generation_config:D=null,logits_processor:ne=null,stopping_criteria:ge=null,...fe}){D=this._prepare_generation_config(D,fe);const Ce=fe.decoder_input_ids??this._retrieve_init_tokens(D);if(D.return_timestamps&&(ne??(ne=new p.LogitsProcessorList),ne.push(new p.WhisperTimeStampLogitsProcessor(D,Ce))),D.begin_suppress_tokens&&(ne??(ne=new p.LogitsProcessorList),ne.push(new p.SuppressTokensAtBeginLogitsProcessor(D.begin_suppress_tokens,Ce.length))),D.return_token_timestamps){if(!D.alignment_heads)throw new Error("Model generation config has no `alignment_heads`, token-level timestamps not available. See https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a on how to add this property to the generation config.");D.task==="translate"&&console.warn("Token-level timestamps may not be reliable for task 'translate'."),D.output_attentions=!0,D.return_dict_in_generate=!0}const Le=await super.generate({inputs:P,generation_config:D,logits_processor:ne,decoder_input_ids:Ce,...fe});return D.return_token_timestamps&&(Le.token_timestamps=this._extract_token_timestamps(Le,D.alignment_heads,D.num_frames)),Le}_extract_token_timestamps(P,D,ne=null,ge=.02){if(!P.cross_attentions)throw new Error("Model outputs must contain cross attentions to extract timestamps. This is most likely because the model was not exported with `output_attentions=True`.");ne==null&&console.warn("`num_frames` has not been set, meaning the entire audio will be analyzed. This may lead to inaccurate token-level timestamps for short audios (< 30 seconds).");let fe=this.config.median_filter_width;fe===void 0&&(console.warn("Model config has no `median_filter_width`, using default value of 7."),fe=7);const Ce=P.cross_attentions,Le=Array.from({length:this.config.decoder_layers},(gt,rt)=>(0,c.cat)(Ce.map(yt=>yt[rt]),2)),Ne=(0,c.stack)(D.map(([gt,rt])=>{if(gt>=Le.length)throw new Error(`Layer index ${gt} is out of bounds for cross attentions (length ${Le.length}).`);return ne?Le[gt].slice(null,rt,null,[0,ne]):Le[gt].slice(null,rt)})).transpose(1,0,2,3),[qe,it]=(0,c.std_mean)(Ne,-2,0,!0),pt=Ne.clone();for(let gt=0;gtyt[mr+1]-yt[mr]),Jt=(0,a.mergeArrays)([1],Ut).map(nr=>!!nr),qt=[];for(let nr=0;nrot.findIndex(Mt=>Mt==fe)),Ne=Le.every(ot=>ot===-1),qe=Le.every(ot=>ot!==-1);if(!Ne&&!qe)throw new Error("Every input should contain either 0 or 1 image token.");if(Ne)return{inputs_embeds:P,attention_mask:ge};const it=[],pt=[];for(let ot=0;otArray.from({length:P.dims[0]},Ut=>Array.from({length:P.dims[1]},Jt=>1))),ct=D?D.tolist():[],gt=ne?ne.tolist():[];let rt=0,yt=0;for(let Lt=0;Ltot[Lt][ar]==1),qt=Ut.reduce((Wt,ar,Js)=>(ar==Ne&&Wt.push(Js),Wt),[]).map(Wt=>Ut[Wt+1]),nr=qt.filter(Wt=>Wt==Ce).length,mr=qt.filter(Wt=>Wt==Le).length;let bt=[],ir=0,Vr=nr,An=mr;for(let Wt=0;Wtfs>ir&&Dn==Ce),Js=Ut.findIndex((Dn,fs)=>fs>ir&&Dn==Le),On=Vr>0&&ar!==-1?ar:Ut.length+1,oo=An>0&&Js!==-1?Js:Ut.length+1;let ha,gd,wd,Md;On0?(0,_.max)(bt.at(-1))[0]+1:0;bt.push(Array.from({length:3*yd},(Dn,fs)=>O0+fs%yd));const vd=yd+O0,_a=Ux*bd*ma,Wx=Array.from({length:_a},(Dn,fs)=>vd+Math.floor(fs/(bd*ma))),Gx=Array.from({length:_a},(Dn,fs)=>vd+Math.floor(fs/ma)%bd),Kx=Array.from({length:_a},(Dn,fs)=>vd+fs%ma);bt.push([Wx,Gx,Kx].flat()),ir=ha+_a}if(ir0?(0,_.max)(bt.at(-1))[0]+1:0,ar=Ut.length-ir;bt.push(Array.from({length:3*ar},(Js,On)=>Wt+On%ar))}const $r=bt.reduce((Wt,ar)=>Wt+ar.length,0),Jr=new Array($r);let da=0;for(let Wt=0;Wt<3;++Wt)for(let ar=0;arpt[rt%pt.length]),ct=Array.from({length:ot[0]},(gt,rt)=>(0,_.max)(pt.subarray(ot[1]*rt,ot[1]*(rt+1)))[0]+1n+BigInt(ot[1]));return[new c.Tensor("int64",Mt,[3,...ot]),new c.Tensor("int64",ct,[ct.length,1])]}else{const[pt,ot]=P.dims,Mt=BigInt64Array.from({length:3*pt*ot},(ct,gt)=>BigInt(Math.floor(gt%ot/pt)));return[new c.Tensor("int64",Mt,[3,...P.dims]),(0,c.zeros)([pt,1])]}}async encode_image({pixel_values:P,image_grid_thw:D}){return(await G(this.sessions.vision_encoder,{pixel_values:P,grid_thw:D})).image_features}_merge_input_ids_with_image_features(P){return V({image_token_id:this.config.image_token_id,...P})}prepare_inputs_for_generation(P,D,ne){if(D.attention_mask&&!D.position_ids)if(!D.past_key_values)[D.position_ids,D.rope_deltas]=this.get_rope_index(D.input_ids,D.image_grid_thw,D.video_grid_thw,D.attention_mask);else{D.pixel_values=null;const ge=BigInt(Object.values(D.past_key_values)[0].dims.at(-2)),fe=D.rope_deltas.map(Ce=>ge+Ce);D.position_ids=(0,c.stack)([fe,fe,fe],0)}return D}}class bu extends R{}class rw extends bu{}class sw extends bu{}class yu extends R{}class nw extends yu{}class ow extends yu{}class vu extends R{}class iw extends vu{}class aw extends vu{}class xu extends R{}class lw extends xu{}class uw extends xu{}class Tu extends R{}class dw extends Tu{}class cw extends Tu{}class Eu extends R{}class pw extends Eu{}class hw extends Eu{async _call(P){return new _t(await super._call(P))}}class Pu extends R{}class mw extends Pu{}class _w extends Pu{async _call(P){return new _t(await super._call(P))}}class fw extends R{}class gw extends fw{}class Cu extends R{}class ww extends Cu{}class Mw extends Cu{async _call(P){return new _t(await super._call(P))}}class bw extends R{}class yw extends bw{}class Su extends R{}class vw extends Su{}class xw extends Su{async _call(P){return new _t(await super._call(P))}}class Tw extends R{}class Ew extends Tw{}class $u extends R{}class Pw extends $u{}class Cw extends $u{async _call(P){return new _t(await super._call(P))}}class Sw extends R{}class $w extends Sw{async _call(P){return new A0(await super._call(P))}}class ku extends R{}class kw extends ku{}class Iw extends ku{async _call(P){return new _t(await super._call(P))}}class Iu extends R{}class Aw extends Iu{}class Fw extends Iu{async _call(P){return new _t(await super._call(P))}}class Au extends R{}class Ow extends Au{}class Dw extends Au{}class Fu extends R{}class Lw extends Fu{}class zw extends Fu{}class Ou extends R{}class Bw extends Ou{}class Rw extends Ou{async _call(P){return new _t(await super._call(P))}}class qi extends R{}class jw extends qi{}class Nw extends qi{async _call(P){return new Lu(await super._call(P))}}class Du extends qi{async _call(P){return new Vw(await super._call(P))}}class Lu extends pe{constructor({logits:P,pred_boxes:D}){super(),this.logits=P,this.pred_boxes=D}}class Vw extends pe{constructor({logits:P,pred_boxes:D,pred_masks:ne}){super(),this.logits=P,this.pred_boxes=D,this.pred_masks=ne}}class zu extends R{}class Uw extends zu{}class Ww extends zu{async _call(P){return new Xi(await super._call(P))}}class Xi extends pe{constructor({logits:P,pred_boxes:D}){super(),this.logits=P,this.pred_boxes=D}}class Bu extends R{}class Gw extends Bu{}class Kw extends Bu{async _call(P){return new Hw(await super._call(P))}}class Hw extends Xi{}class Ru extends R{}class qw extends Ru{}class Xw extends Ru{async _call(P){return new Qw(await super._call(P))}}class Qw extends Xi{}class ju extends R{}class Jw extends ju{}class Yw extends ju{async _call(P){return new Zw(await super._call(P))}}class Zw extends Lu{}class Nu extends R{}class eM extends Nu{}class tM extends Nu{async _call(P){return new _t(await super._call(P))}}class Vu extends R{}class rM extends Vu{}class sM extends Vu{async _call(P){return new _t(await super._call(P))}}class Uu extends R{}class nM extends Uu{}class oM extends Uu{async _call(P){return new _t(await super._call(P))}}class Qi extends R{}class iM extends Qi{}class aM extends Qi{async _call(P){return new _t(await super._call(P))}}class lM extends Qi{}class Wu extends R{}class uM extends Wu{}class dM extends Wu{}class Gu extends R{}class cM extends Gu{}class pM extends Gu{}class hM extends R{}class mM extends hM{}class Ji extends R{}class _M extends Ji{}class fM extends Ji{}class gM extends Ji{}class wM extends R{}class MM extends wM{}class bM extends R{}class yM extends bM{}class vM extends R{}class xM extends vM{}class Ku extends R{}class TM extends Ku{}class EM extends Ku{}class Hu extends R{}class PM extends Hu{}class CM extends Hu{}class SM extends R{}class $M extends SM{}class qu extends R{}class kM extends qu{}class IM extends qu{async _call(P){return new _t(await super._call(P))}}class Xu extends R{}class AM extends Xu{}class FM extends Xu{async _call(P){return new _t(await super._call(P))}}class Qu extends R{}class OM extends Qu{}class DM extends Qu{async _call(P){return new _t(await super._call(P))}}class Ju extends R{}class LM extends Ju{}class zM extends Ju{async _call(P){return new _t(await super._call(P))}}class BM extends R{}class RM extends BM{}class Yu extends R{}class jM extends Yu{}class NM extends Yu{async _call(P){return new VM(await super._call(P))}}class VM extends pe{constructor({logits:P,pred_boxes:D}){super(),this.logits=P,this.pred_boxes=D}}class UM extends R{}class WM extends UM{async get_image_embeddings({pixel_values:P}){return await X(this,{pixel_values:P})}async forward(P){if((!P.image_embeddings||!P.image_positional_embeddings)&&(P={...P,...await this.get_image_embeddings(P)}),!P.input_labels&&P.input_points){const ne=P.input_points.dims.slice(0,-1),ge=ne.reduce((fe,Ce)=>fe*Ce,1);P.input_labels=new c.Tensor("int64",new BigInt64Array(ge).fill(1n),ne)}const D={image_embeddings:P.image_embeddings,image_positional_embeddings:P.image_positional_embeddings};return P.input_points&&(D.input_points=P.input_points),P.input_labels&&(D.input_labels=P.input_labels),P.input_boxes&&(D.input_boxes=P.input_boxes),await G(this.sessions.prompt_encoder_mask_decoder,D)}async _call(P){return new GM(await super._call(P))}}class GM extends pe{constructor({iou_scores:P,pred_masks:D}){super(),this.iou_scores=P,this.pred_masks=D}}class Zu extends R{}class KM extends Zu{}class HM extends Zu{}class ed extends R{}class qM extends ed{}class XM extends ed{}class Qs extends R{}class QM extends Qs{}class JM extends Qs{async _call(P){return new In(await super._call(P))}}class YM extends Qs{async _call(P){return new _t(await super._call(P))}}class ZM extends Qs{async _call(P){return new hr(await super._call(P))}}class td extends R{}class eb extends td{}class tb extends td{async _call(P){return new hr(await super._call(P))}}class rb extends R{}class sb extends rb{}class Yi extends R{}class nb extends Yi{}class ob extends Yi{async _call(P){return new In(await super._call(P))}}class ib extends Yi{async _call(P){return new _t(await super._call(P))}}class Qo extends R{}class ab extends Qo{}class lb extends Qo{async _call(P){return new In(await super._call(P))}}class ub extends Qo{async _call(P){return new _t(await super._call(P))}}class db extends Qo{async _call(P){return new hr(await super._call(P))}}class Zi extends R{}class cb extends Zi{}class pb extends Zi{async _call(P){return new In(await super._call(P))}}class hb extends Zi{async _call(P){return new _t(await super._call(P))}}class Sx extends R{}class mb extends Qs{}class _b extends Qs{async _call(P){return new In(await super._call(P))}}class fb extends Qs{async _call(P){return new _t(await super._call(P))}}class so extends R{}class gb extends so{}class wb extends so{async _call(P){return new In(await super._call(P))}}class Mb extends so{async _call(P){return new _t(await super._call(P))}}class bb extends so{async _call(P){return new I0(await super._call(P))}}class yb extends so{async _call(P){return new hr(await super._call(P))}}class vb extends R{}class xb extends vb{}class ea extends R{}class $x extends ea{}class Tb extends ea{}class Eb extends ea{async generate_speech(P,D,{threshold:ne=.5,minlenratio:ge=0,maxlenratio:fe=20,vocoder:Ce=null}={}){const Le={input_ids:P},{encoder_outputs:Ne,encoder_attention_mask:qe}=await X(this,Le),it=Ne.dims[1]/this.config.reduction_factor,pt=Math.floor(it*fe),ot=Math.floor(it*ge),Mt=this.config.num_mel_bins;let ct=[],gt=null,rt=null,yt=0;for(;;){++yt;const Jt=H(!!rt);let qt;rt?qt=rt.output_sequence_out:qt=new c.Tensor("float32",new Float32Array(Mt),[1,1,Mt]);let nr={use_cache_branch:Jt,output_sequence:qt,encoder_attention_mask:qe,speaker_embeddings:D,encoder_hidden_states:Ne};this.addPastKeyValues(nr,gt),rt=await G(this.sessions.decoder_model_merged,nr),gt=this.getPastKeyValues(rt,gt);const{prob:mr,spectrum:bt}=rt;if(ct.push(bt),yt>=ot&&(Array.from(mr.data).filter(ir=>ir>=ne).length>0||yt>=pt))break}const Lt=(0,c.cat)(ct),{waveform:Ut}=await G(Ce.sessions.model,{spectrogram:Lt});return{spectrogram:Lt,waveform:Ut}}}class Pb extends R{constructor(){super(...arguments);te(this,"main_input_name","spectrogram")}}class Cb extends R{}class Sb extends Cb{}class rd extends R{}class $b extends rd{}class kb extends rd{}class sd extends R{}class Ib extends sd{}class Ab extends sd{}class nd extends R{}class Fb extends nd{}class Ob extends nd{}class ta extends R{}class Db extends ta{}class Lb extends ta{static async from_pretrained(P,D={}){return super.from_pretrained(P,{...D,model_file_name:D.model_file_name??"text_model"})}}class zb extends ta{static async from_pretrained(P,D={}){return super.from_pretrained(P,{...D,model_file_name:D.model_file_name??"audio_model"})}}class Bb extends R{}class od extends Bb{async _call(P){return new F0(await super._call(P))}}class ra extends R{}class kx extends ra{}class Rb extends ra{}class jb extends ra{}class id extends R{}class Nb extends id{}class Vb extends id{}class ad extends R{}class Ub extends ad{}class Wb extends ad{async _call(P){return new _t(await super._call(P))}}class ld extends R{}class Ix extends ld{}class Ax extends ld{}class ud extends R{constructor(){super(...arguments);te(this,"forward_params",["input_ids","attention_mask","encoder_outputs","decoder_input_ids","decoder_attention_mask","past_key_values"])}_apply_and_filter_by_delay_pattern_mask(D){const[ne,ge]=D.dims,fe=this.config.decoder.num_codebooks,Ce=ge-fe;let Le=0;for(let it=0;it0&&Mt<=Ce&&(D.data[Le++]=D.data[it])}const Ne=Math.floor(ne/fe),qe=Le/(Ne*fe);return new c.Tensor(D.type,D.data.slice(0,Le),[Ne,fe,qe])}prepare_inputs_for_generation(D,ne,ge){let fe=structuredClone(D);for(let Le=0;Le=Ne&&(fe[Le][Ne]=BigInt(this.config.decoder.pad_token_id));return ge.guidance_scale!==null&&ge.guidance_scale>1&&(fe=fe.concat(fe)),super.prepare_inputs_for_generation(fe,ne,ge)}async generate(D){const ne=await super.generate(D),ge=this._apply_and_filter_by_delay_pattern_mask(ne).unsqueeze_(0),{audio_values:fe}=await G(this.sessions.encodec_decode,{audio_codes:ge});return fe}}class sa extends R{}class Gb extends sa{}class Kb extends sa{async _call(P){return new _t(await super._call(P))}}class Hb extends sa{}class na extends R{}class qb extends na{}class Xb extends na{async _call(P){return new _t(await super._call(P))}}class Qb extends na{}class oa extends R{}class Jb extends oa{}class Yb extends oa{async _call(P){return new _t(await super._call(P))}}class Zb extends oa{}class ia extends R{}class ey extends ia{}class ty extends ia{async _call(P){return new _t(await super._call(P))}}class ry extends ia{}class sy extends R{}class ny extends sy{}class oy extends R{}class iy extends oy{constructor(...D){super(...D);te(this,"forward_params",["input_ids","pixel_values","images_seq_mask","images_emb_mask","attention_mask","position_ids","past_key_values"]);this._generation_mode="text"}async forward(D){const ne=this._generation_mode??"text";let ge;if(ne==="text"||!D.past_key_values){const qe=this.sessions.prepare_inputs_embeds,it=(0,a.pick)(D,qe.inputNames);ge=await G(qe,it)}else{const qe=this.sessions.gen_img_embeds,it=(0,a.pick)({image_ids:D.input_ids},qe.inputNames);ge=await G(qe,it)}const fe={...D,...ge},Ce=await me(this,fe),Le=this.sessions[ne==="text"?"lm_head":"gen_head"];if(!Le)throw new Error(`Unable to find "${Le}" generation head`);const Ne=await G(Le,(0,a.pick)(Ce,Le.inputNames));return{...ge,...Ce,...Ne}}async generate(D){return this._generation_mode="text",super.generate(D)}async generate_images(D){this._generation_mode="image";const ne=(D.inputs??D[this.main_input_name]).dims[1],fe=(await super.generate(D)).slice(null,[ne,null]),Ce=this.sessions.image_decode,{decoded_image:Le}=await G(Ce,{generated_tokens:fe}),Ne=Le.add_(1).mul_(255/2).clamp_(0,255).to("uint8"),qe=[];for(const it of Ne){const pt=f.RawImage.fromTensor(it);qe.push(pt)}return qe}}class ay extends pe{constructor({char_logits:P,bpe_logits:D,wp_logits:ne}){super(),this.char_logits=P,this.bpe_logits=D,this.wp_logits=ne}get logits(){return[this.char_logits,this.bpe_logits,this.wp_logits]}}class ly extends R{}class uy extends ly{async _call(P){return new ay(await super._call(P))}}class dd extends R{}class dy extends dd{}class cy extends dd{}class cd extends R{}class py extends cd{}class hy extends cd{}class my extends R{constructor(){super(...arguments);te(this,"forward_params",["input_ids","attention_mask","position_ids","audio_values","past_key_values"])}}class _y extends my{_merge_input_ids_with_audio_features(P){const D=P.audio_features.dims.at(-1),ne=P.audio_features.view(-1,D);return F({audio_token_id:this.config.ignore_index,...P,audio_features:ne})}}class aa extends R{constructor(){super(...arguments);te(this,"main_input_name","input_values");te(this,"forward_params",["input_values"])}}class fy extends pe{constructor({audio_codes:P}){super(),this.audio_codes=P}}class gy extends pe{constructor({audio_values:P}){super(),this.audio_values=P}}class wy extends aa{async encode(P){return new fy(await G(this.sessions.encoder_model,P))}async decode(P){return new gy(await G(this.sessions.decoder_model,P))}}class My extends aa{static async from_pretrained(P,D={}){return super.from_pretrained(P,{...D,model_file_name:D.model_file_name??"encoder_model"})}}class by extends aa{static async from_pretrained(P,D={}){return super.from_pretrained(P,{...D,model_file_name:D.model_file_name??"decoder_model"})}}class la extends R{constructor(){super(...arguments);te(this,"main_input_name","input_values");te(this,"forward_params",["input_values"])}}class yy extends pe{constructor({audio_codes:P}){super(),this.audio_codes=P}}class vy extends pe{constructor({audio_values:P}){super(),this.audio_values=P}}class xy extends la{async encode(P){return new yy(await G(this.sessions.encoder_model,P))}async decode(P){return new vy(await G(this.sessions.decoder_model,P))}}class Ty extends la{static async from_pretrained(P,D={}){return super.from_pretrained(P,{...D,model_file_name:D.model_file_name??"encoder_model"})}}class Ey extends la{static async from_pretrained(P,D={}){return super.from_pretrained(P,{...D,model_file_name:D.model_file_name??"decoder_model"})}}class ua extends R{constructor(){super(...arguments);te(this,"main_input_name","input_values");te(this,"forward_params",["input_values"])}}class Py extends ua{async encode(P){return await G(this.sessions.encoder_model,P)}async decode(P){return await G(this.sessions.decoder_model,P)}}class Cy extends ua{static async from_pretrained(P,D={}){return super.from_pretrained(P,{...D,model_file_name:D.model_file_name??"encoder_model"})}}class Sy extends ua{static async from_pretrained(P,D={}){return super.from_pretrained(P,{...D,model_file_name:D.model_file_name??"decoder_model"})}}class Ct{static async from_pretrained(P,{progress_callback:D=null,config:ne=null,cache_dir:ge=null,local_files_only:fe=!1,revision:Ce="main",model_file_name:Le=null,subfolder:Ne="onnx",device:qe=null,dtype:it=null,use_external_data_format:pt=null,session_options:ot={}}={}){const Mt={progress_callback:D,config:ne,cache_dir:ge,local_files_only:fe,revision:Ce,model_file_name:Le,subfolder:Ne,device:qe,dtype:it,use_external_data_format:pt,session_options:ot};if(Mt.config=await s.AutoConfig.from_pretrained(P,Mt),!this.MODEL_CLASS_MAPPINGS)throw new Error("`MODEL_CLASS_MAPPINGS` not implemented for this type of `AutoClass`: "+this.name);const ct=Mt.config.model_type;for(const gt of this.MODEL_CLASS_MAPPINGS){let rt=gt.get(ct);if(!rt){for(const yt of gt.values())if(yt[0]===ct){rt=yt;break}if(!rt)continue}return await rt[1].from_pretrained(P,Mt)}if(this.BASE_IF_FAIL)return e0.has(ct)||console.warn(`Unknown model class "${ct}", attempting to construct from base class.`),await R.from_pretrained(P,Mt);throw Error(`Unsupported model type: ${ct}`)}}te(Ct,"MODEL_CLASS_MAPPINGS",null),te(Ct,"BASE_IF_FAIL",!1);const Fx=new Map([["bert",["BertModel",Se]],["modernbert",["ModernBertModel",Y]],["nomic_bert",["NomicBertModel",Ee]],["roformer",["RoFormerModel",Ie]],["electra",["ElectraModel",js]],["esm",["EsmModel",Vs]],["convbert",["ConvBertModel",Gt]],["camembert",["CamembertModel",bs]],["deberta",["DebertaModel",De]],["deberta-v2",["DebertaV2Model",ps]],["mpnet",["MPNetModel",mn]],["albert",["AlbertModel",vn]],["distilbert",["DistilBertModel",vr]],["roberta",["RobertaModel",jr]],["xlm",["XLMModel",Ws]],["xlm-roberta",["XLMRobertaModel",Ei]],["clap",["ClapModel",Db]],["clip",["CLIPModel",Ni]],["clipseg",["CLIPSegModel",Lo]],["chinese_clip",["ChineseCLIPModel",Gi]],["siglip",["SiglipModel",En]],["jina_clip",["JinaCLIPModel",Hn]],["mobilebert",["MobileBertModel",Tr]],["squeezebert",["SqueezeBertModel",Mn]],["wav2vec2",["Wav2Vec2Model",QM]],["wav2vec2-bert",["Wav2Vec2BertModel",cb]],["unispeech",["UniSpeechModel",nb]],["unispeech-sat",["UniSpeechSatModel",ab]],["hubert",["HubertModel",mb]],["wavlm",["WavLMModel",gb]],["audio-spectrogram-transformer",["ASTModel",ki]],["vits",["VitsModel",od]],["pyannote",["PyAnnoteModel",eb]],["wespeaker-resnet",["WeSpeakerResNetModel",sb]],["detr",["DetrModel",jw]],["rt_detr",["RTDetrModel",Uw]],["rt_detr_v2",["RTDetrV2Model",Gw]],["rf_detr",["RFDetrModel",qw]],["table-transformer",["TableTransformerModel",Jw]],["vit",["ViTModel",pw]],["ijepa",["IJepaModel",mw]],["pvt",["PvtModel",ww]],["vit_msn",["ViTMSNModel",vw]],["vit_mae",["ViTMAEModel",yw]],["groupvit",["GroupViTModel",Ew]],["fastvit",["FastViTModel",Pw]],["mobilevit",["MobileViTModel",kw]],["mobilevitv2",["MobileViTV2Model",Aw]],["owlvit",["OwlViTModel",Ow]],["owlv2",["Owlv2Model",Lw]],["beit",["BeitModel",Bw]],["deit",["DeiTModel",eM]],["hiera",["HieraModel",rM]],["convnext",["ConvNextModel",kM]],["convnextv2",["ConvNextV2Model",AM]],["dinov2",["Dinov2Model",OM]],["dinov2_with_registers",["Dinov2WithRegistersModel",LM]],["resnet",["ResNetModel",nM]],["swin",["SwinModel",iM]],["swin2sr",["Swin2SRModel",uM]],["donut-swin",["DonutSwinModel",$M]],["yolos",["YolosModel",jM]],["dpt",["DPTModel",cM]],["glpn",["GLPNModel",PM]],["hifigan",["SpeechT5HifiGan",Pb]],["efficientnet",["EfficientNetModel",Ub]],["decision_transformer",["DecisionTransformerModel",ny]],["patchtst",["PatchTSTForPrediction",dy]],["patchtsmixer",["PatchTSMixerForPrediction",py]],["mobilenet_v1",["MobileNetV1Model",Gb]],["mobilenet_v2",["MobileNetV2Model",qb]],["mobilenet_v3",["MobileNetV3Model",Jb]],["mobilenet_v4",["MobileNetV4Model",ey]],["maskformer",["MaskFormerModel",TM]],["mgp-str",["MgpstrForSceneTextRecognition",uy]],["style_text_to_speech_2",["StyleTextToSpeech2Model",xb]]]),Ox=new Map([["t5",["T5Model",ie]],["longt5",["LongT5Model",je]],["mt5",["MT5Model",Je]],["bart",["BartModel",Pt]],["mbart",["MBartModel",br]],["marian",["MarianModel",KM]],["whisper",["WhisperModel",Ai]],["m2m_100",["M2M100Model",qM]],["blenderbot",["BlenderbotModel",Dt]],["blenderbot-small",["BlenderbotSmallModel",Qr]]]),Dx=new Map([["mimi",["MimiModel",wy]],["dac",["DacModel",xy]],["snac",["SnacModel",Py]]]),Lx=new Map([["bloom",["BloomModel",iw]],["jais",["JAISModel",Pn]],["gpt2",["GPT2Model",Ki]],["gptj",["GPTJModel",Vo]],["gpt_bigcode",["GPTBigCodeModel",Yn]],["gpt_neo",["GPTNeoModel",jo]],["gpt_neox",["GPTNeoXModel",Nr]],["codegen",["CodeGenModel",Go]],["llama",["LlamaModel",eo]],["exaone",["ExaoneModel",I]],["olmo",["OlmoModel",Ke]],["olmo2",["Olmo2Model",Tt]],["mobilellm",["MobileLLMModel",ue]],["granite",["GraniteModel",Os]],["cohere",["CohereModel",Vg]],["gemma",["GemmaModel",Wg]],["gemma2",["Gemma2Model",Kg]],["gemma3_text",["Gemma3Model",qg]],["helium",["HeliumModel",Ho]],["glm",["GlmModel",Xo]],["openelm",["OpenELMModel",Qg]],["qwen2",["Qwen2Model",Yg]],["phi",["PhiModel",rw]],["phi3",["Phi3Model",nw]],["mpt",["MptModel",lw]],["opt",["OPTModel",dw]],["mistral",["MistralModel",$b]],["starcoder2",["Starcoder2Model",Ib]],["falcon",["FalconModel",Fb]],["stablelm",["StableLmModel",Nb]]]),pd=new Map([["speecht5",["SpeechT5ForSpeechToText",Tb]],["whisper",["WhisperForConditionalGeneration",Po]],["lite-whisper",["LiteWhisperForConditionalGeneration",Fi]],["moonshine",["MoonshineForConditionalGeneration",Co]]]),$y=new Map([["speecht5",["SpeechT5ForTextToSpeech",Eb]]]),ky=new Map([["vits",["VitsModel",od]],["musicgen",["MusicgenForConditionalGeneration",ud]]]),Iy=new Map([["bert",["BertForSequenceClassification",Fe]],["modernbert",["ModernBertForSequenceClassification",J]],["roformer",["RoFormerForSequenceClassification",Xe]],["electra",["ElectraForSequenceClassification",Ns]],["esm",["EsmForSequenceClassification",Fr]],["convbert",["ConvBertForSequenceClassification",ur]],["camembert",["CamembertForSequenceClassification",ds]],["deberta",["DebertaForSequenceClassification",tt]],["deberta-v2",["DebertaV2ForSequenceClassification",Kr]],["mpnet",["MPNetForSequenceClassification",fn]],["albert",["AlbertForSequenceClassification",he]],["distilbert",["DistilBertForSequenceClassification",cn]],["roberta",["RobertaForSequenceClassification",Vt]],["xlm",["XLMForSequenceClassification",vi]],["xlm-roberta",["XLMRobertaForSequenceClassification",Ci]],["bart",["BartForSequenceClassification",kt]],["mbart",["MBartForSequenceClassification",pr]],["mobilebert",["MobileBertForSequenceClassification",dr]],["squeezebert",["SqueezeBertForSequenceClassification",bn]]]),Ay=new Map([["bert",["BertForTokenClassification",ze]],["modernbert",["ModernBertForTokenClassification",le]],["roformer",["RoFormerForTokenClassification",Ge]],["electra",["ElectraForTokenClassification",at]],["esm",["EsmForTokenClassification",hn]],["convbert",["ConvBertForTokenClassification",ls]],["camembert",["CamembertForTokenClassification",cs]],["deberta",["DebertaForTokenClassification",Rt]],["deberta-v2",["DebertaV2ForTokenClassification",ms]],["mpnet",["MPNetForTokenClassification",gn]],["distilbert",["DistilBertForTokenClassification",xr]],["roberta",["RobertaForTokenClassification",Zt]],["xlm",["XLMForTokenClassification",xi]],["xlm-roberta",["XLMRobertaForTokenClassification",Si]]]),hd=new Map([["t5",["T5ForConditionalGeneration",de]],["longt5",["LongT5ForConditionalGeneration",He]],["mt5",["MT5ForConditionalGeneration",dt]],["bart",["BartForConditionalGeneration",jt]],["mbart",["MBartForConditionalGeneration",cr]],["marian",["MarianMTModel",HM]],["m2m_100",["M2M100ForConditionalGeneration",XM]],["blenderbot",["BlenderbotForConditionalGeneration",rr]],["blenderbot-small",["BlenderbotSmallForConditionalGeneration",Rr]]]),md=new Map([["bloom",["BloomForCausalLM",aw]],["gpt2",["GPT2LMHeadModel",Bo]],["jais",["JAISLMHeadModel",nt]],["gptj",["GPTJForCausalLM",Uo]],["gpt_bigcode",["GPTBigCodeForCausalLM",Wo]],["gpt_neo",["GPTNeoForCausalLM",No]],["gpt_neox",["GPTNeoXForCausalLM",Cn]],["codegen",["CodeGenForCausalLM",$n]],["llama",["LlamaForCausalLM",Ko]],["exaone",["ExaoneForCausalLM",L]],["olmo",["OlmoForCausalLM",Ze]],["olmo2",["Olmo2ForCausalLM",It]],["mobilellm",["MobileLLMForCausalLM",Te]],["granite",["GraniteForCausalLM",Hi]],["cohere",["CohereForCausalLM",Ug]],["gemma",["GemmaForCausalLM",Gg]],["gemma2",["Gemma2ForCausalLM",Hg]],["gemma3_text",["Gemma3ForCausalLM",Xg]],["helium",["HeliumForCausalLM",qo]],["glm",["GlmForCausalLM",h]],["openelm",["OpenELMForCausalLM",Jg]],["qwen2",["Qwen2ForCausalLM",Zg]],["phi",["PhiForCausalLM",sw]],["phi3",["Phi3ForCausalLM",ow]],["mpt",["MptForCausalLM",uw]],["opt",["OPTForCausalLM",cw]],["mbart",["MBartForCausalLM",Nt]],["mistral",["MistralForCausalLM",kb]],["starcoder2",["Starcoder2ForCausalLM",Ab]],["falcon",["FalconForCausalLM",Ob]],["trocr",["TrOCRForCausalLM",Sb]],["stablelm",["StableLmForCausalLM",Vb]],["phi3_v",["Phi3VForCausalLM",Io]]]),zx=new Map([["multi_modality",["MultiModalityCausalLM",iy]]]),Fy=new Map([["bert",["BertForMaskedLM",Ae]],["modernbert",["ModernBertForMaskedLM",z]],["roformer",["RoFormerForMaskedLM",Re]],["electra",["ElectraForMaskedLM",Ss]],["esm",["EsmForMaskedLM",pn]],["convbert",["ConvBertForMaskedLM",Ot]],["camembert",["CamembertForMaskedLM",Ft]],["deberta",["DebertaForMaskedLM",Qe]],["deberta-v2",["DebertaV2ForMaskedLM",hs]],["mpnet",["MPNetForMaskedLM",_n]],["albert",["AlbertForMaskedLM",N]],["distilbert",["DistilBertForMaskedLM",ks]],["roberta",["RobertaForMaskedLM",or]],["xlm",["XLMWithLMHeadModel",xn]],["xlm-roberta",["XLMRobertaForMaskedLM",Pi]],["mobilebert",["MobileBertForMaskedLM",Is]],["squeezebert",["SqueezeBertForMaskedLM",Us]]]),Oy=new Map([["bert",["BertForQuestionAnswering",Ve]],["roformer",["RoFormerForQuestionAnswering",lt]],["electra",["ElectraForQuestionAnswering",us]],["convbert",["ConvBertForQuestionAnswering",Ms]],["camembert",["CamembertForQuestionAnswering",ys]],["deberta",["DebertaForQuestionAnswering",zr]],["deberta-v2",["DebertaV2ForQuestionAnswering",_s]],["mpnet",["MPNetForQuestionAnswering",wn]],["albert",["AlbertForQuestionAnswering",k]],["distilbert",["DistilBertForQuestionAnswering",$s]],["roberta",["RobertaForQuestionAnswering",er]],["xlm",["XLMForQuestionAnswering",Ti]],["xlm-roberta",["XLMRobertaForQuestionAnswering",$i]],["mobilebert",["MobileBertForQuestionAnswering",gr]],["squeezebert",["SqueezeBertForQuestionAnswering",yn]]]),_d=new Map([["vision-encoder-decoder",["VisionEncoderDecoderModel",So]],["idefics3",["Idefics3ForConditionalGeneration",Ks]],["smolvlm",["SmolVLMForConditionalGeneration",Kn]]]),Dy=new Map([["llava",["LlavaForConditionalGeneration",Tn]],["llava_onevision",["LlavaOnevisionForConditionalGeneration",$o]],["moondream1",["Moondream1ForConditionalGeneration",Gs]],["florence2",["Florence2ForConditionalGeneration",ko]],["qwen2-vl",["Qwen2VLForConditionalGeneration",tw]],["idefics3",["Idefics3ForConditionalGeneration",Ks]],["smolvlm",["SmolVLMForConditionalGeneration",Kn]],["paligemma",["PaliGemmaForConditionalGeneration",Bi]]]),Ly=new Map([["ultravox",["UltravoxModel",_y]]]),Bx=new Map([["vision-encoder-decoder",["VisionEncoderDecoderModel",So]]]),zy=new Map([["vit",["ViTForImageClassification",hw]],["ijepa",["IJepaForImageClassification",_w]],["pvt",["PvtForImageClassification",Mw]],["vit_msn",["ViTMSNForImageClassification",xw]],["fastvit",["FastViTForImageClassification",Cw]],["mobilevit",["MobileViTForImageClassification",Iw]],["mobilevitv2",["MobileViTV2ForImageClassification",Fw]],["beit",["BeitForImageClassification",Rw]],["deit",["DeiTForImageClassification",tM]],["hiera",["HieraForImageClassification",sM]],["convnext",["ConvNextForImageClassification",IM]],["convnextv2",["ConvNextV2ForImageClassification",FM]],["dinov2",["Dinov2ForImageClassification",DM]],["dinov2_with_registers",["Dinov2WithRegistersForImageClassification",zM]],["resnet",["ResNetForImageClassification",oM]],["swin",["SwinForImageClassification",aM]],["segformer",["SegformerForImageClassification",Rb]],["efficientnet",["EfficientNetForImageClassification",Wb]],["mobilenet_v1",["MobileNetV1ForImageClassification",Kb]],["mobilenet_v2",["MobileNetV2ForImageClassification",Xb]],["mobilenet_v3",["MobileNetV3ForImageClassification",Yb]],["mobilenet_v4",["MobileNetV4ForImageClassification",ty]]]),By=new Map([["detr",["DetrForObjectDetection",Nw]],["rt_detr",["RTDetrForObjectDetection",Ww]],["rt_detr_v2",["RTDetrV2ForObjectDetection",Kw]],["rf_detr",["RFDetrForObjectDetection",Xw]],["table-transformer",["TableTransformerForObjectDetection",Yw]],["yolos",["YolosForObjectDetection",NM]]]),Ry=new Map([["owlvit",["OwlViTForObjectDetection",Dw]],["owlv2",["Owlv2ForObjectDetection",zw]],["grounding-dino",["GroundingDinoForObjectDetection",RM]]]),no=new Map([["detr",["DetrForSegmentation",Du]],["clipseg",["CLIPSegForImageSegmentation",zo]]]),jy=new Map([["segformer",["SegformerForSemanticSegmentation",jb]],["sapiens",["SapiensForSemanticSegmentation",_M]],["swin",["SwinForSemanticSegmentation",lM]],["mobilenet_v1",["MobileNetV1ForSemanticSegmentation",Hb]],["mobilenet_v2",["MobileNetV2ForSemanticSegmentation",Qb]],["mobilenet_v3",["MobileNetV3ForSemanticSegmentation",Zb]],["mobilenet_v4",["MobileNetV4ForSemanticSegmentation",ry]]]),Ny=new Map([["detr",["DetrForSegmentation",Du]],["maskformer",["MaskFormerForInstanceSegmentation",EM]]]),Vy=new Map([["sam",["SamModel",WM]]]),Uy=new Map([["wav2vec2",["Wav2Vec2ForCTC",JM]],["wav2vec2-bert",["Wav2Vec2BertForCTC",pb]],["unispeech",["UniSpeechForCTC",ob]],["unispeech-sat",["UniSpeechSatForCTC",lb]],["wavlm",["WavLMForCTC",wb]],["hubert",["HubertForCTC",_b]]]),Wy=new Map([["wav2vec2",["Wav2Vec2ForSequenceClassification",YM]],["wav2vec2-bert",["Wav2Vec2BertForSequenceClassification",hb]],["unispeech",["UniSpeechForSequenceClassification",ib]],["unispeech-sat",["UniSpeechSatForSequenceClassification",ub]],["wavlm",["WavLMForSequenceClassification",Mb]],["hubert",["HubertForSequenceClassification",fb]],["audio-spectrogram-transformer",["ASTForAudioClassification",Ii]]]),Gy=new Map([["wavlm",["WavLMForXVector",bb]]]),Ky=new Map([["unispeech-sat",["UniSpeechSatForAudioFrameClassification",db]],["wavlm",["WavLMForAudioFrameClassification",yb]],["wav2vec2",["Wav2Vec2ForAudioFrameClassification",ZM]],["pyannote",["PyAnnoteForAudioFrameClassification",tb]]]),Hy=new Map([["vitmatte",["VitMatteForImageMatting",$w]]]),Rx=new Map([["patchtst",["PatchTSTForPrediction",cy]],["patchtsmixer",["PatchTSMixerForPrediction",hy]]]),qy=new Map([["swin2sr",["Swin2SRForImageSuperResolution",dM]]]),Xy=new Map([["dpt",["DPTForDepthEstimation",pM]],["depth_anything",["DepthAnythingForDepthEstimation",mM]],["glpn",["GLPNForDepthEstimation",CM]],["sapiens",["SapiensForDepthEstimation",fM]],["depth_pro",["DepthProForDepthEstimation",MM]],["metric3d",["Metric3DForDepthEstimation",yM]],["metric3dv2",["Metric3Dv2ForDepthEstimation",xM]]]),Qy=new Map([["sapiens",["SapiensForNormalEstimation",gM]]]),Jy=new Map([["vitpose",["VitPoseForPoseEstimation",gw]]]),Yy=new Map([["clip",["CLIPVisionModelWithProjection",Ui]],["siglip",["SiglipVisionModel",Fo]],["jina_clip",["JinaCLIPVisionModel",Do]]]),Zy=[[Fx,E.EncoderOnly],[Ox,E.EncoderDecoder],[Lx,E.DecoderOnly],[Dx,E.AutoEncoder],[Iy,E.EncoderOnly],[Ay,E.EncoderOnly],[hd,E.Seq2Seq],[pd,E.Seq2Seq],[md,E.DecoderOnly],[zx,E.MultiModality],[Fy,E.EncoderOnly],[Oy,E.EncoderOnly],[_d,E.Vision2Seq],[Dy,E.ImageTextToText],[Ly,E.AudioTextToText],[zy,E.EncoderOnly],[no,E.EncoderOnly],[Ny,E.EncoderOnly],[jy,E.EncoderOnly],[Hy,E.EncoderOnly],[Rx,E.EncoderOnly],[qy,E.EncoderOnly],[Xy,E.EncoderOnly],[Qy,E.EncoderOnly],[Jy,E.EncoderOnly],[By,E.EncoderOnly],[Ry,E.EncoderOnly],[Vy,E.MaskGeneration],[Uy,E.EncoderOnly],[Wy,E.EncoderOnly],[$y,E.Seq2Seq],[ky,E.EncoderOnly],[Gy,E.EncoderOnly],[Ky,E.EncoderOnly],[Yy,E.EncoderOnly]];for(const[b,P]of Zy)for(const[D,ne]of b.values())y.set(D,P),v.set(ne,D),M.set(D,ne);const jx=[["MusicgenForConditionalGeneration",ud,E.Musicgen],["Phi3VForCausalLM",Io,E.Phi3V],["CLIPTextModelWithProjection",Vi,E.EncoderOnly],["SiglipTextModel",Hs,E.EncoderOnly],["JinaCLIPTextModel",Oo,E.EncoderOnly],["ClapTextModelWithProjection",Lb,E.EncoderOnly],["ClapAudioModelWithProjection",zb,E.EncoderOnly],["DacEncoderModel",Ty,E.EncoderOnly],["DacDecoderModel",Ey,E.EncoderOnly],["MimiEncoderModel",My,E.EncoderOnly],["MimiDecoderModel",by,E.EncoderOnly],["SnacEncoderModel",Cy,E.EncoderOnly],["SnacDecoderModel",Sy,E.EncoderOnly]];for(const[b,P,D]of jx)y.set(b,D),v.set(P,b),M.set(b,P);const e0=new Map([["modnet",no],["birefnet",no],["isnet",no],["ben",no]]);for(const[b,P]of e0.entries())P.set(b,["PreTrainedModel",R]),y.set(b,E.EncoderOnly),v.set(R,b),M.set(b,R);class fd extends Ct{}te(fd,"MODEL_CLASS_MAPPINGS",Zy.map(P=>P[0])),te(fd,"BASE_IF_FAIL",!0);class t0 extends Ct{}te(t0,"MODEL_CLASS_MAPPINGS",[Iy]);class r0 extends Ct{}te(r0,"MODEL_CLASS_MAPPINGS",[Ay]);class s0 extends Ct{}te(s0,"MODEL_CLASS_MAPPINGS",[hd]);class n0 extends Ct{}te(n0,"MODEL_CLASS_MAPPINGS",[pd]);class o0 extends Ct{}te(o0,"MODEL_CLASS_MAPPINGS",[$y]);class i0 extends Ct{}te(i0,"MODEL_CLASS_MAPPINGS",[ky]);class a0 extends Ct{}te(a0,"MODEL_CLASS_MAPPINGS",[md]);class l0 extends Ct{}te(l0,"MODEL_CLASS_MAPPINGS",[Fy]);class u0 extends Ct{}te(u0,"MODEL_CLASS_MAPPINGS",[Oy]);class d0 extends Ct{}te(d0,"MODEL_CLASS_MAPPINGS",[_d]);class c0 extends Ct{}te(c0,"MODEL_CLASS_MAPPINGS",[zy]);class p0 extends Ct{}te(p0,"MODEL_CLASS_MAPPINGS",[no]);class h0 extends Ct{}te(h0,"MODEL_CLASS_MAPPINGS",[jy]);class m0 extends Ct{}te(m0,"MODEL_CLASS_MAPPINGS",[Ny]);class _0 extends Ct{}te(_0,"MODEL_CLASS_MAPPINGS",[By]);class f0 extends Ct{}te(f0,"MODEL_CLASS_MAPPINGS",[Ry]);class g0 extends Ct{}te(g0,"MODEL_CLASS_MAPPINGS",[Vy]);class w0 extends Ct{}te(w0,"MODEL_CLASS_MAPPINGS",[Uy]);class M0 extends Ct{}te(M0,"MODEL_CLASS_MAPPINGS",[Wy]);class b0 extends Ct{}te(b0,"MODEL_CLASS_MAPPINGS",[Gy]);class y0 extends Ct{}te(y0,"MODEL_CLASS_MAPPINGS",[Ky]);class v0 extends Ct{}te(v0,"MODEL_CLASS_MAPPINGS",[Bx]);class x0 extends Ct{}te(x0,"MODEL_CLASS_MAPPINGS",[Hy]);class T0 extends Ct{}te(T0,"MODEL_CLASS_MAPPINGS",[qy]);class E0 extends Ct{}te(E0,"MODEL_CLASS_MAPPINGS",[Xy]);class P0 extends Ct{}te(P0,"MODEL_CLASS_MAPPINGS",[Qy]);class C0 extends Ct{}te(C0,"MODEL_CLASS_MAPPINGS",[Jy]);class S0 extends Ct{}te(S0,"MODEL_CLASS_MAPPINGS",[Yy]);class $0 extends Ct{}te($0,"MODEL_CLASS_MAPPINGS",[Dy]);class k0 extends Ct{}te(k0,"MODEL_CLASS_MAPPINGS",[Ly]);class Nx extends pe{constructor({logits:P,past_key_values:D,encoder_outputs:ne,decoder_attentions:ge=null,cross_attentions:fe=null}){super(),this.logits=P,this.past_key_values=D,this.encoder_outputs=ne,this.decoder_attentions=ge,this.cross_attentions=fe}}class _t extends pe{constructor({logits:P,...D}){super(),this.logits=P;const ne=Object.values(D);ne.length>0&&(this.attentions=ne)}}class I0 extends pe{constructor({logits:P,embeddings:D}){super(),this.logits=P,this.embeddings=D}}class hr extends pe{constructor({logits:P}){super(),this.logits=P}}class Mr extends pe{constructor({logits:P}){super(),this.logits=P}}class Er extends pe{constructor({start_logits:P,end_logits:D}){super(),this.start_logits=P,this.end_logits=D}}class In extends pe{constructor({logits:P}){super(),this.logits=P}}class Vx extends pe{constructor({logits:P,past_key_values:D}){super(),this.logits=P,this.past_key_values=D}}class A0 extends pe{constructor({alphas:P}){super(),this.alphas=P}}class F0 extends pe{constructor({waveform:P,spectrogram:D}){super(),this.waveform=P,this.spectrogram=D}}},"./src/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.js":(e,r,t)=>{t.r(r),t.d(r,{ASTFeatureExtractor:()=>n});var s=t("./src/base/feature_extraction_utils.js");t("./src/utils/tensor.js");var o=t("./src/utils/audio.js");class n extends s.FeatureExtractor{constructor(a){super(a);const l=this.config.sampling_rate,u=(0,o.mel_filter_bank)(257,this.config.num_mel_bins,20,Math.floor(l/2),l,null,"kaldi",!0);this.mel_filters=u,this.window=(0,o.window_function)(400,"hann",{periodic:!1}),this.mean=this.config.mean,this.std=this.config.std}async _extract_fbank_features(a,l){return(0,o.spectrogram)(a,this.window,400,160,{fft_length:512,power:2,center:!1,preemphasis:.97,mel_filters:this.mel_filters,log_mel:"log",mel_floor:1192092955078125e-22,remove_dc_offset:!0,max_num_frames:l,transpose:!0})}async _call(a){(0,s.validate_audio_inputs)(a,"ASTFeatureExtractor");const l=await this._extract_fbank_features(a,this.config.max_length);if(this.config.do_normalize){const u=this.std*2,p=l.data;for(let d=0;d{t.r(r),t.d(r,{AutoFeatureExtractor:()=>i});var s=t("./src/utils/constants.js"),o=t("./src/utils/hub.js");t("./src/base/feature_extraction_utils.js");var n=t("./src/models/feature_extractors.js");class i{static async from_pretrained(l,u={}){const p=await(0,o.getModelJSON)(l,s.FEATURE_EXTRACTOR_NAME,!0,u),d=p.feature_extractor_type,c=n[d];if(!c)throw new Error(`Unknown feature_extractor_type: '${d}'. Please report this at ${s.GITHUB_ISSUE_URL}.`);return new c(p)}}},"./src/models/auto/image_processing_auto.js":(e,r,t)=>{t.r(r),t.d(r,{AutoImageProcessor:()=>a});var s=t("./src/utils/constants.js"),o=t("./src/utils/hub.js"),n=t("./src/base/image_processors_utils.js"),i=t("./src/models/image_processors.js");class a{static async from_pretrained(u,p={}){const d=await(0,o.getModelJSON)(u,s.IMAGE_PROCESSOR_NAME,!0,p),c=d.image_processor_type??d.feature_extractor_type;let f=i[c];return f||(c!==void 0&&console.warn(`Image processor type '${c}' not found, assuming base ImageProcessor. Please report this at ${s.GITHUB_ISSUE_URL}.`),f=n.ImageProcessor),new f(d)}}},"./src/models/auto/processing_auto.js":(e,r,t)=>{t.r(r),t.d(r,{AutoProcessor:()=>u});var s=t("./src/utils/constants.js"),o=t("./src/utils/hub.js"),n=t("./src/base/processing_utils.js"),i=t("./src/models/processors.js"),a=t("./src/models/image_processors.js"),l=t("./src/models/feature_extractors.js");class u{static async from_pretrained(d,c={}){const f=await(0,o.getModelJSON)(d,s.IMAGE_PROCESSOR_NAME,!0,c),{image_processor_type:_,feature_extractor_type:T,processor_class:$}=f;if($&&i[$])return i[$].from_pretrained(d,c);if(!_&&!T)throw new Error("No `image_processor_type` or `feature_extractor_type` found in the config.");const w={};if(_){const S=a[_];if(!S)throw new Error(`Unknown image_processor_type: '${_}'.`);w.image_processor=new S(f)}if(T){const S=a[T];if(S)w.image_processor=new S(f);else{const E=l[T];if(!E)throw new Error(`Unknown feature_extractor_type: '${T}'.`);w.feature_extractor=new E(f)}}const g={};return new n.Processor(g,w)}}},"./src/models/beit/image_processing_beit.js":(e,r,t)=>{t.r(r),t.d(r,{BeitFeatureExtractor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}},"./src/models/bit/image_processing_bit.js":(e,r,t)=>{t.r(r),t.d(r,{BitImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}},"./src/models/chinese_clip/image_processing_chinese_clip.js":(e,r,t)=>{t.r(r),t.d(r,{ChineseCLIPFeatureExtractor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}},"./src/models/clap/feature_extraction_clap.js":(e,r,t)=>{t.r(r),t.d(r,{ClapFeatureExtractor:()=>n});var s=t("./src/base/feature_extraction_utils.js");t("./src/utils/tensor.js");var o=t("./src/utils/audio.js");class n extends s.FeatureExtractor{constructor(a){super(a),this.mel_filters=(0,o.mel_filter_bank)(this.config.nb_frequency_bins,this.config.feature_size,this.config.frequency_min,this.config.frequency_max,this.config.sampling_rate,null,"htk"),this.mel_filters_slaney=(0,o.mel_filter_bank)(this.config.nb_frequency_bins,this.config.feature_size,this.config.frequency_min,this.config.frequency_max,this.config.sampling_rate,"slaney","slaney"),this.window=(0,o.window_function)(this.config.fft_window_size,"hann")}async _get_input_mel(a,l,u,p){let d;const c=a.length-l;if(c>0)if(u==="rand_trunc"){const f=Math.floor(Math.random()*(c+1));a=a.subarray(f,f+l),d=await this._extract_fbank_features(a,this.mel_filters_slaney,this.config.nb_max_samples)}else throw new Error(`Truncation strategy "${u}" not implemented`);else{if(c<0){let f=new Float64Array(l);if(f.set(a),p==="repeat")for(let _=a.length;_{t.r(r),t.d(r,{CLIPFeatureExtractor:()=>n,CLIPImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}class n extends o{}},"./src/models/convnext/image_processing_convnext.js":(e,r,t)=>{t.r(r),t.d(r,{ConvNextFeatureExtractor:()=>n,ConvNextImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{constructor(a){super(a),this.crop_pct=this.config.crop_pct??224/256}async resize(a){var u;const l=(u=this.size)==null?void 0:u.shortest_edge;if(l===void 0)throw new Error("Size dictionary must contain 'shortest_edge' key.");if(l<384){const p=Math.floor(l/this.crop_pct),[d,c]=this.get_resize_output_image_size(a,{shortest_edge:p});a=await a.resize(d,c,{resample:this.resample}),a=await a.center_crop(l,l)}else a=await a.resize(l,l,{resample:this.resample});return a}}class n extends o{}},"./src/models/dac/feature_extraction_dac.js":(e,r,t)=>{t.r(r),t.d(r,{DacFeatureExtractor:()=>o});var s=t("./src/models/encodec/feature_extraction_encodec.js");class o extends s.EncodecFeatureExtractor{}},"./src/models/deit/image_processing_deit.js":(e,r,t)=>{t.r(r),t.d(r,{DeiTFeatureExtractor:()=>n,DeiTImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}class n extends o{}},"./src/models/detr/image_processing_detr.js":(e,r,t)=>{t.r(r),t.d(r,{DetrFeatureExtractor:()=>i,DetrImageProcessor:()=>n});var s=t("./src/base/image_processors_utils.js"),o=t("./src/utils/tensor.js");class n extends s.ImageProcessor{async _call(l){const u=await super._call(l),p=[u.pixel_values.dims[0],64,64],d=(0,o.full)(p,1n);return{...u,pixel_mask:d}}post_process_object_detection(...l){return(0,s.post_process_object_detection)(...l)}post_process_panoptic_segmentation(...l){return(0,s.post_process_panoptic_segmentation)(...l)}post_process_instance_segmentation(...l){return(0,s.post_process_instance_segmentation)(...l)}}class i extends n{}},"./src/models/donut/image_processing_donut.js":(e,r,t)=>{t.r(r),t.d(r,{DonutFeatureExtractor:()=>n,DonutImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{pad_image(a,l,u,p={}){const[d,c,f]=l;let _=this.image_mean;Array.isArray(this.image_mean)||(_=new Array(f).fill(_));let T=this.image_std;Array.isArray(T)||(T=new Array(f).fill(_));const $=_.map((w,g)=>-w/T[g]);return super.pad_image(a,l,u,{center:!0,constant_values:$,...p})}}class n extends o{}},"./src/models/dpt/image_processing_dpt.js":(e,r,t)=>{t.r(r),t.d(r,{DPTFeatureExtractor:()=>n,DPTImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}class n extends o{}},"./src/models/efficientnet/image_processing_efficientnet.js":(e,r,t)=>{t.r(r),t.d(r,{EfficientNetImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{constructor(i){super(i),this.include_top=this.config.include_top??!0,this.include_top&&(this.image_std=this.image_std.map(a=>a*a))}}},"./src/models/encodec/feature_extraction_encodec.js":(e,r,t)=>{t.r(r),t.d(r,{EncodecFeatureExtractor:()=>n});var s=t("./src/base/feature_extraction_utils.js"),o=t("./src/utils/tensor.js");class n extends s.FeatureExtractor{async _call(a){(0,s.validate_audio_inputs)(a,"EncodecFeatureExtractor"),a instanceof Float64Array&&(a=new Float32Array(a));const l=this.config.feature_size;if(a.length%l!==0)throw new Error(`The length of the audio data must be a multiple of the number of channels (${l}).`);const u=[1,l,a.length/l];return{input_values:new o.Tensor("float32",a,u)}}}},"./src/models/feature_extractors.js":(e,r,t)=>{t.r(r),t.d(r,{ASTFeatureExtractor:()=>s.ASTFeatureExtractor,ClapFeatureExtractor:()=>n.ClapFeatureExtractor,DacFeatureExtractor:()=>i.DacFeatureExtractor,EncodecFeatureExtractor:()=>o.EncodecFeatureExtractor,ImageFeatureExtractor:()=>T.ImageProcessor,MoonshineFeatureExtractor:()=>a.MoonshineFeatureExtractor,PyAnnoteFeatureExtractor:()=>l.PyAnnoteFeatureExtractor,SeamlessM4TFeatureExtractor:()=>u.SeamlessM4TFeatureExtractor,SnacFeatureExtractor:()=>p.SnacFeatureExtractor,SpeechT5FeatureExtractor:()=>d.SpeechT5FeatureExtractor,Wav2Vec2FeatureExtractor:()=>c.Wav2Vec2FeatureExtractor,WeSpeakerFeatureExtractor:()=>f.WeSpeakerFeatureExtractor,WhisperFeatureExtractor:()=>_.WhisperFeatureExtractor});var s=t("./src/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.js"),o=t("./src/models/encodec/feature_extraction_encodec.js"),n=t("./src/models/clap/feature_extraction_clap.js"),i=t("./src/models/dac/feature_extraction_dac.js"),a=t("./src/models/moonshine/feature_extraction_moonshine.js"),l=t("./src/models/pyannote/feature_extraction_pyannote.js"),u=t("./src/models/seamless_m4t/feature_extraction_seamless_m4t.js"),p=t("./src/models/snac/feature_extraction_snac.js"),d=t("./src/models/speecht5/feature_extraction_speecht5.js"),c=t("./src/models/wav2vec2/feature_extraction_wav2vec2.js"),f=t("./src/models/wespeaker/feature_extraction_wespeaker.js"),_=t("./src/models/whisper/feature_extraction_whisper.js"),T=t("./src/base/image_processors_utils.js")},"./src/models/florence2/processing_florence2.js":(e,r,t)=>{t.r(r),t.d(r,{Florence2Processor:()=>i});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js");class i extends s.Processor{constructor(l,u){super(l,u);const{tasks_answer_post_processing_type:p,task_prompts_without_inputs:d,task_prompts_with_input:c}=this.image_processor.config;this.tasks_answer_post_processing_type=new Map(Object.entries(p??{})),this.task_prompts_without_inputs=new Map(Object.entries(d??{})),this.task_prompts_with_input=new Map(Object.entries(c??{})),this.regexes={quad_boxes:/(.+?)/gm,bboxes:/([^<]+)?/gm},this.size_per_bin=1e3}construct_prompts(l){typeof l=="string"&&(l=[l]);const u=[];for(const p of l)if(this.task_prompts_without_inputs.has(p))u.push(this.task_prompts_without_inputs.get(p));else{for(const[d,c]of this.task_prompts_with_input)if(p.includes(d)){u.push(c.replaceAll("{input}",p).replaceAll(d,""));break}u.length!==l.length&&u.push(p)}return u}post_process_generation(l,u,p){const d=this.tasks_answer_post_processing_type.get(u)??"pure_text";l=l.replaceAll("","").replaceAll("","");let c;switch(d){case"pure_text":c=l;break;case"description_with_bboxes":case"bboxes":case"phrase_grounding":case"ocr":const f=d==="ocr"?"quad_boxes":"bboxes",_=l.matchAll(this.regexes[f]),T=[],$=[];for(const[w,g,...S]of _)T.push(g?g.trim():T.at(-1)??""),$.push(S.map((E,y)=>(Number(E)+.5)/this.size_per_bin*p[y%2]));c={labels:T,[f]:$};break;default:throw new Error(`Task "${u}" (of type "${d}") not yet implemented.`)}return{[u]:c}}async _call(l,u=null,p={}){if(!l&&!u)throw new Error("Either text or images must be provided");const d=await this.image_processor(l,p),c=u?this.tokenizer(u,p):{};return{...d,...c}}}te(i,"tokenizer_class",n.AutoTokenizer),te(i,"image_processor_class",o.AutoImageProcessor)},"./src/models/glpn/image_processing_glpn.js":(e,r,t)=>{t.r(r),t.d(r,{GLPNFeatureExtractor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}},"./src/models/grounding_dino/image_processing_grounding_dino.js":(e,r,t)=>{t.r(r),t.d(r,{GroundingDinoImageProcessor:()=>n});var s=t("./src/base/image_processors_utils.js"),o=t("./src/utils/tensor.js");class n extends s.ImageProcessor{async _call(a){const l=await super._call(a),u=l.pixel_values.dims,p=(0,o.ones)([u[0],u[2],u[3]]);return{...l,pixel_mask:p}}}},"./src/models/grounding_dino/processing_grounding_dino.js":(e,r,t)=>{t.r(r),t.d(r,{GroundingDinoProcessor:()=>l});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js"),i=t("./src/base/image_processors_utils.js");function a(u,p){const c=u.dims.at(-1)-1,f=u.tolist();f.fill(!1,0,1),f.fill(!1,c);const _=p.tolist();return f.map((T,$)=>T?$:null).filter(T=>T!==null).map(T=>_[T])}class l extends s.Processor{async _call(p,d,c={}){const f=p?await this.image_processor(p,c):{};return{...d?this.tokenizer(d,c):{},...f}}post_process_grounded_object_detection(p,d,{box_threshold:c=.25,text_threshold:f=.25,target_sizes:_=null}={}){const{logits:T,pred_boxes:$}=p,w=T.dims[0];if(_!==null&&_.length!==w)throw Error("Make sure that you pass in as many target sizes as the batch dimension of the logits");const g=T.dims.at(1),S=T.sigmoid(),E=S.max(-1).tolist(),y=$.tolist().map(v=>v.map(C=>(0,i.center_to_corners_format)(C))),M=[];for(let v=0;vj.map((ee,H)=>ee*C[(H+1)%2])));const A=E[v],B=[],K=[],G=[];for(let j=0;j{t.r(r),t.d(r,{Idefics3ImageProcessor:()=>n});var s=t("./src/base/image_processors_utils.js"),o=t("./src/utils/tensor.js");class n extends s.ImageProcessor{constructor(a){super(a),this.do_image_splitting=a.do_image_splitting??!0,this.max_image_size=a.max_image_size}get_resize_for_vision_encoder(a,l){let[u,p]=a.dims.slice(-2);const d=p/u;return p>=u?(p=Math.ceil(p/l)*l,u=Math.floor(p/d),u=Math.ceil(u/l)*l):(u=Math.ceil(u/l)*l,p=Math.floor(u*d),p=Math.ceil(p/l)*l),{height:u,width:p}}async _call(a,{do_image_splitting:l=null,return_row_col_info:u=!1}={}){let p;if(!Array.isArray(a))p=[[a]];else{if(a.length===0||!a[0])throw new Error("No images provided.");Array.isArray(a[0])?p=a:p=[a]}let d=[],c=[],f=[];const _=[],T=[];for(const v of p){let C=await Promise.all(v.map(K=>this.preprocess(K)));_.push(...C.map(K=>K.original_size)),T.push(...C.map(K=>K.reshaped_input_size)),C.forEach(K=>K.pixel_values.unsqueeze_(0));const{longest_edge:A}=this.max_image_size;let B;if(l??this.do_image_splitting){let K=new Array(C.length),G=new Array(C.length);B=await Promise.all(C.map(async(j,ee)=>{const H=this.get_resize_for_vision_encoder(j.pixel_values,A),Z=await(0,o.interpolate_4d)(j.pixel_values,{size:[H.height,H.width]}),{frames:X,num_splits_h:oe,num_splits_w:me}=await this.split_image(Z,this.max_image_size);return K[ee]=oe,G[ee]=me,(0,o.cat)(X,0)})),c.push(K),f.push(G)}else{const K=[A,A];B=await Promise.all(C.map(G=>(0,o.interpolate_4d)(G.pixel_values,{size:K}))),c.push(new Array(C.length).fill(0)),f.push(new Array(C.length).fill(0))}d.push((0,o.cat)(B,0))}const $=d.length,[w,g,S,E]=d[0].dims;let y,M;if($===1)y=d[0].unsqueeze_(0),M=(0,o.full)([$,w,S,E],!0);else{const v=Math.max(...d.map(B=>B.dims.at(0)));M=(0,o.full)([$,v,S,E],!0);const C=M.data,A=v*S*E;for(let B=0;B<$;++B){const K=d[B].dims[0];if(Ku||f>p){_=Math.ceil(c/u),T=Math.ceil(f/p);const $=Math.ceil(c/_),w=Math.ceil(f/T);for(let E=0;E<_;++E)for(let y=0;y{t.r(r),t.d(r,{Idefics3Processor:()=>p});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js");t("./src/utils/image.js");var i=t("./src/utils/core.js");function a(d,c,f,_,T,$){let w="";for(let g=0;g`+T.repeat(d);w+=` `}return w+=` ${_}${$}`+T.repeat(d)+`${_}`,w}function l(d,c,f,_){return`${c}${_}`+f.repeat(d)+`${c}`}function u(d,c,f,_,T,$){return d===0&&c===0?l(f,_,T,$):a(f,d,c,_,T,$)}class p extends s.Processor{constructor(){super(...arguments);te(this,"fake_image_token","");te(this,"image_token","");te(this,"global_img_token","")}async _call(f,_=null,T={}){T.return_row_col_info??(T.return_row_col_info=!0);let $;_&&($=await this.image_processor(_,T)),Array.isArray(f)||(f=[f]);const w=$.rows??[new Array(f.length).fill(0)],g=$.cols??[new Array(f.length).fill(0)],S=this.config.image_seq_len,E=[],y=[];for(let v=0;vu(ee,B[H],S,this.fake_image_token,this.image_token,this.global_img_token)),G=C.split(this.image_token);if(G.length===0)throw new Error("The image token should be present in the text.");let j=G[0];for(let ee=0;ee{t.r(r),t.d(r,{BeitFeatureExtractor:()=>s.BeitFeatureExtractor,BitImageProcessor:()=>o.BitImageProcessor,CLIPFeatureExtractor:()=>i.CLIPFeatureExtractor,CLIPImageProcessor:()=>i.CLIPImageProcessor,ChineseCLIPFeatureExtractor:()=>n.ChineseCLIPFeatureExtractor,ConvNextFeatureExtractor:()=>a.ConvNextFeatureExtractor,ConvNextImageProcessor:()=>a.ConvNextImageProcessor,DPTFeatureExtractor:()=>d.DPTFeatureExtractor,DPTImageProcessor:()=>d.DPTImageProcessor,DeiTFeatureExtractor:()=>l.DeiTFeatureExtractor,DeiTImageProcessor:()=>l.DeiTImageProcessor,DetrFeatureExtractor:()=>u.DetrFeatureExtractor,DetrImageProcessor:()=>u.DetrImageProcessor,DonutFeatureExtractor:()=>p.DonutFeatureExtractor,DonutImageProcessor:()=>p.DonutImageProcessor,EfficientNetImageProcessor:()=>c.EfficientNetImageProcessor,GLPNFeatureExtractor:()=>f.GLPNFeatureExtractor,GroundingDinoImageProcessor:()=>_.GroundingDinoImageProcessor,Idefics3ImageProcessor:()=>T.Idefics3ImageProcessor,JinaCLIPImageProcessor:()=>w.JinaCLIPImageProcessor,LlavaOnevisionImageProcessor:()=>g.LlavaOnevisionImageProcessor,Mask2FormerImageProcessor:()=>S.Mask2FormerImageProcessor,MaskFormerFeatureExtractor:()=>E.MaskFormerFeatureExtractor,MaskFormerImageProcessor:()=>E.MaskFormerImageProcessor,MobileNetV1FeatureExtractor:()=>y.MobileNetV1FeatureExtractor,MobileNetV1ImageProcessor:()=>y.MobileNetV1ImageProcessor,MobileNetV2FeatureExtractor:()=>M.MobileNetV2FeatureExtractor,MobileNetV2ImageProcessor:()=>M.MobileNetV2ImageProcessor,MobileNetV3FeatureExtractor:()=>v.MobileNetV3FeatureExtractor,MobileNetV3ImageProcessor:()=>v.MobileNetV3ImageProcessor,MobileNetV4FeatureExtractor:()=>C.MobileNetV4FeatureExtractor,MobileNetV4ImageProcessor:()=>C.MobileNetV4ImageProcessor,MobileViTFeatureExtractor:()=>A.MobileViTFeatureExtractor,MobileViTImageProcessor:()=>A.MobileViTImageProcessor,NougatImageProcessor:()=>B.NougatImageProcessor,OwlViTFeatureExtractor:()=>G.OwlViTFeatureExtractor,OwlViTImageProcessor:()=>G.OwlViTImageProcessor,Owlv2ImageProcessor:()=>K.Owlv2ImageProcessor,Phi3VImageProcessor:()=>j.Phi3VImageProcessor,PvtImageProcessor:()=>ee.PvtImageProcessor,Qwen2VLImageProcessor:()=>H.Qwen2VLImageProcessor,RTDetrImageProcessor:()=>Z.RTDetrImageProcessor,SamImageProcessor:()=>X.SamImageProcessor,SegformerFeatureExtractor:()=>oe.SegformerFeatureExtractor,SegformerImageProcessor:()=>oe.SegformerImageProcessor,SiglipImageProcessor:()=>me.SiglipImageProcessor,SmolVLMImageProcessor:()=>ae.SmolVLMImageProcessor,Swin2SRImageProcessor:()=>V.Swin2SRImageProcessor,VLMImageProcessor:()=>$.VLMImageProcessor,ViTFeatureExtractor:()=>F.ViTFeatureExtractor,ViTImageProcessor:()=>F.ViTImageProcessor,VitMatteImageProcessor:()=>W.VitMatteImageProcessor,VitPoseImageProcessor:()=>re.VitPoseImageProcessor,YolosFeatureExtractor:()=>_e.YolosFeatureExtractor,YolosImageProcessor:()=>_e.YolosImageProcessor});var s=t("./src/models/beit/image_processing_beit.js"),o=t("./src/models/bit/image_processing_bit.js"),n=t("./src/models/chinese_clip/image_processing_chinese_clip.js"),i=t("./src/models/clip/image_processing_clip.js"),a=t("./src/models/convnext/image_processing_convnext.js"),l=t("./src/models/deit/image_processing_deit.js"),u=t("./src/models/detr/image_processing_detr.js"),p=t("./src/models/donut/image_processing_donut.js"),d=t("./src/models/dpt/image_processing_dpt.js"),c=t("./src/models/efficientnet/image_processing_efficientnet.js"),f=t("./src/models/glpn/image_processing_glpn.js"),_=t("./src/models/grounding_dino/image_processing_grounding_dino.js"),T=t("./src/models/idefics3/image_processing_idefics3.js"),$=t("./src/models/janus/image_processing_janus.js"),w=t("./src/models/jina_clip/image_processing_jina_clip.js"),g=t("./src/models/llava_onevision/image_processing_llava_onevision.js"),S=t("./src/models/mask2former/image_processing_mask2former.js"),E=t("./src/models/maskformer/image_processing_maskformer.js"),y=t("./src/models/mobilenet_v1/image_processing_mobilenet_v1.js"),M=t("./src/models/mobilenet_v2/image_processing_mobilenet_v2.js"),v=t("./src/models/mobilenet_v3/image_processing_mobilenet_v3.js"),C=t("./src/models/mobilenet_v4/image_processing_mobilenet_v4.js"),A=t("./src/models/mobilevit/image_processing_mobilevit.js"),B=t("./src/models/nougat/image_processing_nougat.js"),K=t("./src/models/owlv2/image_processing_owlv2.js"),G=t("./src/models/owlvit/image_processing_owlvit.js"),j=t("./src/models/phi3_v/image_processing_phi3_v.js"),ee=t("./src/models/pvt/image_processing_pvt.js"),H=t("./src/models/qwen2_vl/image_processing_qwen2_vl.js"),Z=t("./src/models/rt_detr/image_processing_rt_detr.js"),X=t("./src/models/sam/image_processing_sam.js"),oe=t("./src/models/segformer/image_processing_segformer.js"),me=t("./src/models/siglip/image_processing_siglip.js"),ae=t("./src/models/smolvlm/image_processing_smolvlm.js"),V=t("./src/models/swin2sr/image_processing_swin2sr.js"),F=t("./src/models/vit/image_processing_vit.js"),W=t("./src/models/vitmatte/image_processing_vitmatte.js"),re=t("./src/models/vitpose/image_processing_vitpose.js"),_e=t("./src/models/yolos/image_processing_yolos.js")},"./src/models/janus/image_processing_janus.js":(e,r,t)=>{t.r(r),t.d(r,{VLMImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{constructor(i){super({do_pad:!0,pad_size:{width:i.image_size,height:i.image_size},...i}),this.constant_values=this.config.background_color.map(a=>a*this.rescale_factor)}pad_image(i,a,l,u){return super.pad_image(i,a,l,{constant_values:this.constant_values,center:!0,...u})}}},"./src/models/janus/processing_janus.js":(e,r,t)=>{t.r(r),t.d(r,{VLChatProcessor:()=>u});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js"),i=t("./src/utils/core.js"),a=t("./src/utils/tensor.js"),l=t("./src/utils/image.js");class u extends s.Processor{constructor(d,c){super(d,c),this.image_tag=this.config.image_tag,this.image_start_tag=this.config.image_start_tag,this.image_end_tag=this.config.image_end_tag,this.num_image_tokens=this.config.num_image_tokens}async _call(d,{images:c=null,chat_template:f="default"}={}){c?Array.isArray(c)||(c=[c]):c=await Promise.all(d.filter(B=>B.images).flatMap(B=>B.images).map(B=>l.RawImage.read(B)));const _=this.tokenizer,T=_.apply_chat_template(d,{tokenize:!1,add_generation_prompt:!0,chat_template:f}),$=B=>_.encode(B,{add_special_tokens:!1}),w=T.split(this.image_tag),g=w.length-1;if(c.length!==g)throw new Error(`Number of images provided (${c.length}) does not match number of "${this.image_tag}" image tags (${g})`);const[S,E,y]=_.model.convert_tokens_to_ids([this.image_tag,this.image_start_tag,this.image_end_tag]);let M=$(w[0]),v=new Array(M.length).fill(!1);for(let B=1;B0){const B=await this.image_processor(c);return B.pixel_values.unsqueeze_(0),{...A,...B}}return A}}te(u,"image_processor_class",o.AutoImageProcessor),te(u,"tokenizer_class",n.AutoTokenizer),te(u,"uses_processor_config",!0)},"./src/models/jina_clip/image_processing_jina_clip.js":(e,r,t)=>{t.r(r),t.d(r,{JinaCLIPImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{constructor(i){const{resize_mode:a,fill_color:l,interpolation:u,size:p,...d}=i,c=a==="squash"?{width:p,height:p}:a==="shortest"?{shortest_edge:p}:{longest_edge:p},f=u==="bicubic"?3:2;super({...d,size:c,resample:f,do_center_crop:!0,crop_size:p,do_normalize:!0})}}},"./src/models/jina_clip/processing_jina_clip.js":(e,r,t)=>{t.r(r),t.d(r,{JinaCLIPProcessor:()=>i});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js");class i extends s.Processor{async _call(l=null,u=null,p={}){if(!l&&!u)throw new Error("Either text or images must be provided");const d=l?this.tokenizer(l,p):{},c=u?await this.image_processor(u,p):{};return{...d,...c}}}te(i,"tokenizer_class",n.AutoTokenizer),te(i,"image_processor_class",o.AutoImageProcessor)},"./src/models/llava_onevision/image_processing_llava_onevision.js":(e,r,t)=>{t.r(r),t.d(r,{LlavaOnevisionImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}},"./src/models/mask2former/image_processing_mask2former.js":(e,r,t)=>{t.r(r),t.d(r,{Mask2FormerImageProcessor:()=>o});var s=t("./src/models/maskformer/image_processing_maskformer.js");class o extends s.MaskFormerImageProcessor{}},"./src/models/maskformer/image_processing_maskformer.js":(e,r,t)=>{t.r(r),t.d(r,{MaskFormerFeatureExtractor:()=>n,MaskFormerImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{post_process_panoptic_segmentation(...a){return(0,s.post_process_panoptic_segmentation)(...a)}post_process_instance_segmentation(...a){return(0,s.post_process_instance_segmentation)(...a)}}class n extends o{}},"./src/models/mgp_str/processing_mgp_str.js":(e,r,t)=>{t.r(r),t.d(r,{MgpstrProcessor:()=>l});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js"),i=t("./src/utils/maths.js");const a={char:["char_decode",1],bpe:["bpe_decode",2],wp:["wp_decode",102]};class l extends s.Processor{get char_tokenizer(){return this.components.char_tokenizer}get bpe_tokenizer(){return this.components.bpe_tokenizer}get wp_tokenizer(){return this.components.wp_tokenizer}_decode_helper(p,d){if(!a.hasOwnProperty(d))throw new Error(`Format ${d} is not supported.`);const[c,f]=a[d],_=this[c].bind(this),[T,$]=p.dims,w=[],g=[],S=p.tolist();for(let y=0;y0?C.reduce((B,K)=>B*K,1):0;g.push(v),w.push(A)}return[_(g),w]}char_decode(p){return this.char_tokenizer.batch_decode(p).map(d=>d.replaceAll(" ",""))}bpe_decode(p){return this.bpe_tokenizer.batch_decode(p)}wp_decode(p){return this.wp_tokenizer.batch_decode(p).map(d=>d.replaceAll(" ",""))}batch_decode([p,d,c]){const[f,_]=this._decode_helper(p,"char"),[T,$]=this._decode_helper(d,"bpe"),[w,g]=this._decode_helper(c,"wp"),S=[],E=[];for(let y=0;y{t.r(r),t.d(r,{MobileNetV1FeatureExtractor:()=>n,MobileNetV1ImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}class n extends o{}},"./src/models/mobilenet_v2/image_processing_mobilenet_v2.js":(e,r,t)=>{t.r(r),t.d(r,{MobileNetV2FeatureExtractor:()=>n,MobileNetV2ImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}class n extends o{}},"./src/models/mobilenet_v3/image_processing_mobilenet_v3.js":(e,r,t)=>{t.r(r),t.d(r,{MobileNetV3FeatureExtractor:()=>n,MobileNetV3ImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}class n extends o{}},"./src/models/mobilenet_v4/image_processing_mobilenet_v4.js":(e,r,t)=>{t.r(r),t.d(r,{MobileNetV4FeatureExtractor:()=>n,MobileNetV4ImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}class n extends o{}},"./src/models/mobilevit/image_processing_mobilevit.js":(e,r,t)=>{t.r(r),t.d(r,{MobileViTFeatureExtractor:()=>n,MobileViTImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}class n extends o{}},"./src/models/moonshine/feature_extraction_moonshine.js":(e,r,t)=>{t.r(r),t.d(r,{MoonshineFeatureExtractor:()=>n});var s=t("./src/base/feature_extraction_utils.js"),o=t("./src/utils/tensor.js");class n extends s.FeatureExtractor{async _call(a){(0,s.validate_audio_inputs)(a,"MoonshineFeatureExtractor"),a instanceof Float64Array&&(a=new Float32Array(a));const l=[1,a.length];return{input_values:new o.Tensor("float32",a,l)}}}},"./src/models/moonshine/processing_moonshine.js":(e,r,t)=>{t.r(r),t.d(r,{MoonshineProcessor:()=>i});var s=t("./src/models/auto/feature_extraction_auto.js"),o=t("./src/tokenizers.js"),n=t("./src/base/processing_utils.js");class i extends n.Processor{async _call(l){return await this.feature_extractor(l)}}te(i,"tokenizer_class",o.AutoTokenizer),te(i,"feature_extractor_class",s.AutoFeatureExtractor)},"./src/models/nougat/image_processing_nougat.js":(e,r,t)=>{t.r(r),t.d(r,{NougatImageProcessor:()=>o});var s=t("./src/models/donut/image_processing_donut.js");class o extends s.DonutImageProcessor{}},"./src/models/owlv2/image_processing_owlv2.js":(e,r,t)=>{t.r(r),t.d(r,{Owlv2ImageProcessor:()=>o});var s=t("./src/models/owlvit/image_processing_owlvit.js");class o extends s.OwlViTImageProcessor{}},"./src/models/owlvit/image_processing_owlvit.js":(e,r,t)=>{t.r(r),t.d(r,{OwlViTFeatureExtractor:()=>n,OwlViTImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{post_process_object_detection(...a){return(0,s.post_process_object_detection)(...a)}}class n extends o{}},"./src/models/owlvit/processing_owlvit.js":(e,r,t)=>{t.r(r),t.d(r,{OwlViTProcessor:()=>i});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js");class i extends s.Processor{}te(i,"tokenizer_class",n.AutoTokenizer),te(i,"image_processor_class",o.AutoImageProcessor)},"./src/models/paligemma/processing_paligemma.js":(e,r,t)=>{t.r(r),t.d(r,{PaliGemmaProcessor:()=>l});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js");const i="";function a(u,p,d,c,f){return`${c.repeat(d*f)}${p}${u} `}class l extends s.Processor{async _call(p,d=null,c={}){d||(console.warn("You are using PaliGemma without a text prefix. It will perform as a picture-captioning model."),d=""),Array.isArray(p)||(p=[p]),Array.isArray(d)||(d=[d]);const f=this.tokenizer.bos_token,_=this.image_processor.config.image_seq_length;let T;d.some(g=>g.includes(i))?T=d.map(g=>{const S=g.replaceAll(i,i.repeat(_)),E=S.lastIndexOf(i),y=E===-1?0:E+i.length;return S.slice(0,y)+f+S.slice(y)+` `}):(console.warn("You are passing both `text` and `images` to `PaliGemmaProcessor`. The processor expects special image tokens in the text, as many tokens as there are images per each text. It is recommended to add `` tokens in the very beginning of your text. For this call, we will infer how many images each text has and add special tokens."),T=d.map(g=>a(g,f,_,i,p.length)));const $=this.tokenizer(T,c);return{...await this.image_processor(p,c),...$}}}te(l,"tokenizer_class",n.AutoTokenizer),te(l,"image_processor_class",o.AutoImageProcessor),te(l,"uses_processor_config",!1)},"./src/models/phi3_v/image_processing_phi3_v.js":(e,r,t)=>{t.r(r),t.d(r,{Phi3VImageProcessor:()=>p});var s=t("./src/base/image_processors_utils.js"),o=t("./src/utils/tensor.js");const n=336,i=[2,3],{ceil:a,floor:l,sqrt:u}=Math;class p extends s.ImageProcessor{constructor(c){super({...c,do_normalize:!0,do_pad:!0,pad_size:"custom",do_convert_rgb:!0,do_resize:!0}),this._num_crops=c.num_crops}calc_num_image_tokens_from_image_size(c,f){const{num_img_tokens:_}=this.config;return l((l(f/n)*l(c/n)+1)*_+1+(l(f/n)+1)*u(_))}get_resize_output_image_size(c,f){const _=this._num_crops,[T,$]=c.size;let w=T/$,g=1;for(;g*Math.ceil(g/w)<=_;)g+=1;g-=1;const S=Math.floor(g*336),E=Math.floor(S/w);return[S,E]}pad_image(c,f,_,T={}){const[$,w]=f,g=n*a($/n),S=n*a(w/n),E=[1,1,1].map((y,M)=>(y-this.image_mean[M])/this.image_std[M]);return super.pad_image(c,f,{width:S,height:g},{center:!0,constant_values:E,...T})}async _call(c,{num_crops:f=null}={}){if(this._num_crops=f??(f=this.config.num_crops),f<4||u(f)%1!==0)throw new Error("num_crops must be a square number >= 4");Array.isArray(c)||(c=[c]);const _=c.length,T=await Promise.all(c.map(v=>this.preprocess(v))),$=T.map(v=>v.original_size),w=T.map(v=>v.reshaped_input_size),g=[];for(const{pixel_values:v}of T){v.unsqueeze_(0);const[C,A]=v.dims.slice(-2),B=await(0,o.interpolate_4d)(v,{size:[n,n],mode:"bicubic"});if(f>0){const K=[],G=u(f),j=l(A/G),ee=l(C/G);for(let Z=0;Zv.map(C=>n*a(C/n))),y=new o.Tensor("int64",E.flat(),[_,2]),M=E.map(([v,C])=>this.calc_num_image_tokens_from_image_size(C,v));return{pixel_values:S,original_sizes:$,reshaped_input_sizes:w,image_sizes:y,num_img_tokens:M}}}},"./src/models/phi3_v/processing_phi3_v.js":(e,r,t)=>{t.r(r),t.d(r,{Phi3VProcessor:()=>l});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js");t("./src/utils/image.js");const i="<|image|>",a=/<\|image_\d+\|>/g;class l extends s.Processor{async _call(p,d=null,{padding:c=!0,truncation:f=!0,num_crops:_=null}={}){Array.isArray(p)||(p=[p]);let T,$;if(d){$=await this.image_processor(d,{num_crops:_});const{num_img_tokens:w}=$,g=p.map((E,y)=>E.split(a).join(i.repeat(w[y])));T=this.tokenizer(g,{padding:c,truncation:f});const S=this.tokenizer.model.convert_tokens_to_ids([i])[0];T.input_ids.map_(E=>E==S?-E:E)}else T=this.tokenizer(p);return{...T,...$}}}te(l,"image_processor_class",o.AutoImageProcessor),te(l,"tokenizer_class",n.AutoTokenizer)},"./src/models/processors.js":(e,r,t)=>{t.r(r),t.d(r,{Florence2Processor:()=>s.Florence2Processor,GroundingDinoProcessor:()=>o.GroundingDinoProcessor,Idefics3Processor:()=>n.Idefics3Processor,JinaCLIPProcessor:()=>a.JinaCLIPProcessor,MgpstrProcessor:()=>l.MgpstrProcessor,MoonshineProcessor:()=>u.MoonshineProcessor,OwlViTProcessor:()=>p.OwlViTProcessor,PaliGemmaProcessor:()=>c.PaliGemmaProcessor,Phi3VProcessor:()=>d.Phi3VProcessor,PyAnnoteProcessor:()=>f.PyAnnoteProcessor,Qwen2VLProcessor:()=>_.Qwen2VLProcessor,SamProcessor:()=>T.SamProcessor,SmolVLMProcessor:()=>$.SmolVLMProcessor,SpeechT5Processor:()=>w.SpeechT5Processor,UltravoxProcessor:()=>g.UltravoxProcessor,VLChatProcessor:()=>i.VLChatProcessor,Wav2Vec2Processor:()=>S.Wav2Vec2Processor,Wav2Vec2ProcessorWithLM:()=>E.Wav2Vec2ProcessorWithLM,WhisperProcessor:()=>y.WhisperProcessor});var s=t("./src/models/florence2/processing_florence2.js"),o=t("./src/models/grounding_dino/processing_grounding_dino.js"),n=t("./src/models/idefics3/processing_idefics3.js"),i=t("./src/models/janus/processing_janus.js"),a=t("./src/models/jina_clip/processing_jina_clip.js"),l=t("./src/models/mgp_str/processing_mgp_str.js"),u=t("./src/models/moonshine/processing_moonshine.js"),p=t("./src/models/owlvit/processing_owlvit.js"),d=t("./src/models/phi3_v/processing_phi3_v.js"),c=t("./src/models/paligemma/processing_paligemma.js"),f=t("./src/models/pyannote/processing_pyannote.js"),_=t("./src/models/qwen2_vl/processing_qwen2_vl.js"),T=t("./src/models/sam/processing_sam.js"),$=t("./src/models/smolvlm/processing_smolvlm.js"),w=t("./src/models/speecht5/processing_speecht5.js"),g=t("./src/models/ultravox/processing_ultravox.js"),S=t("./src/models/wav2vec2/processing_wav2vec2.js"),E=t("./src/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.js"),y=t("./src/models/whisper/processing_whisper.js")},"./src/models/pvt/image_processing_pvt.js":(e,r,t)=>{t.r(r),t.d(r,{PvtImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}},"./src/models/pyannote/feature_extraction_pyannote.js":(e,r,t)=>{t.r(r),t.d(r,{PyAnnoteFeatureExtractor:()=>i});var s=t("./src/base/feature_extraction_utils.js"),o=t("./src/utils/tensor.js"),n=t("./src/utils/maths.js");class i extends s.FeatureExtractor{async _call(l){(0,s.validate_audio_inputs)(l,"PyAnnoteFeatureExtractor"),l instanceof Float64Array&&(l=new Float32Array(l));const u=[1,1,l.length];return{input_values:new o.Tensor("float32",l,u)}}samples_to_frames(l){return(l-this.config.offset)/this.config.step}post_process_speaker_diarization(l,u){const p=u/this.samples_to_frames(u)/this.config.sampling_rate,d=[];for(const c of l.tolist()){const f=[];let _=-1;for(let T=0;T({id:T,start:$*p,end:w*p,confidence:g/(w-$)})))}return d}}},"./src/models/pyannote/processing_pyannote.js":(e,r,t)=>{t.r(r),t.d(r,{PyAnnoteProcessor:()=>n});var s=t("./src/base/processing_utils.js"),o=t("./src/models/pyannote/feature_extraction_pyannote.js");class n extends s.Processor{async _call(a){return await this.feature_extractor(a)}post_process_speaker_diarization(...a){return this.feature_extractor.post_process_speaker_diarization(...a)}get sampling_rate(){return this.feature_extractor.config.sampling_rate}}te(n,"feature_extractor_class",o.PyAnnoteFeatureExtractor)},"./src/models/qwen2_vl/image_processing_qwen2_vl.js":(e,r,t)=>{t.r(r),t.d(r,{Qwen2VLImageProcessor:()=>n});var s=t("./src/base/image_processors_utils.js"),o=t("./src/utils/tensor.js");class n extends s.ImageProcessor{async _call(a,...l){const{pixel_values:u,original_sizes:p,reshaped_input_sizes:d}=await super._call(a,...l);let c=u;const{temporal_patch_size:f,merge_size:_,patch_size:T}=this.config;c.dims[0]===1&&(c=(0,o.cat)(Array.from({length:f},()=>c),0));const $=c.dims[0]/f,w=c.dims[1],g=Math.floor(c.dims[2]/T),S=Math.floor(c.dims[3]/T),E=c.view($,f,w,Math.floor(g/_),_,T,Math.floor(S/_),_,T).permute(0,3,6,4,7,2,1,5,8).view($*g*S,w*f*T*T),y=new o.Tensor("int64",[$,g,S],[1,3]);return{pixel_values:E,image_grid_thw:y,original_sizes:p,reshaped_input_sizes:d}}}},"./src/models/qwen2_vl/processing_qwen2_vl.js":(e,r,t)=>{t.r(r),t.d(r,{Qwen2VLProcessor:()=>i});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js"),n=t("./src/tokenizers.js");t("./src/utils/image.js");class i extends s.Processor{async _call(l,u=null,...p){Array.isArray(l)||(l=[l]);let d,c;if(u&&(d=await this.image_processor(u),c=d.image_grid_thw),c){let _=this.image_processor.config.merge_size**2,T=0;const $=c.tolist();l=l.map(w=>{for(;w.includes("<|image_pad|>");){const g=Number($[T++].reduce((S,E)=>S*E,1n));w=w.replace("<|image_pad|>","<|placeholder|>".repeat(Math.floor(g/_)))}return w.replaceAll("<|placeholder|>","<|image_pad|>")})}return{...this.tokenizer(l),...d}}}te(i,"image_processor_class",o.AutoImageProcessor),te(i,"tokenizer_class",n.AutoTokenizer)},"./src/models/rt_detr/image_processing_rt_detr.js":(e,r,t)=>{t.r(r),t.d(r,{RTDetrImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{post_process_object_detection(...i){return(0,s.post_process_object_detection)(...i)}}},"./src/models/sam/image_processing_sam.js":(e,r,t)=>{t.r(r),t.d(r,{SamImageProcessor:()=>i});var s=t("./src/base/image_processors_utils.js"),o=t("./src/utils/core.js"),n=t("./src/utils/tensor.js");class i extends s.ImageProcessor{reshape_input_points(l,u,p,d=!1){l=structuredClone(l);let c=(0,o.calculateDimensions)(l);if(c.length===3)d||(c=[1,...c]),l=[l];else if(c.length!==4)throw Error("The input_points must be a 4D tensor of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.");for(let f=0;fd!==u.dims[c]))throw Error(`The first ${p.length} dimensions of 'input_points' and 'input_labels' must be the same.`);return new n.Tensor("int64",l.flat(1/0).map(BigInt),p)}async _call(l,{input_points:u=null,input_labels:p=null,input_boxes:d=null}={}){const c=await super._call(l);if(u&&(c.input_points=this.reshape_input_points(u,c.original_sizes,c.reshaped_input_sizes)),p){if(!c.input_points)throw Error("`input_points` must be provided if `input_labels` are provided.");c.input_labels=this.add_input_labels(p,c.input_points)}return d&&(c.input_boxes=this.reshape_input_points(d,c.original_sizes,c.reshaped_input_sizes,!0)),c}async post_process_masks(l,u,p,{mask_threshold:d=0,binarize:c=!0,pad_size:f=null}={}){const _=[];f=f??this.pad_size;const T=[f.height,f.width];for(let $=0;$d&&(y[M]=1);S=new n.Tensor("bool",y,S.dims)}_.push(S)}return _}generate_crop_boxes(l,u,{crop_n_layers:p=0,overlap_ratio:d=512/1500,points_per_crop:c=32,crop_n_points_downscale_factor:f=1}={}){}}},"./src/models/sam/processing_sam.js":(e,r,t)=>{t.r(r),t.d(r,{SamProcessor:()=>n});var s=t("./src/base/processing_utils.js"),o=t("./src/models/auto/image_processing_auto.js");class n extends s.Processor{async _call(...a){return await this.image_processor(...a)}post_process_masks(...a){return this.image_processor.post_process_masks(...a)}reshape_input_points(...a){return this.image_processor.reshape_input_points(...a)}}te(n,"image_processor_class",o.AutoImageProcessor)},"./src/models/seamless_m4t/feature_extraction_seamless_m4t.js":(e,r,t)=>{t.r(r),t.d(r,{SeamlessM4TFeatureExtractor:()=>i});var s=t("./src/base/feature_extraction_utils.js"),o=t("./src/utils/tensor.js"),n=t("./src/utils/audio.js");class i extends s.FeatureExtractor{constructor(l){super(l);const u=this.config.sampling_rate,p=(0,n.mel_filter_bank)(257,this.config.num_mel_bins,20,Math.floor(u/2),u,null,"kaldi",!0);this.mel_filters=p,this.window=(0,n.window_function)(400,"povey",{periodic:!1})}async _extract_fbank_features(l,u){return l=l.map(p=>p*32768),(0,n.spectrogram)(l,this.window,400,160,{fft_length:512,power:2,center:!1,preemphasis:.97,mel_filters:this.mel_filters,log_mel:"log",mel_floor:1192092955078125e-22,remove_dc_offset:!0,max_num_frames:u,transpose:!0})}async _call(l,{padding:u=!0,pad_to_multiple_of:p=2,do_normalize_per_mel_bins:d=!0,return_attention_mask:c=!0}={}){(0,s.validate_audio_inputs)(l,"SeamlessM4TFeatureExtractor");let f=await this._extract_fbank_features(l,this.config.max_length);if(d){const[y,M]=f.dims,v=f.data;for(let C=0;C0){const A=new Float32Array(M*(y+C));A.set(v),A.fill(this.config.padding_value,v.length);const B=y+C;f=new o.Tensor(f.type,A,[B,M]),c&&(_=new o.Tensor("int64",new BigInt64Array(B),[1,B]),_.data.fill(1n,0,y))}}const[T,$]=f.dims,w=this.config.stride;if(T%w!==0)throw new Error(`The number of frames (${T}) must be a multiple of the stride (${w}).`);const S=f.view(1,Math.floor(T/w),$*w),E={input_features:S};if(c){const y=S.dims[1],M=new BigInt64Array(y);if(_){const v=_.data;for(let C=1,A=0;C{t.r(r),t.d(r,{SegformerFeatureExtractor:()=>n,SegformerImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{post_process_semantic_segmentation(...a){return(0,s.post_process_semantic_segmentation)(...a)}}class n extends o{}},"./src/models/siglip/image_processing_siglip.js":(e,r,t)=>{t.r(r),t.d(r,{SiglipImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}},"./src/models/smolvlm/image_processing_smolvlm.js":(e,r,t)=>{t.r(r),t.d(r,{SmolVLMImageProcessor:()=>s.Idefics3ImageProcessor});var s=t("./src/models/idefics3/image_processing_idefics3.js")},"./src/models/smolvlm/processing_smolvlm.js":(e,r,t)=>{t.r(r),t.d(r,{SmolVLMProcessor:()=>s.Idefics3Processor});var s=t("./src/models/idefics3/processing_idefics3.js")},"./src/models/snac/feature_extraction_snac.js":(e,r,t)=>{t.r(r),t.d(r,{SnacFeatureExtractor:()=>o});var s=t("./src/models/dac/feature_extraction_dac.js");class o extends s.DacFeatureExtractor{}},"./src/models/speecht5/feature_extraction_speecht5.js":(e,r,t)=>{t.r(r),t.d(r,{SpeechT5FeatureExtractor:()=>o});var s=t("./src/base/feature_extraction_utils.js");class o extends s.FeatureExtractor{}},"./src/models/speecht5/processing_speecht5.js":(e,r,t)=>{t.r(r),t.d(r,{SpeechT5Processor:()=>i});var s=t("./src/base/processing_utils.js"),o=t("./src/tokenizers.js"),n=t("./src/models/auto/feature_extraction_auto.js");class i extends s.Processor{async _call(l){return await this.feature_extractor(l)}}te(i,"tokenizer_class",o.AutoTokenizer),te(i,"feature_extractor_class",n.AutoFeatureExtractor)},"./src/models/swin2sr/image_processing_swin2sr.js":(e,r,t)=>{t.r(r),t.d(r,{Swin2SRImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{pad_image(i,a,l,u={}){const[p,d,c]=a;return super.pad_image(i,a,{width:d+(l-d%l)%l,height:p+(l-p%l)%l},{mode:"symmetric",center:!1,constant_values:-1,...u})}}},"./src/models/ultravox/processing_ultravox.js":(e,r,t)=>{t.r(r),t.d(r,{UltravoxProcessor:()=>i});var s=t("./src/models/auto/feature_extraction_auto.js"),o=t("./src/tokenizers.js"),n=t("./src/base/processing_utils.js");class i extends n.Processor{async _call(l,u=null,p={}){if(Array.isArray(l))throw new Error("Batched inputs are not supported yet.");let d={};if(u){const f=u.length,{input_features:_}=await this.feature_extractor(u,{...p,max_length:f}),T=Math.round(f/this.config.encoder_ds_factor+1e-4),$=1+Math.ceil(T/this.config.stack_factor);d.audio_token_len=[$],d.audio_values=_;const w=this.config.audio_placeholder;if(!l.includes(w))throw new Error(`The input text does not contain the image token ${w}.`);l=l.replaceAll(w,w.repeat($))}return{...this.tokenizer(l,{add_special_tokens:!1,...p}),...d}}}te(i,"tokenizer_class",o.AutoTokenizer),te(i,"feature_extractor_class",s.AutoFeatureExtractor),te(i,"uses_processor_config",!0)},"./src/models/vit/image_processing_vit.js":(e,r,t)=>{t.r(r),t.d(r,{ViTFeatureExtractor:()=>n,ViTImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{}class n extends o{}},"./src/models/vitmatte/image_processing_vitmatte.js":(e,r,t)=>{t.r(r),t.d(r,{VitMatteImageProcessor:()=>n});var s=t("./src/base/image_processors_utils.js"),o=t("./src/utils/tensor.js");class n extends s.ImageProcessor{async _call(a,l){Array.isArray(a)||(a=[a]),Array.isArray(l)||(l=[l]);const u=await Promise.all(a.map(c=>this.preprocess(c))),p=await Promise.all(l.map(c=>this.preprocess(c,{do_normalize:!1,do_convert_rgb:!1,do_convert_grayscale:!0})));return{pixel_values:(0,o.stack)(u.map((c,f)=>(0,o.cat)([c.pixel_values,p[f].pixel_values],0)),0),original_sizes:u.map(c=>c.original_size),reshaped_input_sizes:u.map(c=>c.reshaped_input_size)}}}},"./src/models/vitpose/image_processing_vitpose.js":(e,r,t)=>{t.r(r),t.d(r,{VitPoseImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{post_process_pose_estimation(i,a,{threshold:l=null}={}){const u=i.tolist(),[p,d,c,f]=i.dims,_=[];for(let T=0;T{t.r(r),t.d(r,{Wav2Vec2FeatureExtractor:()=>n});var s=t("./src/base/feature_extraction_utils.js"),o=t("./src/utils/tensor.js");class n extends s.FeatureExtractor{_zero_mean_unit_var_norm(a){const u=a.reduce((d,c)=>d+c,0)/a.length,p=a.reduce((d,c)=>d+(c-u)**2,0)/a.length;return a.map(d=>(d-u)/Math.sqrt(p+1e-7))}async _call(a){(0,s.validate_audio_inputs)(a,"Wav2Vec2FeatureExtractor"),a instanceof Float64Array&&(a=new Float32Array(a));let l=a;this.config.do_normalize&&(l=this._zero_mean_unit_var_norm(l));const u=[1,l.length];return{input_values:new o.Tensor("float32",l,u),attention_mask:new o.Tensor("int64",new BigInt64Array(l.length).fill(1n),u)}}}},"./src/models/wav2vec2/processing_wav2vec2.js":(e,r,t)=>{t.r(r),t.d(r,{Wav2Vec2Processor:()=>i});var s=t("./src/tokenizers.js"),o=t("./src/models/auto/feature_extraction_auto.js"),n=t("./src/base/processing_utils.js");class i extends n.Processor{async _call(l){return await this.feature_extractor(l)}}te(i,"tokenizer_class",s.AutoTokenizer),te(i,"feature_extractor_class",o.AutoFeatureExtractor)},"./src/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.js":(e,r,t)=>{t.r(r),t.d(r,{Wav2Vec2ProcessorWithLM:()=>i});var s=t("./src/tokenizers.js"),o=t("./src/models/auto/feature_extraction_auto.js"),n=t("./src/base/processing_utils.js");class i extends n.Processor{async _call(l){return await this.feature_extractor(l)}}te(i,"tokenizer_class",s.AutoTokenizer),te(i,"feature_extractor_class",o.AutoFeatureExtractor)},"./src/models/wespeaker/feature_extraction_wespeaker.js":(e,r,t)=>{t.r(r),t.d(r,{WeSpeakerFeatureExtractor:()=>n});var s=t("./src/base/feature_extraction_utils.js");t("./src/utils/tensor.js");var o=t("./src/utils/audio.js");class n extends s.FeatureExtractor{constructor(a){super(a);const l=this.config.sampling_rate,u=(0,o.mel_filter_bank)(257,this.config.num_mel_bins,20,Math.floor(l/2),l,null,"kaldi",!0);this.mel_filters=u,this.window=(0,o.window_function)(400,"hamming",{periodic:!1}),this.min_num_frames=this.config.min_num_frames}async _extract_fbank_features(a){return a=a.map(l=>l*32768),(0,o.spectrogram)(a,this.window,400,160,{fft_length:512,power:2,center:!1,preemphasis:.97,mel_filters:this.mel_filters,log_mel:"log",mel_floor:1192092955078125e-22,remove_dc_offset:!0,transpose:!0,min_num_frames:this.min_num_frames})}async _call(a){(0,s.validate_audio_inputs)(a,"WeSpeakerFeatureExtractor");const l=(await this._extract_fbank_features(a)).unsqueeze_(0);if(this.config.fbank_centering_span===null){const u=l.mean(1).data,p=l.data,[d,c,f]=l.dims;for(let _=0;_{t.r(r),t.d(r,{WHISPER_LANGUAGE_MAPPING:()=>o,WHISPER_TO_LANGUAGE_CODE_MAPPING:()=>n,whisper_language_to_code:()=>i});const s=[["en","english"],["zh","chinese"],["de","german"],["es","spanish"],["ru","russian"],["ko","korean"],["fr","french"],["ja","japanese"],["pt","portuguese"],["tr","turkish"],["pl","polish"],["ca","catalan"],["nl","dutch"],["ar","arabic"],["sv","swedish"],["it","italian"],["id","indonesian"],["hi","hindi"],["fi","finnish"],["vi","vietnamese"],["he","hebrew"],["uk","ukrainian"],["el","greek"],["ms","malay"],["cs","czech"],["ro","romanian"],["da","danish"],["hu","hungarian"],["ta","tamil"],["no","norwegian"],["th","thai"],["ur","urdu"],["hr","croatian"],["bg","bulgarian"],["lt","lithuanian"],["la","latin"],["mi","maori"],["ml","malayalam"],["cy","welsh"],["sk","slovak"],["te","telugu"],["fa","persian"],["lv","latvian"],["bn","bengali"],["sr","serbian"],["az","azerbaijani"],["sl","slovenian"],["kn","kannada"],["et","estonian"],["mk","macedonian"],["br","breton"],["eu","basque"],["is","icelandic"],["hy","armenian"],["ne","nepali"],["mn","mongolian"],["bs","bosnian"],["kk","kazakh"],["sq","albanian"],["sw","swahili"],["gl","galician"],["mr","marathi"],["pa","punjabi"],["si","sinhala"],["km","khmer"],["sn","shona"],["yo","yoruba"],["so","somali"],["af","afrikaans"],["oc","occitan"],["ka","georgian"],["be","belarusian"],["tg","tajik"],["sd","sindhi"],["gu","gujarati"],["am","amharic"],["yi","yiddish"],["lo","lao"],["uz","uzbek"],["fo","faroese"],["ht","haitian creole"],["ps","pashto"],["tk","turkmen"],["nn","nynorsk"],["mt","maltese"],["sa","sanskrit"],["lb","luxembourgish"],["my","myanmar"],["bo","tibetan"],["tl","tagalog"],["mg","malagasy"],["as","assamese"],["tt","tatar"],["haw","hawaiian"],["ln","lingala"],["ha","hausa"],["ba","bashkir"],["jw","javanese"],["su","sundanese"]],o=new Map(s),n=new Map([...s.map(([a,l])=>[l,a]),["burmese","my"],["valencian","ca"],["flemish","nl"],["haitian","ht"],["letzeburgesch","lb"],["pushto","ps"],["panjabi","pa"],["moldavian","ro"],["moldovan","ro"],["sinhalese","si"],["castilian","es"]]);function i(a){a=a.toLowerCase();let l=n.get(a);if(l===void 0){const u=a.match(/^<\|([a-z]{2})\|>$/);if(u&&(a=u[1]),o.has(a))l=a;else{const d=a.length===2?o.keys():o.values();throw new Error(`Language "${a}" is not supported. Must be one of: ${JSON.stringify(Array.from(d))}`)}}return l}},"./src/models/whisper/feature_extraction_whisper.js":(e,r,t)=>{t.r(r),t.d(r,{WhisperFeatureExtractor:()=>i});var s=t("./src/base/feature_extraction_utils.js");t("./src/utils/tensor.js");var o=t("./src/utils/audio.js"),n=t("./src/utils/maths.js");class i extends s.FeatureExtractor{constructor(l){var u;super(l),(u=this.config).mel_filters??(u.mel_filters=(0,o.mel_filter_bank)(Math.floor(1+this.config.n_fft/2),this.config.feature_size,0,8e3,this.config.sampling_rate,"slaney","slaney")),this.window=(0,o.window_function)(this.config.n_fft,"hann")}async _extract_fbank_features(l){const u=await(0,o.spectrogram)(l,this.window,this.config.n_fft,this.config.hop_length,{power:2,mel_filters:this.config.mel_filters,log_mel:"log10",max_num_frames:Math.min(Math.floor(l.length/this.config.hop_length),this.config.nb_max_frames)}),p=u.data,d=(0,n.max)(p)[0];for(let c=0;cd?(l.length>this.config.n_samples&&console.warn("Attempting to extract features for audio longer than 30 seconds. If using a pipeline to extract transcript from a long audio clip, remember to specify `chunk_length_s` and/or `stride_length_s`."),p=l.slice(0,d)):(p=new Float32Array(d),p.set(l)),{input_features:(await this._extract_fbank_features(p)).unsqueeze_(0)}}}},"./src/models/whisper/generation_whisper.js":(e,r,t)=>{t.r(r),t.d(r,{WhisperGenerationConfig:()=>o});var s=t("./src/generation/configuration_utils.js");class o extends s.GenerationConfig{constructor(){super(...arguments);te(this,"return_timestamps",null);te(this,"return_token_timestamps",null);te(this,"num_frames",null);te(this,"alignment_heads",null);te(this,"task",null);te(this,"language",null);te(this,"no_timestamps_token_id",null);te(this,"prompt_ids",null);te(this,"is_multilingual",null);te(this,"lang_to_id",null);te(this,"task_to_id",null);te(this,"max_initial_timestamp_index",1)}}},"./src/models/whisper/processing_whisper.js":(e,r,t)=>{t.r(r),t.d(r,{WhisperProcessor:()=>i});var s=t("./src/models/auto/feature_extraction_auto.js"),o=t("./src/tokenizers.js"),n=t("./src/base/processing_utils.js");class i extends n.Processor{async _call(l){return await this.feature_extractor(l)}}te(i,"tokenizer_class",o.AutoTokenizer),te(i,"feature_extractor_class",s.AutoFeatureExtractor)},"./src/models/yolos/image_processing_yolos.js":(e,r,t)=>{t.r(r),t.d(r,{YolosFeatureExtractor:()=>n,YolosImageProcessor:()=>o});var s=t("./src/base/image_processors_utils.js");class o extends s.ImageProcessor{post_process_object_detection(...a){return(0,s.post_process_object_detection)(...a)}}class n extends o{}},"./src/ops/registry.js":(e,r,t)=>{t.r(r),t.d(r,{TensorOpRegistry:()=>l});var s=t("./src/backends/onnx.js"),o=t("./src/utils/tensor.js"),n=t("./src/env.js");const i=n.apis.IS_BROWSER_ENV||n.apis.IS_WEBWORKER_ENV,a=async(u,p,d)=>{const c=await(0,s.createInferenceSession)(new Uint8Array(u),p);let f=Promise.resolve();return async _=>{const T=(0,s.isONNXProxy)(),$=Object.fromEntries(Object.entries(_).map(([g,S])=>[g,(T?S.clone():S).ort_tensor])),w=await(f=i?f.then(()=>c.run($)):c.run($));return Array.isArray(d)?d.map(g=>new o.Tensor(w[g])):new o.Tensor(w[d])}};class l{static get nearest_interpolate_4d(){return this._nearest_interpolate_4d||(this._nearest_interpolate_4d=a([8,10,18,0,58,129,1,10,41,10,1,120,10,0,10,0,10,1,115,18,1,121,34,6,82,101,115,105,122,101,42,18,10,4,109,111,100,101,34,7,110,101,97,114,101,115,116,160,1,3,18,1,114,90,31,10,1,120,18,26,10,24,8,1,18,20,10,3,18,1,98,10,3,18,1,99,10,3,18,1,104,10,3,18,1,119,90,15,10,1,115,18,10,10,8,8,7,18,4,10,2,8,4,98,31,10,1,121,18,26,10,24,8,1,18,20,10,3,18,1,98,10,3,18,1,99,10,3,18,1,104,10,3,18,1,119,66,2,16,21],this.session_options,"y")),this._nearest_interpolate_4d}static get bilinear_interpolate_4d(){return this._bilinear_interpolate_4d||(this._bilinear_interpolate_4d=a([8,9,18,0,58,128,1,10,40,10,1,120,10,0,10,0,10,1,115,18,1,121,34,6,82,101,115,105,122,101,42,17,10,4,109,111,100,101,34,6,108,105,110,101,97,114,160,1,3,18,1,114,90,31,10,1,120,18,26,10,24,8,1,18,20,10,3,18,1,98,10,3,18,1,99,10,3,18,1,104,10,3,18,1,119,90,15,10,1,115,18,10,10,8,8,7,18,4,10,2,8,4,98,31,10,1,121,18,26,10,24,8,1,18,20,10,3,18,1,98,10,3,18,1,99,10,3,18,1,104,10,3,18,1,119,66,2,16,20],this.session_options,"y")),this._bilinear_interpolate_4d}static get bicubic_interpolate_4d(){return this._bicubic_interpolate_4d||(this._bicubic_interpolate_4d=a([8,9,18,0,58,127,10,39,10,1,120,10,0,10,0,10,1,115,18,1,121,34,6,82,101,115,105,122,101,42,16,10,4,109,111,100,101,34,5,99,117,98,105,99,160,1,3,18,1,114,90,31,10,1,120,18,26,10,24,8,1,18,20,10,3,18,1,98,10,3,18,1,99,10,3,18,1,104,10,3,18,1,119,90,15,10,1,115,18,10,10,8,8,7,18,4,10,2,8,4,98,31,10,1,121,18,26,10,24,8,1,18,20,10,3,18,1,98,10,3,18,1,99,10,3,18,1,104,10,3,18,1,119,66,2,16,20],this.session_options,"y")),this._bicubic_interpolate_4d}static get matmul(){return this._matmul||(this._matmul=a([8,9,18,0,58,55,10,17,10,1,97,10,1,98,18,1,99,34,6,77,97,116,77,117,108,18,1,114,90,9,10,1,97,18,4,10,2,8,1,90,9,10,1,98,18,4,10,2,8,1,98,9,10,1,99,18,4,10,2,8,1,66,2,16,20],this.session_options,"c")),this._matmul}static get stft(){return this._stft||(this._stft=a([8,7,18,0,58,148,1,10,38,10,1,115,10,1,106,10,1,119,10,1,108,18,1,111,34,4,83,84,70,84,42,15,10,8,111,110,101,115,105,100,101,100,24,1,160,1,2,18,1,115,90,26,10,1,115,18,21,10,19,8,1,18,15,10,3,18,1,98,10,3,18,1,115,10,3,18,1,99,90,11,10,1,106,18,6,10,4,8,7,18,0,90,16,10,1,119,18,11,10,9,8,1,18,5,10,3,18,1,119,90,11,10,1,108,18,6,10,4,8,7,18,0,98,31,10,1,111,18,26,10,24,8,1,18,20,10,3,18,1,98,10,3,18,1,102,10,3,18,1,100,10,3,18,1,99,66,2,16,17],this.session_options,"o")),this._stft}static get rfft(){return this._rfft||(this._rfft=a([8,9,18,0,58,97,10,33,10,1,120,10,0,10,1,97,18,1,121,34,3,68,70,84,42,15,10,8,111,110,101,115,105,100,101,100,24,1,160,1,2,18,1,100,90,21,10,1,120,18,16,10,14,8,1,18,10,10,3,18,1,115,10,3,18,1,99,90,11,10,1,97,18,6,10,4,8,7,18,0,98,21,10,1,121,18,16,10,14,8,1,18,10,10,3,18,1,115,10,3,18,1,99,66,2,16,20],this.session_options,"y")),this._rfft}static get top_k(){return this._top_k||(this._top_k=a([8,10,18,0,58,73,10,18,10,1,120,10,1,107,18,1,118,18,1,105,34,4,84,111,112,75,18,1,116,90,9,10,1,120,18,4,10,2,8,1,90,15,10,1,107,18,10,10,8,8,7,18,4,10,2,8,1,98,9,10,1,118,18,4,10,2,8,1,98,9,10,1,105,18,4,10,2,8,7,66,2,16,21],this.session_options,["v","i"])),this._top_k}static get slice(){return this._slice||(this._slice=a([8,7,18,0,58,96,10,25,10,1,120,10,1,115,10,1,101,10,1,97,10,1,116,18,1,121,34,5,83,108,105,99,101,18,1,114,90,9,10,1,120,18,4,10,2,8,1,90,9,10,1,115,18,4,10,2,8,7,90,9,10,1,101,18,4,10,2,8,7,90,9,10,1,97,18,4,10,2,8,7,90,9,10,1,116,18,4,10,2,8,7,98,9,10,1,121,18,4,10,2,8,1,66,2,16,13],this.session_options,"y")),this._slice}}te(l,"session_options",{})},"./src/pipelines.js":(e,r,t)=>{t.r(r),t.d(r,{AudioClassificationPipeline:()=>G,AutomaticSpeechRecognitionPipeline:()=>ee,BackgroundRemovalPipeline:()=>oe,DepthEstimationPipeline:()=>_e,DocumentQuestionAnsweringPipeline:()=>F,FeatureExtractionPipeline:()=>B,FillMaskPipeline:()=>S,ImageClassificationPipeline:()=>Z,ImageFeatureExtractionPipeline:()=>K,ImageSegmentationPipeline:()=>X,ImageToImagePipeline:()=>re,ImageToTextPipeline:()=>H,ObjectDetectionPipeline:()=>ae,Pipeline:()=>T,QuestionAnsweringPipeline:()=>g,SummarizationPipeline:()=>y,Text2TextGenerationPipeline:()=>E,TextClassificationPipeline:()=>$,TextGenerationPipeline:()=>C,TextToAudioPipeline:()=>W,TokenClassificationPipeline:()=>w,TranslationPipeline:()=>M,ZeroShotAudioClassificationPipeline:()=>j,ZeroShotClassificationPipeline:()=>A,ZeroShotImageClassificationPipeline:()=>me,ZeroShotObjectDetectionPipeline:()=>V,pipeline:()=>$e});var s=t("./src/tokenizers.js"),o=t("./src/models.js"),n=t("./src/models/auto/processing_auto.js");t("./src/base/processing_utils.js");var i=t("./src/utils/generic.js"),a=t("./src/utils/core.js"),l=t("./src/utils/maths.js"),u=t("./src/utils/audio.js"),p=t("./src/utils/tensor.js"),d=t("./src/utils/image.js");async function c(we){return Array.isArray(we)||(we=[we]),await Promise.all(we.map(q=>d.RawImage.read(q)))}async function f(we,q){return Array.isArray(we)||(we=[we]),await Promise.all(we.map(R=>typeof R=="string"||R instanceof URL?(0,u.read_audio)(R,q):R instanceof Float64Array?new Float32Array(R):R))}function _(we,q){q&&(we=we.map(Se=>Se|0));const[R,pe,xe,be]=we;return{xmin:R,ymin:pe,xmax:xe,ymax:be}}class T extends i.Callable{constructor({task:q,model:R,tokenizer:pe=null,processor:xe=null}){super(),this.task=q,this.model=R,this.tokenizer=pe,this.processor=xe}async dispose(){await this.model.dispose()}}class $ extends T{constructor(q){super(q)}async _call(q,{top_k:R=1}={}){const pe=this.tokenizer(q,{padding:!0,truncation:!0}),xe=await this.model(pe),be=this.model.config.problem_type==="multi_label_classification"?Fe=>Fe.sigmoid():Fe=>new p.Tensor("float32",(0,l.softmax)(Fe.data),Fe.dims),Se=this.model.config.id2label,Ae=[];for(const Fe of xe.logits){const ze=be(Fe),Ve=await(0,p.topk)(ze,R),O=Ve[0].tolist(),z=Ve[1].tolist().map((J,le)=>({label:Se?Se[J]:`LABEL_${J}`,score:O[le]}));R===1?Ae.push(...z):Ae.push(z)}return Array.isArray(q)||R===1?Ae:Ae[0]}}class w extends T{constructor(q){super(q)}async _call(q,{ignore_labels:R=["O"]}={}){const pe=Array.isArray(q),xe=this.tokenizer(pe?q:[q],{padding:!0,truncation:!0}),Se=(await this.model(xe)).logits,Ae=this.model.config.id2label,Fe=[];for(let ze=0;zeIe==this.tokenizer.sep_token_id);Fe[O].map((Ie,Re)=>Ie==1&&(Re===0||Re>z&&ze.findIndex(Xe=>Xe==Y[Re])===-1));const J=be[O].tolist(),le=Se[O].tolist();for(let Ie=1;IeRe==Y[Ie])!==-1)&&(J[Ie]=-1/0,le[Ie]=-1/0);const ye=(0,l.softmax)(J).map((Ie,Re)=>[Ie,Re]),Ee=(0,l.softmax)(le).map((Ie,Re)=>[Ie,Re]);ye[0][0]=0,Ee[0][0]=0;const ke=(0,a.product)(ye,Ee).filter(Ie=>Ie[0][1]<=Ie[1][1]).map(Ie=>[Ie[0][1],Ie[1][1],Ie[0][0]*Ie[1][0]]).sort((Ie,Re)=>Re[2]-Ie[2]);for(let Ie=0;IeJ==this.tokenizer.mask_token_id);if(ze===-1)throw Error(`Mask token (${this.tokenizer.mask_token}) not found in text.`);const Ve=xe[Ae][ze],O=await(0,p.topk)(new p.Tensor("float32",(0,l.softmax)(Ve.data),Ve.dims),R),Y=O[0].tolist(),z=O[1].tolist();be.push(z.map((J,le)=>{const ye=Fe.slice();return ye[ze]=J,{score:Y[le],token:Number(J),token_str:this.tokenizer.decode([J]),sequence:this.tokenizer.decode(ye,{skip_special_tokens:!0})}}))}return Array.isArray(q)?be:be[0]}}class E extends T{constructor(R){super(R);te(this,"_key","generated_text")}async _call(R,pe={}){Array.isArray(R)||(R=[R]),this.model.config.prefix&&(R=R.map(ze=>this.model.config.prefix+ze));const xe=this.model.config.task_specific_params;xe&&xe[this.task]&&xe[this.task].prefix&&(R=R.map(ze=>xe[this.task].prefix+ze));const be=this.tokenizer,Se={padding:!0,truncation:!0};let Ae;this instanceof M&&"_build_translation_inputs"in be?Ae=be._build_translation_inputs(R,Se,pe):Ae=be(R,Se);const Fe=await this.model.generate({...Ae,...pe});return be.batch_decode(Fe,{skip_special_tokens:!0}).map(ze=>({[this._key]:ze}))}}class y extends E{constructor(R){super(R);te(this,"_key","summary_text")}}class M extends E{constructor(R){super(R);te(this,"_key","translation_text")}}function v(we){return Array.isArray(we)&&we.every(q=>"role"in q&&"content"in q)}class C extends T{constructor(q){super(q)}async _call(q,R={}){let pe=!1,xe=!1,be;if(typeof q=="string")be=q=[q];else if(Array.isArray(q)&&q.every(z=>typeof z=="string"))pe=!0,be=q;else{if(v(q))q=[q];else if(Array.isArray(q)&&q.every(v))pe=!0;else throw new Error("Input must be a string, an array of strings, a Chat, or an array of Chats");xe=!0,be=q.map(z=>this.tokenizer.apply_chat_template(z,{tokenize:!1,add_generation_prompt:!0}))}const Se=R.add_special_tokens??!1,Ae=xe?!1:R.return_full_text??!0;this.tokenizer.padding_side="left";const Fe=this.tokenizer(be,{add_special_tokens:Se,padding:!0,truncation:!0}),ze=await this.model.generate({...Fe,...R}),Ve=this.tokenizer.batch_decode(ze,{skip_special_tokens:!0});let O;!Ae&&Fe.input_ids.dims.at(-1)>0&&(O=this.tokenizer.batch_decode(Fe.input_ids,{skip_special_tokens:!0}).map(z=>z.length));const Y=Array.from({length:q.length},z=>[]);for(let z=0;z[R.toLowerCase(),pe])),this.entailment_id=this.label2id.entailment,this.entailment_id===void 0&&(console.warn("Could not find 'entailment' in label2id mapping. Using 2 as entailment_id."),this.entailment_id=2),this.contradiction_id=this.label2id.contradiction??this.label2id.not_entailment,this.contradiction_id===void 0&&(console.warn("Could not find 'contradiction' in label2id mapping. Using 0 as contradiction_id."),this.contradiction_id=0)}async _call(q,R,{hypothesis_template:pe="This example is {}.",multi_label:xe=!1}={}){const be=Array.isArray(q);be||(q=[q]),Array.isArray(R)||(R=[R]);const Se=R.map(ze=>pe.replace("{}",ze)),Ae=xe||R.length===1,Fe=[];for(const ze of q){const Ve=[];for(const z of Se){const J=this.tokenizer(ze,{text_pair:z,padding:!0,truncation:!0}),le=await this.model(J);Ae?Ve.push([le.logits.data[this.contradiction_id],le.logits.data[this.entailment_id]]):Ve.push(le.logits.data[this.entailment_id])}const Y=(Ae?Ve.map(z=>(0,l.softmax)(z)[1]):(0,l.softmax)(Ve)).map((z,J)=>[z,J]).sort((z,J)=>J[0]-z[0]);Fe.push({sequence:ze,labels:Y.map(z=>R[z[1]]),scores:Y.map(z=>z[0])})}return be?Fe:Fe[0]}}class B extends T{constructor(q){super(q)}async _call(q,{pooling:R="none",normalize:pe=!1,quantize:xe=!1,precision:be="binary"}={}){const Se=this.tokenizer(q,{padding:!0,truncation:!0}),Ae=await this.model(Se);let Fe=Ae.last_hidden_state??Ae.logits??Ae.token_embeddings;if(R!=="none")if(R==="mean")Fe=(0,p.mean_pooling)(Fe,Se.attention_mask);else if(R==="cls")Fe=Fe.slice(null,0);else throw Error(`Pooling method '${R}' not supported.`);return pe&&(Fe=Fe.normalize(2,-1)),xe&&(Fe=(0,p.quantize_embeddings)(Fe,be)),Fe}}class K extends T{constructor(q){super(q)}async _call(q,{pool:R=null}={}){const pe=await c(q),{pixel_values:xe}=await this.processor(pe),be=await this.model({pixel_values:xe});let Se;if(R){if(!("pooler_output"in be))throw Error("No pooled output was returned. Make sure the model has a 'pooler' layer when using the 'pool' option.");Se=be.pooler_output}else Se=be.last_hidden_state??be.logits??be.image_embeds;return Se}}class G extends T{constructor(q){super(q)}async _call(q,{top_k:R=5}={}){const pe=this.processor.feature_extractor.config.sampling_rate,xe=await f(q,pe),be=this.model.config.id2label,Se=[];for(const Ae of xe){const Fe=await this.processor(Ae),Ve=(await this.model(Fe)).logits[0],O=await(0,p.topk)(new p.Tensor("float32",(0,l.softmax)(Ve.data),Ve.dims),R),Y=O[0].tolist(),J=O[1].tolist().map((le,ye)=>({label:be?be[le]:`LABEL_${le}`,score:Y[ye]}));Se.push(J)}return Array.isArray(q)?Se:Se[0]}}class j extends T{constructor(q){super(q)}async _call(q,R,{hypothesis_template:pe="This is a sound of {}."}={}){const xe=!Array.isArray(q);xe&&(q=[q]);const be=R.map(Ve=>pe.replace("{}",Ve)),Se=this.tokenizer(be,{padding:!0,truncation:!0}),Ae=this.processor.feature_extractor.config.sampling_rate,Fe=await f(q,Ae),ze=[];for(const Ve of Fe){const O=await this.processor(Ve),Y=await this.model({...Se,...O}),z=(0,l.softmax)(Y.logits_per_audio.data);ze.push([...z].map((J,le)=>({score:J,label:R[le]})))}return xe?ze[0]:ze}}class ee extends T{constructor(q){super(q)}async _call(q,R={}){switch(this.model.config.model_type){case"whisper":case"lite-whisper":return this._call_whisper(q,R);case"wav2vec2":case"wav2vec2-bert":case"unispeech":case"unispeech-sat":case"hubert":return this._call_wav2vec2(q,R);case"moonshine":return this._call_moonshine(q,R);default:throw new Error(`AutomaticSpeechRecognitionPipeline does not support model type '${this.model.config.model_type}'.`)}}async _call_wav2vec2(q,R){R.language&&console.warn('`language` parameter is not yet supported for `wav2vec2` models, defaulting to "English".'),R.task&&console.warn('`task` parameter is not yet supported for `wav2vec2` models, defaulting to "transcribe".');const pe=!Array.isArray(q);pe&&(q=[q]);const xe=this.processor.feature_extractor.config.sampling_rate,be=await f(q,xe),Se=[];for(const Ae of be){const Fe=await this.processor(Ae),Ve=(await this.model(Fe)).logits[0],O=[];for(const z of Ve)O.push((0,l.max)(z.data)[1]);const Y=this.tokenizer.decode(O);Se.push({text:Y})}return pe?Se[0]:Se}async _call_whisper(q,R){const pe=R.return_timestamps??!1,xe=R.chunk_length_s??0,be=R.force_full_sequences??!1;let Se=R.stride_length_s??null;const Ae={...R};pe==="word"&&(Ae.return_token_timestamps=!0,Ae.return_timestamps=!1);const Fe=!Array.isArray(q);Fe&&(q=[q]);const ze=this.processor.feature_extractor.config.chunk_length/this.model.config.max_source_positions,Ve=this.processor.feature_extractor.config.hop_length,O=this.processor.feature_extractor.config.sampling_rate,Y=await f(q,O),z=[];for(const J of Y){let le=[];if(xe>0){if(Se===null)Se=xe/6;else if(xe<=Se)throw Error("`chunk_length_s` must be larger than `stride_length_s`.");const ke=O*xe,Ie=O*Se,Re=ke-2*Ie;let Xe=0;for(;;){const Ge=Xe+ke,lt=J.subarray(Xe,Ge),wt=await this.processor(lt),Gt=Xe===0,Ot=Ge>=J.length;if(le.push({stride:[lt.length,Gt?0:Ie,Ot?0:Ie],input_features:wt.input_features,is_last:Ot}),Ot)break;Xe+=Re}}else le=[{stride:[J.length,0,0],input_features:(await this.processor(J)).input_features,is_last:!0}];for(const ke of le){Ae.num_frames=Math.floor(ke.stride[0]/Ve);const Ie=await this.model.generate({inputs:ke.input_features,...Ae});pe==="word"?(ke.tokens=Ie.sequences.tolist()[0],ke.token_timestamps=Ie.token_timestamps.tolist()[0].map(Re=>(0,l.round)(Re,2))):ke.tokens=Ie[0].tolist(),ke.stride=ke.stride.map(Re=>Re/O)}const[ye,Ee]=this.tokenizer._decode_asr(le,{time_precision:ze,return_timestamps:pe,force_full_sequences:be});z.push({text:ye,...Ee})}return Fe?z[0]:z}async _call_moonshine(q,R){const pe=!Array.isArray(q);pe&&(q=[q]);const xe=this.processor.feature_extractor.config.sampling_rate,be=await f(q,xe),Se=[];for(const Ae of be){const Fe=await this.processor(Ae),ze=Math.floor(Ae.length/xe)*6,Ve=await this.model.generate({max_new_tokens:ze,...R,...Fe}),O=this.processor.batch_decode(Ve,{skip_special_tokens:!0})[0];Se.push({text:O})}return pe?Se[0]:Se}}class H extends T{constructor(q){super(q)}async _call(q,R={}){const pe=Array.isArray(q),xe=await c(q),{pixel_values:be}=await this.processor(xe),Se=[];for(const Ae of be){Ae.dims=[1,...Ae.dims];const Fe=await this.model.generate({inputs:Ae,...R}),ze=this.tokenizer.batch_decode(Fe,{skip_special_tokens:!0}).map(Ve=>({generated_text:Ve.trim()}));Se.push(ze)}return pe?Se:Se[0]}}class Z extends T{constructor(q){super(q)}async _call(q,{top_k:R=5}={}){const pe=await c(q),{pixel_values:xe}=await this.processor(pe),be=await this.model({pixel_values:xe}),Se=this.model.config.id2label,Ae=[];for(const Fe of be.logits){const ze=await(0,p.topk)(new p.Tensor("float32",(0,l.softmax)(Fe.data),Fe.dims),R),Ve=ze[0].tolist(),Y=ze[1].tolist().map((z,J)=>({label:Se?Se[z]:`LABEL_${z}`,score:Ve[J]}));Ae.push(Y)}return Array.isArray(q)?Ae:Ae[0]}}class X extends T{constructor(q){super(q),this.subtasks_mapping={panoptic:"post_process_panoptic_segmentation",instance:"post_process_instance_segmentation",semantic:"post_process_semantic_segmentation"}}async _call(q,{threshold:R=.5,mask_threshold:pe=.5,overlap_mask_area_threshold:xe=.8,label_ids_to_fuse:be=null,target_sizes:Se=null,subtask:Ae=null}={}){if(Array.isArray(q)&&q.length!==1)throw Error("Image segmentation pipeline currently only supports a batch size of 1.");const ze=await c(q),Ve=ze.map(ke=>[ke.height,ke.width]),O=await this.processor(ze),{inputNames:Y,outputNames:z}=this.model.sessions.model;if(!Y.includes("pixel_values")){if(Y.length!==1)throw Error(`Expected a single input name, but got ${Y.length} inputs: ${Y}.`);const ke=Y[0];if(ke in O)throw Error(`Input name ${ke} already exists in the inputs.`);O[ke]=O.pixel_values}const J=await this.model(O);let le=null;if(Ae!==null)le=this.subtasks_mapping[Ae];else if(this.processor.image_processor){for(const[ke,Ie]of Object.entries(this.subtasks_mapping))if(Ie in this.processor.image_processor){le=this.processor.image_processor[Ie].bind(this.processor.image_processor),Ae=ke;break}}const ye=this.model.config.id2label,Ee=[];if(Ae)if(Ae==="panoptic"||Ae==="instance"){const ke=le(J,R,pe,xe,be,Se??Ve)[0],Ie=ke.segmentation;for(const Re of ke.segments_info){const Xe=new Uint8ClampedArray(Ie.data.length);for(let lt=0;ltwt<-1e-5||wt>1+1e-5)&&Ge.sigmoid_();const lt=await d.RawImage.fromTensor(Ge.mul_(255).to("uint8")).resize(Xe[1],Xe[0]);Ee.push({label:null,score:null,mask:lt})}}return Ee}}class oe extends X{constructor(q){super(q)}async _call(q,R={}){if(Array.isArray(q)&&q.length!==1)throw Error("Background removal pipeline currently only supports a batch size of 1.");const xe=await c(q),be=await super._call(q,R);return xe.map((Ae,Fe)=>{const ze=Ae.clone();return ze.putAlpha(be[Fe].mask),ze})}}class me extends T{constructor(q){super(q)}async _call(q,R,{hypothesis_template:pe="This is a photo of {}"}={}){const xe=Array.isArray(q),be=await c(q),Se=R.map(Y=>pe.replace("{}",Y)),Ae=this.tokenizer(Se,{padding:this.model.config.model_type==="siglip"?"max_length":!0,truncation:!0}),{pixel_values:Fe}=await this.processor(be),ze=await this.model({...Ae,pixel_values:Fe}),Ve=this.model.config.model_type==="siglip"?Y=>Y.sigmoid().data:Y=>(0,l.softmax)(Y.data),O=[];for(const Y of ze.logits_per_image){const J=[...Ve(Y)].map((le,ye)=>({score:le,label:R[ye]}));J.sort((le,ye)=>ye.score-le.score),O.push(J)}return xe?O:O[0]}}class ae extends T{constructor(q){super(q)}async _call(q,{threshold:R=.9,percentage:pe=!1}={}){const xe=Array.isArray(q);if(xe&&q.length!==1)throw Error("Object detection pipeline currently only supports a batch size of 1.");const be=await c(q),Se=pe?null:be.map(z=>[z.height,z.width]),{pixel_values:Ae,pixel_mask:Fe}=await this.processor(be),ze=await this.model({pixel_values:Ae,pixel_mask:Fe}),Ve=this.processor.image_processor.post_process_object_detection(ze,R,Se),O=this.model.config.id2label,Y=Ve.map(z=>z.boxes.map((J,le)=>({score:z.scores[le],label:O[z.classes[le]],box:_(J,!pe)})));return xe?Y:Y[0]}}class V extends T{constructor(q){super(q)}async _call(q,R,{threshold:pe=.1,top_k:xe=null,percentage:be=!1}={}){const Se=Array.isArray(q),Ae=await c(q),Fe=this.tokenizer(R,{padding:!0,truncation:!0}),ze=await this.processor(Ae),Ve=[];for(let O=0;O({score:Ee.scores[Ie],label:Ee.labels[Ie],box:_(ke,!be)}))}else{const Ee=this.processor.image_processor.post_process_object_detection(le,pe,z,!0)[0];ye=Ee.boxes.map((ke,Ie)=>({score:Ee.scores[Ie],label:R[Ee.classes[Ie]],box:_(ke,!be)}))}ye.sort((Ee,ke)=>ke.score-Ee.score),xe!==null&&(ye=ye.slice(0,xe)),Ve.push(ye)}return Se?Ve:Ve[0]}}class F extends T{constructor(q){super(q)}async _call(q,R,pe={}){const xe=(await c(q))[0],{pixel_values:be}=await this.processor(xe),Se=`${R}`,Ae=this.tokenizer(Se,{add_special_tokens:!1,padding:!0,truncation:!0}).input_ids,Fe=await this.model.generate({inputs:be,max_length:this.model.config.decoder.max_position_embeddings,decoder_input_ids:Ae,...pe}),Ve=this.tokenizer.batch_decode(Fe)[0].match(/(.*?)<\/s_answer>/);let O=null;return Ve&&Ve.length>=2&&(O=Ve[1].trim()),[{answer:O}]}}class W extends T{constructor(R){super(R);te(this,"DEFAULT_VOCODER_ID","Xenova/speecht5_hifigan");this.vocoder=R.vocoder??null}async _call(R,{speaker_embeddings:pe=null}={}){return this.processor?this._call_text_to_spectrogram(R,{speaker_embeddings:pe}):this._call_text_to_waveform(R)}async _call_text_to_waveform(R){const pe=this.tokenizer(R,{padding:!0,truncation:!0}),{waveform:xe}=await this.model(pe),be=this.model.config.sampling_rate;return new u.RawAudio(xe.data,be)}async _call_text_to_spectrogram(R,{speaker_embeddings:pe}){if(this.vocoder||(console.log("No vocoder specified, using default HifiGan vocoder."),this.vocoder=await o.AutoModel.from_pretrained(this.DEFAULT_VOCODER_ID,{dtype:"fp32"})),(typeof pe=="string"||pe instanceof URL)&&(pe=new Float32Array(await(await fetch(pe)).arrayBuffer())),pe instanceof Float32Array)pe=new p.Tensor("float32",pe,[1,pe.length]);else if(!(pe instanceof p.Tensor))throw new Error("Speaker embeddings must be a `Tensor`, `Float32Array`, `string`, or `URL`.");const{input_ids:xe}=this.tokenizer(R,{padding:!0,truncation:!0}),{waveform:be}=await this.model.generate_speech(xe,pe,{vocoder:this.vocoder}),Se=this.processor.feature_extractor.config.sampling_rate;return new u.RawAudio(be.data,Se)}}class re extends T{constructor(q){super(q)}async _call(q){const R=await c(q),pe=await this.processor(R),xe=await this.model(pe),be=[];for(const Se of xe.reconstruction){const Ae=Se.squeeze().clamp_(0,1).mul_(255).round_().to("uint8");be.push(d.RawImage.fromTensor(Ae))}return be.length>1?be:be[0]}}class _e extends T{constructor(q){super(q)}async _call(q){const R=await c(q),pe=await this.processor(R),{predicted_depth:xe}=await this.model(pe),be=[];for(let Se=0;Se1?be:be[0]}}const se=Object.freeze({"text-classification":{tokenizer:s.AutoTokenizer,pipeline:$,model:o.AutoModelForSequenceClassification,default:{model:"Xenova/distilbert-base-uncased-finetuned-sst-2-english"},type:"text"},"token-classification":{tokenizer:s.AutoTokenizer,pipeline:w,model:o.AutoModelForTokenClassification,default:{model:"Xenova/bert-base-multilingual-cased-ner-hrl"},type:"text"},"question-answering":{tokenizer:s.AutoTokenizer,pipeline:g,model:o.AutoModelForQuestionAnswering,default:{model:"Xenova/distilbert-base-cased-distilled-squad"},type:"text"},"fill-mask":{tokenizer:s.AutoTokenizer,pipeline:S,model:o.AutoModelForMaskedLM,default:{model:"Xenova/bert-base-uncased"},type:"text"},summarization:{tokenizer:s.AutoTokenizer,pipeline:y,model:o.AutoModelForSeq2SeqLM,default:{model:"Xenova/distilbart-cnn-6-6"},type:"text"},translation:{tokenizer:s.AutoTokenizer,pipeline:M,model:o.AutoModelForSeq2SeqLM,default:{model:"Xenova/t5-small"},type:"text"},"text2text-generation":{tokenizer:s.AutoTokenizer,pipeline:E,model:o.AutoModelForSeq2SeqLM,default:{model:"Xenova/flan-t5-small"},type:"text"},"text-generation":{tokenizer:s.AutoTokenizer,pipeline:C,model:o.AutoModelForCausalLM,default:{model:"Xenova/gpt2"},type:"text"},"zero-shot-classification":{tokenizer:s.AutoTokenizer,pipeline:A,model:o.AutoModelForSequenceClassification,default:{model:"Xenova/distilbert-base-uncased-mnli"},type:"text"},"audio-classification":{pipeline:G,model:o.AutoModelForAudioClassification,processor:n.AutoProcessor,default:{model:"Xenova/wav2vec2-base-superb-ks"},type:"audio"},"zero-shot-audio-classification":{tokenizer:s.AutoTokenizer,pipeline:j,model:o.AutoModel,processor:n.AutoProcessor,default:{model:"Xenova/clap-htsat-unfused"},type:"multimodal"},"automatic-speech-recognition":{tokenizer:s.AutoTokenizer,pipeline:ee,model:[o.AutoModelForSpeechSeq2Seq,o.AutoModelForCTC],processor:n.AutoProcessor,default:{model:"Xenova/whisper-tiny.en"},type:"multimodal"},"text-to-audio":{tokenizer:s.AutoTokenizer,pipeline:W,model:[o.AutoModelForTextToWaveform,o.AutoModelForTextToSpectrogram],processor:[n.AutoProcessor,null],default:{model:"Xenova/speecht5_tts"},type:"text"},"image-to-text":{tokenizer:s.AutoTokenizer,pipeline:H,model:o.AutoModelForVision2Seq,processor:n.AutoProcessor,default:{model:"Xenova/vit-gpt2-image-captioning"},type:"multimodal"},"image-classification":{pipeline:Z,model:o.AutoModelForImageClassification,processor:n.AutoProcessor,default:{model:"Xenova/vit-base-patch16-224"},type:"multimodal"},"image-segmentation":{pipeline:X,model:[o.AutoModelForImageSegmentation,o.AutoModelForSemanticSegmentation,o.AutoModelForUniversalSegmentation],processor:n.AutoProcessor,default:{model:"Xenova/detr-resnet-50-panoptic"},type:"multimodal"},"background-removal":{pipeline:oe,model:[o.AutoModelForImageSegmentation,o.AutoModelForSemanticSegmentation,o.AutoModelForUniversalSegmentation],processor:n.AutoProcessor,default:{model:"Xenova/modnet"},type:"image"},"zero-shot-image-classification":{tokenizer:s.AutoTokenizer,pipeline:me,model:o.AutoModel,processor:n.AutoProcessor,default:{model:"Xenova/clip-vit-base-patch32"},type:"multimodal"},"object-detection":{pipeline:ae,model:o.AutoModelForObjectDetection,processor:n.AutoProcessor,default:{model:"Xenova/detr-resnet-50"},type:"multimodal"},"zero-shot-object-detection":{tokenizer:s.AutoTokenizer,pipeline:V,model:o.AutoModelForZeroShotObjectDetection,processor:n.AutoProcessor,default:{model:"Xenova/owlvit-base-patch32"},type:"multimodal"},"document-question-answering":{tokenizer:s.AutoTokenizer,pipeline:F,model:o.AutoModelForDocumentQuestionAnswering,processor:n.AutoProcessor,default:{model:"Xenova/donut-base-finetuned-docvqa"},type:"multimodal"},"image-to-image":{pipeline:re,model:o.AutoModelForImageToImage,processor:n.AutoProcessor,default:{model:"Xenova/swin2SR-classical-sr-x2-64"},type:"image"},"depth-estimation":{pipeline:_e,model:o.AutoModelForDepthEstimation,processor:n.AutoProcessor,default:{model:"Xenova/dpt-large"},type:"image"},"feature-extraction":{tokenizer:s.AutoTokenizer,pipeline:B,model:o.AutoModel,default:{model:"Xenova/all-MiniLM-L6-v2"},type:"text"},"image-feature-extraction":{processor:n.AutoProcessor,pipeline:K,model:[o.AutoModelForImageFeatureExtraction,o.AutoModel],default:{model:"Xenova/vit-base-patch16-224-in21k"},type:"image"}}),ce=Object.freeze({"sentiment-analysis":"text-classification",ner:"token-classification",asr:"automatic-speech-recognition","text-to-speech":"text-to-audio",embeddings:"feature-extraction"});async function $e(we,q=null,{progress_callback:R=null,config:pe=null,cache_dir:xe=null,local_files_only:be=!1,revision:Se="main",device:Ae=null,dtype:Fe=null,subfolder:ze="onnx",use_external_data_format:Ve=null,model_file_name:O=null,session_options:Y={}}={}){we=ce[we]??we;const z=se[we.split("_",1)[0]];if(!z)throw Error(`Unsupported pipeline: ${we}. Must be one of [${Object.keys(se)}]`);q||(q=z.default.model,console.log(`No model specified. Using default model: "${q}".`));const J={progress_callback:R,config:pe,cache_dir:xe,local_files_only:be,revision:Se,device:Ae,dtype:Fe,subfolder:ze,use_external_data_format:Ve,model_file_name:O,session_options:Y},le=new Map([["tokenizer",z.tokenizer],["model",z.model],["processor",z.processor]]),ye=await Ue(le,q,J);ye.task=we,(0,a.dispatchCallback)(R,{status:"ready",task:we,model:q});const Ee=z.pipeline;return new Ee(ye)}async function Ue(we,q,R){const pe=Object.create(null),xe=[];for(const[be,Se]of we.entries()){if(!Se)continue;let Ae;Array.isArray(Se)?Ae=new Promise(async(Fe,ze)=>{var O,Y;let Ve;for(const z of Se){if(z===null){Fe(null);return}try{Fe(await z.from_pretrained(q,R));return}catch(J){if((O=J.message)!=null&&O.includes("Unsupported model type"))Ve=J;else if((Y=J.message)!=null&&Y.includes("Could not locate file"))Ve=J;else{ze(J);return}}}ze(Ve)}):Ae=Se.from_pretrained(q,R),pe[be]=Ae,xe.push(Ae)}await Promise.all(xe);for(const[be,Se]of Object.entries(pe))pe[be]=await Se;return pe}},"./src/tokenizers.js":(e,r,t)=>{t.r(r),t.d(r,{AlbertTokenizer:()=>Ar,AutoTokenizer:()=>vn,BartTokenizer:()=>hs,BertTokenizer:()=>us,BlenderbotSmallTokenizer:()=>vs,BlenderbotTokenizer:()=>wn,BloomTokenizer:()=>Hr,CLIPTokenizer:()=>mn,CamembertTokenizer:()=>tt,CodeGenTokenizer:()=>Br,CodeLlamaTokenizer:()=>xr,CohereTokenizer:()=>yn,ConvBertTokenizer:()=>Qt,DebertaTokenizer:()=>ds,DebertaV2Tokenizer:()=>cs,DistilBertTokenizer:()=>Qe,ElectraTokenizer:()=>zr,EsmTokenizer:()=>pn,FalconTokenizer:()=>fr,GPT2Tokenizer:()=>ps,GPTNeoXTokenizer:()=>Vs,GemmaTokenizer:()=>hn,Grok1Tokenizer:()=>qr,HerbertTokenizer:()=>ys,LlamaTokenizer:()=>cn,M2M100Tokenizer:()=>dr,MBart50Tokenizer:()=>ms,MBartTokenizer:()=>Kr,MPNetTokenizer:()=>ks,MarianTokenizer:()=>fn,MgpstrTokenizer:()=>xs,MobileBertTokenizer:()=>bs,NllbTokenizer:()=>Is,NougatTokenizer:()=>Us,PreTrainedTokenizer:()=>at,Qwen2Tokenizer:()=>Fr,RoFormerTokenizer:()=>De,RobertaTokenizer:()=>_s,SiglipTokenizer:()=>_n,SpeechT5Tokenizer:()=>Mn,SqueezeBertTokenizer:()=>Ft,T5Tokenizer:()=>Sr,TokenizerModel:()=>K,VitsTokenizer:()=>bn,Wav2Vec2CTCTokenizer:()=>gn,WhisperTokenizer:()=>gr,XLMRobertaTokenizer:()=>$s,XLMTokenizer:()=>Rt,is_chinese_char:()=>S});var s=t("./src/utils/generic.js"),o=t("./src/utils/core.js"),n=t("./src/utils/hub.js"),i=t("./src/utils/maths.js"),a=t("./src/utils/tensor.js"),l=t("./src/utils/data-structures.js"),u=t("./node_modules/@huggingface/jinja/dist/index.js"),p=t("./src/models/whisper/common_whisper.js");async function d(he,k){const N=await Promise.all([(0,n.getModelJSON)(he,"tokenizer.json",!0,k),(0,n.getModelJSON)(he,"tokenizer_config.json",!0,k)]);return k.legacy!==null&&(N[1].legacy=k.legacy),N}function c(he,k){const N=[];let Q=0;for(const ie of he.matchAll(k)){const de=ie[0];Q0&&N.push(de),Q=ie.index+de.length}return Q=19968&&he<=40959||he>=13312&&he<=19903||he>=131072&&he<=173791||he>=173824&&he<=177983||he>=177984&&he<=178207||he>=178208&&he<=183983||he>=63744&&he<=64255||he>=194560&&he<=195103}function E(he,k,N){const Q=[];let ie=0;for(;iethis.tokens_to_ids.get(N)??this.unk_token_id)}convert_ids_to_tokens(k){return k.map(N=>this.vocab[N]??this.unk_token)}}class G extends K{constructor(k){super(k),this.tokens_to_ids=_(k.vocab),this.unk_token_id=this.tokens_to_ids.get(k.unk_token),this.unk_token=k.unk_token,this.max_input_chars_per_word=k.max_input_chars_per_word??100,this.vocab=new Array(this.tokens_to_ids.size);for(const[N,Q]of this.tokens_to_ids)this.vocab[Q]=N}encode(k){const N=[];for(const Q of k){const ie=[...Q];if(ie.length>this.max_input_chars_per_word){N.push(this.unk_token);continue}let de=!1,ve=0;const je=[];for(;ve0&&(Je=this.config.continuing_subword_prefix+Je),this.tokens_to_ids.has(Je)){We=Je;break}--He}if(We===null){de=!0;break}je.push(We),ve=He}de?N.push(this.unk_token):N.push(...je)}return N}}class j extends K{constructor(k,N){super(k);const Q=k.vocab.length;this.vocab=new Array(Q),this.scores=new Array(Q);for(let ie=0;ie[ie,de])),this.bos_token=" ",this.bos_token_id=this.tokens_to_ids.get(this.bos_token),this.eos_token=N.eos_token,this.eos_token_id=this.tokens_to_ids.get(this.eos_token),this.unk_token=this.vocab[this.unk_token_id],this.minScore=(0,i.min)(this.scores)[0],this.unk_score=this.minScore-10,this.scores[this.unk_token_id]=this.unk_score,this.trie=new l.CharTrie,this.trie.extend(this.vocab),this.fuse_unk=!0}populateNodes(k){const N=k.chars,Q=1;let ie=0;for(;ie{const he=[...Array.from({length:94},(ie,de)=>de+33),...Array.from({length:12},(ie,de)=>de+161),...Array.from({length:82},(ie,de)=>de+174)],k=he.slice();let N=0;for(let ie=0;ie<256;++ie)he.includes(ie)||(he.push(ie),k.push(256+N),N+=1);const Q=k.map(ie=>String.fromCharCode(ie));return Object.fromEntries(he.map((ie,de)=>[ie,Q[de]]))})(),H=(0,o.reverseDictionary)(ee);class Z extends K{constructor(k){super(k),this.tokens_to_ids=_(k.vocab),this.unk_token_id=this.tokens_to_ids.get(k.unk_token),this.unk_token=k.unk_token,this.vocab=new Array(this.tokens_to_ids.size);for(const[Q,ie]of this.tokens_to_ids)this.vocab[ie]=Q;const N=Array.isArray(k.merges[0]);this.merges=N?k.merges:k.merges.map(Q=>Q.split(" ",2)),this.bpe_ranks=new Map(this.merges.map((Q,ie)=>[JSON.stringify(Q),ie])),this.end_of_word_suffix=k.end_of_word_suffix,this.continuing_subword_suffix=k.continuing_subword_suffix??null,this.byte_fallback=this.config.byte_fallback??!1,this.byte_fallback&&(this.text_encoder=new TextEncoder),this.ignore_merges=this.config.ignore_merges??!1,this.max_length_to_cache=256,this.cache_capacity=1e4,this.cache=new l.LRUCache(this.cache_capacity)}clear_cache(){this.cache.clear()}bpe(k){if(k.length===0)return[];const N=this.cache.get(k);if(N!==void 0)return N;const Q=Array.from(k);this.end_of_word_suffix&&(Q[Q.length-1]+=this.end_of_word_suffix);let ie=[];if(Q.length>1){const de=new l.PriorityQueue((He,We)=>He.score`<0x${je.toString(16).toUpperCase().padStart(2,"0")}>`);ve.every(je=>this.tokens_to_ids.has(je))?N.push(...ve):N.push(this.unk_token)}else N.push(this.unk_token)}return N}}class X extends K{constructor(k,N){super(k),this.tokens_to_ids=_(N.target_lang?k.vocab[N.target_lang]:k.vocab),this.bos_token=N.bos_token,this.bos_token_id=this.tokens_to_ids.get(this.bos_token),this.eos_token=N.eos_token,this.eos_token_id=this.tokens_to_ids.get(this.eos_token),this.pad_token=N.pad_token,this.pad_token_id=this.tokens_to_ids.get(this.pad_token),this.unk_token=N.unk_token,this.unk_token_id=this.tokens_to_ids.get(this.unk_token),this.vocab=new Array(this.tokens_to_ids.size);for(const[Q,ie]of this.tokens_to_ids)this.vocab[ie]=Q}encode(k){return k}}class oe extends s.Callable{constructor(k){super(),this.config=k}static fromConfig(k){if(k===null)return null;switch(k.type){case"BertNormalizer":return new we(k);case"Precompiled":return new Ot(k);case"Sequence":return new Ue(k);case"Replace":return new me(k);case"NFC":return new V(k);case"NFD":return new F(k);case"NFKC":return new W(k);case"NFKD":return new re(k);case"Strip":return new _e(k);case"StripAccents":return new se(k);case"Lowercase":return new ce(k);case"Prepend":return new $e(k);default:throw new Error(`Unknown Normalizer type: ${k.type}`)}}normalize(k){throw Error("normalize should be implemented in subclass.")}_call(k){return this.normalize(k)}}class me extends oe{normalize(k){const N=f(this.config.pattern);return N===null?k:k.replaceAll(N,this.config.content)}}class ae extends oe{constructor(){super(...arguments);te(this,"form")}normalize(N){return N=N.normalize(this.form),N}}class V extends ae{constructor(){super(...arguments);te(this,"form","NFC")}}class F extends ae{constructor(){super(...arguments);te(this,"form","NFD")}}class W extends ae{constructor(){super(...arguments);te(this,"form","NFKC")}}class re extends ae{constructor(){super(...arguments);te(this,"form","NFKD")}}class _e extends oe{normalize(k){return this.config.strip_left&&this.config.strip_right?k=k.trim():(this.config.strip_left&&(k=k.trimStart()),this.config.strip_right&&(k=k.trimEnd())),k}}class se extends oe{normalize(k){return k=w(k),k}}class ce extends oe{normalize(k){return k=k.toLowerCase(),k}}class $e extends oe{normalize(k){return k=this.config.prepend+k,k}}class Ue extends oe{constructor(k){super(k),this.normalizers=k.normalizers.map(N=>oe.fromConfig(N))}normalize(k){return this.normalizers.reduce((N,Q)=>Q.normalize(N),k)}}class we extends oe{_tokenize_chinese_chars(k){const N=[];for(let Q=0;Qthis.pre_tokenize_text(Q,N)):this.pre_tokenize_text(k,N)).flat()}_call(k,N){return this.pre_tokenize(k,N)}}class R extends q{constructor(k){super(),this.pattern=new RegExp(`[^\\s${M}]+|[${M}]`,"gu")}pre_tokenize_text(k,N){return k.trim().match(this.pattern)||[]}}class pe extends q{constructor(k){super(),this.config=k,this.add_prefix_space=this.config.add_prefix_space,this.trim_offsets=this.config.trim_offsets,this.use_regex=this.config.use_regex??!0,this.pattern=new RegExp("'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)|\\s+","gu"),this.byte_encoder=ee,this.text_encoder=new TextEncoder}pre_tokenize_text(k,N){return this.add_prefix_space&&!k.startsWith(" ")&&(k=" "+k),(this.use_regex?k.match(this.pattern)||[]:[k]).map(ie=>Array.from(this.text_encoder.encode(ie),de=>this.byte_encoder[de]).join(""))}}class xe extends q{constructor(k){super(),this.config=k,this.pattern=f(this.config.pattern,this.config.invert)}pre_tokenize_text(k,N){var Q;return this.pattern===null?[]:this.config.invert?k.match(this.pattern)||[]:((Q=this.config.behavior)==null?void 0:Q.toLowerCase())==="removed"?k.split(this.pattern).filter(ie=>ie):c(k,this.pattern)}}class be extends q{constructor(k){super(),this.config=k,this.pattern=new RegExp(`[^${M}]+|[${M}]+`,"gu")}pre_tokenize_text(k,N){return k.match(this.pattern)||[]}}class Se extends q{constructor(k){super(),this.config=k;const N=`[^\\d]+|\\d${this.config.individual_digits?"":"+"}`;this.pattern=new RegExp(N,"gu")}pre_tokenize_text(k,N){return k.match(this.pattern)||[]}}class Ae extends s.Callable{constructor(k){super(),this.config=k}static fromConfig(k){if(k===null)return null;switch(k.type){case"TemplateProcessing":return new Ve(k);case"ByteLevel":return new O(k);case"RobertaProcessing":return new ze(k);case"BertProcessing":return new Fe(k);case"Sequence":return new Y(k);default:throw new Error(`Unknown PostProcessor type: ${k.type}`)}}post_process(k,...N){throw Error("post_process should be implemented in subclass.")}_call(k,...N){return this.post_process(k,...N)}}class Fe extends Ae{constructor(k){super(k),this.cls=k.cls[0],this.sep=k.sep[0]}post_process(k,N=null,{add_special_tokens:Q=!0}={}){Q&&(k=(0,o.mergeArrays)([this.cls],k,[this.sep]));let ie=new Array(k.length).fill(0);if(N!==null){const de=Q&&this instanceof ze?[this.sep]:[],ve=Q?[this.sep]:[];k=(0,o.mergeArrays)(k,de,N,ve),ie=(0,o.mergeArrays)(ie,new Array(N.length+de.length+ve.length).fill(1))}return{tokens:k,token_type_ids:ie}}}class ze extends Fe{}class Ve extends Ae{constructor(k){super(k),this.single=k.single,this.pair=k.pair}post_process(k,N=null,{add_special_tokens:Q=!0}={}){const ie=N===null?this.single:this.pair;let de=[],ve=[];for(const je of ie)"SpecialToken"in je?Q&&(de.push(je.SpecialToken.id),ve.push(je.SpecialToken.type_id)):"Sequence"in je&&(je.Sequence.id==="A"?(de=(0,o.mergeArrays)(de,k),ve=(0,o.mergeArrays)(ve,new Array(k.length).fill(je.Sequence.type_id))):je.Sequence.id==="B"&&(de=(0,o.mergeArrays)(de,N),ve=(0,o.mergeArrays)(ve,new Array(N.length).fill(je.Sequence.type_id))));return{tokens:de,token_type_ids:ve}}}class O extends Ae{post_process(k,N=null){return N&&(k=(0,o.mergeArrays)(k,N)),{tokens:k}}}class Y extends Ae{constructor(k){super(k),this.processors=k.processors.map(N=>Ae.fromConfig(N))}post_process(k,N=null,Q={}){let ie;for(const de of this.processors)if(de instanceof O)k=de.post_process(k).tokens,N&&(N=de.post_process(N).tokens);else{const ve=de.post_process(k,N,Q);k=ve.tokens,ie=ve.token_type_ids}return{tokens:k,token_type_ids:ie}}}class z extends s.Callable{constructor(k){super(),this.config=k,this.added_tokens=[],this.end_of_word_suffix=null,this.trim_offsets=k.trim_offsets}static fromConfig(k){if(k===null)return null;switch(k.type){case"WordPiece":return new ke(k);case"Metaspace":return new Gt(k);case"ByteLevel":return new Ie(k);case"Replace":return new J(k);case"ByteFallback":return new le(k);case"Fuse":return new ye(k);case"Strip":return new Ee(k);case"Sequence":return new Xe(k);case"CTC":return new Re(k);case"BPEDecoder":return new Ge(k);default:throw new Error(`Unknown Decoder type: ${k.type}`)}}_call(k){return this.decode(k)}decode(k){return this.decode_chain(k).join("")}decode_chain(k){throw Error("`decode_chain` should be implemented in subclass.")}}class J extends z{decode_chain(k){const N=f(this.config.pattern);return N===null?k:k.map(Q=>Q.replaceAll(N,this.config.content))}}class le extends z{constructor(k){super(k),this.text_decoder=new TextDecoder}decode_chain(k){const N=[];let Q=[];for(const ie of k){let de=null;if(ie.length===6&&ie.startsWith("<0x")&&ie.endsWith(">")){const ve=parseInt(ie.slice(3,5),16);isNaN(ve)||(de=ve)}if(de!==null)Q.push(de);else{if(Q.length>0){const ve=this.text_decoder.decode(Uint8Array.from(Q));N.push(ve),Q=[]}N.push(ie)}}if(Q.length>0){const ie=this.text_decoder.decode(Uint8Array.from(Q));N.push(ie),Q=[]}return N}}class ye extends z{decode_chain(k){return[k.join("")]}}class Ee extends z{constructor(k){super(k),this.content=this.config.content,this.start=this.config.start,this.stop=this.config.stop}decode_chain(k){return k.map(N=>{let Q=0;for(let de=0;de(Q!==0&&(N.startsWith(this.config.prefix)?N=N.replace(this.config.prefix,""):N=" "+N),this.cleanup&&(N=$(N)),N))}}class Ie extends z{constructor(k){super(k),this.byte_decoder=H,this.text_decoder=new TextDecoder("utf-8",{fatal:!1,ignoreBOM:!0}),this.end_of_word_suffix=null}convert_tokens_to_string(k){const N=k.join(""),Q=new Uint8Array([...N].map(de=>this.byte_decoder[de]));return this.text_decoder.decode(Q)}decode_chain(k){const N=[];let Q=[];for(const ie of k)this.added_tokens.find(de=>de.content===ie)!==void 0?(Q.length>0&&(N.push(this.convert_tokens_to_string(Q)),Q=[]),N.push(ie)):Q.push(ie);return Q.length>0&&N.push(this.convert_tokens_to_string(Q)),N}}class Re extends z{constructor(k){super(k),this.pad_token=this.config.pad_token,this.word_delimiter_token=this.config.word_delimiter_token,this.cleanup=this.config.cleanup}convert_tokens_to_string(k){if(k.length===0)return"";const N=[k[0]];for(let de=1;dede!==this.pad_token).join("");return this.cleanup&&(ie=$(ie).replaceAll(this.word_delimiter_token," ").trim()),ie}decode_chain(k){return[this.convert_tokens_to_string(k)]}}class Xe extends z{constructor(k){super(k),this.decoders=k.decoders.map(N=>z.fromConfig(N))}decode_chain(k){return this.decoders.reduce((N,Q)=>Q.decode_chain(N),k)}}class Ge extends z{constructor(k){super(k),this.suffix=this.config.suffix}decode_chain(k){return k.map((N,Q)=>N.replaceAll(this.suffix,Q===k.length-1?"":" "))}}class lt extends z{decode_chain(k){let N="";for(let Q=1;QQ.normalize("NFKC")).join("~"):k=k.normalize("NFKC"),k}}class ur extends q{constructor(k){super(),this.tokenizers=k.pretokenizers.map(N=>q.fromConfig(N))}pre_tokenize_text(k,N){return this.tokenizers.reduce((Q,ie)=>ie.pre_tokenize(Q,N),[k])}}class ls extends q{constructor(k){super()}pre_tokenize_text(k,N){return k.match(/\w+|[^\w\s]+/g)||[]}}class Ms extends q{constructor(k){super()}pre_tokenize_text(k,N){return y(k)}}class Ir extends q{constructor(k){super(),this.config=k,this.pattern=f(this.config.pattern),this.content=this.config.content}pre_tokenize_text(k,N){return this.pattern===null?[k]:[k.replaceAll(this.pattern,this.config.content)]}}const js=["bos_token","eos_token","unk_token","sep_token","pad_token","cls_token","mask_token"];function Ss(he,k,N,Q){for(const ie of Object.keys(he)){const de=k-he[ie].length,ve=N(ie),je=new Array(de).fill(ve);he[ie]=Q==="right"?(0,o.mergeArrays)(he[ie],je):(0,o.mergeArrays)(je,he[ie])}}function Ns(he,k){for(const N of Object.keys(he))he[N].length=k}class at extends s.Callable{constructor(N,Q){super();te(this,"return_token_type_ids",!1);te(this,"padding_side","right");this._tokenizer_config=Q,this.normalizer=oe.fromConfig(N.normalizer),this.pre_tokenizer=q.fromConfig(N.pre_tokenizer),this.model=K.fromConfig(N.model,Q),this.post_processor=Ae.fromConfig(N.post_processor),this.decoder=z.fromConfig(N.decoder),this.special_tokens=[],this.all_special_ids=[],this.added_tokens=[];for(const ie of N.added_tokens){const de=new B(ie);this.added_tokens.push(de),this.model.tokens_to_ids.set(de.content,de.id),this.model.vocab[de.id]=de.content,de.special&&(this.special_tokens.push(de.content),this.all_special_ids.push(de.id))}if(this.additional_special_tokens=Q.additional_special_tokens??[],this.special_tokens.push(...this.additional_special_tokens),this.special_tokens=[...new Set(this.special_tokens)],this.decoder&&(this.decoder.added_tokens=this.added_tokens,this.decoder.end_of_word_suffix=this.model.end_of_word_suffix),this.added_tokens_splitter=new l.DictionarySplitter(this.added_tokens.map(ie=>ie.content)),this.added_tokens_map=new Map(this.added_tokens.map(ie=>[ie.content,ie])),this.mask_token=this.getToken("mask_token"),this.mask_token_id=this.model.tokens_to_ids.get(this.mask_token),this.pad_token=this.getToken("pad_token","eos_token"),this.pad_token_id=this.model.tokens_to_ids.get(this.pad_token),this.sep_token=this.getToken("sep_token"),this.sep_token_id=this.model.tokens_to_ids.get(this.sep_token),this.unk_token=this.getToken("unk_token"),this.unk_token_id=this.model.tokens_to_ids.get(this.unk_token),this.bos_token=this.getToken("bos_token"),this.bos_token_id=this.model.tokens_to_ids.get(this.bos_token),this.eos_token=this.getToken("eos_token"),this.eos_token_id=this.model.tokens_to_ids.get(this.eos_token),this.model_max_length=Q.model_max_length,this.remove_space=Q.remove_space,this.clean_up_tokenization_spaces=Q.clean_up_tokenization_spaces??!0,this.do_lowercase_and_remove_accent=Q.do_lowercase_and_remove_accent??!1,Q.padding_side&&(this.padding_side=Q.padding_side),this.legacy=!1,this.chat_template=Q.chat_template??null,Array.isArray(this.chat_template)){const ie=Object.create(null);for(const{name:de,template:ve}of this.chat_template){if(typeof de!="string"||typeof ve!="string")throw new Error('Chat template must be a list of objects with "name" and "template" properties');ie[de]=ve}this.chat_template=ie}this._compiled_template_cache=new Map}getToken(...N){for(const Q of N){const ie=this._tokenizer_config[Q];if(ie)if(typeof ie=="object"){if(ie.__type==="AddedToken")return ie.content;throw Error(`Unknown token: ${ie}`)}else return ie}return null}static async from_pretrained(N,{progress_callback:Q=null,config:ie=null,cache_dir:de=null,local_files_only:ve=!1,revision:je="main",legacy:He=null}={}){const We=await d(N,{progress_callback:Q,config:ie,cache_dir:de,local_files_only:ve,revision:je,legacy:He});return new this(...We)}_call(N,{text_pair:Q=null,add_special_tokens:ie=!0,padding:de=!1,truncation:ve=null,max_length:je=null,return_tensor:He=!0,return_token_type_ids:We=null}={}){const Je=Array.isArray(N);let dt;if(Je){if(N.length===0)throw Error("text array must be non-empty");if(Q!==null){if(Array.isArray(Q)){if(N.length!==Q.length)throw Error("text and text_pair must have the same length")}else throw Error("text_pair must also be an array");dt=N.map((Pt,jt)=>this._encode_plus(Pt,{text_pair:Q[jt],add_special_tokens:ie,return_token_type_ids:We}))}else dt=N.map(Pt=>this._encode_plus(Pt,{add_special_tokens:ie,return_token_type_ids:We}))}else{if(N==null)throw Error("text may not be null or undefined");if(Array.isArray(Q))throw Error("When specifying `text_pair`, since `text` is a string, `text_pair` must also be a string (i.e., not an array).");dt=[this._encode_plus(N,{text_pair:Q,add_special_tokens:ie,return_token_type_ids:We})]}if(je===null?de==="max_length"?je=this.model_max_length:je=(0,i.max)(dt.map(Pt=>Pt.input_ids.length))[0]:ve||console.warn("Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=true` to explicitly truncate examples to max length."),je=Math.min(je,this.model_max_length??1/0),de||ve)for(let Pt=0;Ptje?ve&&Ns(dt[Pt],je):de&&Ss(dt[Pt],je,jt=>jt==="input_ids"?this.pad_token_id:0,this.padding_side));const xt={};if(He){if(!(de&&ve)&&dt.some(jt=>{var kt;for(const Ht of Object.keys(jt))if(jt[Ht].length!==((kt=dt[0][Ht])==null?void 0:kt.length))return!0;return!1}))throw Error("Unable to create tensor, you should probably activate truncation and/or padding with 'padding=true' and 'truncation=true' to have batched tensors with the same length.");const Pt=[dt.length,dt[0].input_ids.length];for(const jt of Object.keys(dt[0]))xt[jt]=new a.Tensor("int64",BigInt64Array.from(dt.flatMap(kt=>kt[jt]).map(BigInt)),Pt)}else{for(const Pt of Object.keys(dt[0]))xt[Pt]=dt.map(jt=>jt[Pt]);if(!Je)for(const Pt of Object.keys(xt))xt[Pt]=xt[Pt][0]}return xt}_encode_text(N){if(N===null)return null;const Q=this.added_tokens_splitter.split(N);for(let de=0;de0&&(Q[de-1]=Q[de-1].trimEnd()),ve.rstrip&&de{if(de.length===0)return[];if(this.added_tokens_map.has(de))return[de];if(this.remove_space===!0&&(de=de.trim().split(/\s+/).join(" ")),this.do_lowercase_and_remove_accent&&(de=g(de)),this.normalizer!==null&&(de=this.normalizer(de)),de.length===0)return[];const je=this.pre_tokenizer!==null?this.pre_tokenizer(de,{section_index:ve}):[de];return this.model(je)})}_encode_plus(N,{text_pair:Q=null,add_special_tokens:ie=!0,return_token_type_ids:de=null}={}){const{tokens:ve,token_type_ids:je}=this._tokenize_helper(N,{pair:Q,add_special_tokens:ie}),He=this.model.convert_tokens_to_ids(ve),We={input_ids:He,attention_mask:new Array(He.length).fill(1)};return(de??this.return_token_type_ids)&&je&&(We.token_type_ids=je),We}_tokenize_helper(N,{pair:Q=null,add_special_tokens:ie=!1}={}){const de=this._encode_text(N),ve=this._encode_text(Q);return this.post_processor?this.post_processor(de,ve,{add_special_tokens:ie}):{tokens:(0,o.mergeArrays)(de??[],ve??[])}}tokenize(N,{pair:Q=null,add_special_tokens:ie=!1}={}){return this._tokenize_helper(N,{pair:Q,add_special_tokens:ie}).tokens}encode(N,{text_pair:Q=null,add_special_tokens:ie=!0,return_token_type_ids:de=null}={}){return this._encode_plus(N,{text_pair:Q,add_special_tokens:ie,return_token_type_ids:de}).input_ids}batch_decode(N,Q={}){return N instanceof a.Tensor&&(N=N.tolist()),N.map(ie=>this.decode(ie,Q))}decode(N,Q={}){if(N instanceof a.Tensor&&(N=T(N)),!Array.isArray(N)||N.length===0||!(0,o.isIntegralNumber)(N[0]))throw Error("token_ids must be a non-empty array of integers.");return this.decode_single(N,Q)}decode_single(N,{skip_special_tokens:Q=!1,clean_up_tokenization_spaces:ie=null}){let de=this.model.convert_ids_to_tokens(N);Q&&(de=de.filter(je=>!this.special_tokens.includes(je)));let ve=this.decoder?this.decoder(de):de.join(" ");return this.decoder&&this.decoder.end_of_word_suffix&&(ve=ve.replaceAll(this.decoder.end_of_word_suffix," "),Q&&(ve=ve.trim())),(ie??this.clean_up_tokenization_spaces)&&(ve=$(ve)),ve}get_chat_template({chat_template:N=null,tools:Q=null}={}){if(this.chat_template&&typeof this.chat_template=="object"){const ie=this.chat_template;if(N!==null&&Object.hasOwn(ie,N))N=ie[N];else if(N===null)if(Q!==null&&"tool_use"in ie)N=ie.tool_use;else if("default"in ie)N=ie.default;else throw Error(`This model has multiple chat templates with no default specified! Please either pass a chat template or the name of the template you wish to use to the 'chat_template' argument. Available template names are ${Object.keys(ie).sort()}.`)}else if(N===null)if(this.chat_template)N=this.chat_template;else throw Error("Cannot use apply_chat_template() because tokenizer.chat_template is not set and no template argument was passed! For information about writing templates and setting the tokenizer.chat_template attribute, please see the documentation at https://huggingface.co/docs/transformers/main/en/chat_templating");return N}apply_chat_template(N,{tools:Q=null,documents:ie=null,chat_template:de=null,add_generation_prompt:ve=!1,tokenize:je=!0,padding:He=!1,truncation:We=!1,max_length:Je=null,return_tensor:dt=!0,return_dict:xt=!1,tokenizer_kwargs:Pt={},...jt}={}){if(de=this.get_chat_template({chat_template:de,tools:Q}),typeof de!="string")throw Error(`chat_template must be a string, but got ${typeof de}`);let kt=this._compiled_template_cache.get(de);kt===void 0&&(kt=new u.Template(de),this._compiled_template_cache.set(de,kt));const Ht=Object.create(null);for(const cr of js){const pr=this.getToken(cr);pr&&(Ht[cr]=pr)}const br=kt.render({messages:N,add_generation_prompt:ve,tools:Q,documents:ie,...Ht,...jt});if(je){const cr=this._call(br,{add_special_tokens:!1,padding:He,truncation:We,max_length:Je,return_tensor:dt,...Pt});return xt?cr:cr.input_ids}return br}}class us extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class Ar extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class bs extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class Ft extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class ds extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class cs extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class ys extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class Qt extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class De extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class Qe extends at{}class tt extends at{}class Rt extends at{constructor(N,Q){super(N,Q);te(this,"return_token_type_ids",!0);console.warn('WARNING: `XLMTokenizer` is not yet supported by Hugging Face\'s "fast" tokenizers library. Therefore, you may experience slightly inaccurate results.')}}class zr extends at{constructor(){super(...arguments);te(this,"return_token_type_ids",!0)}}class Sr extends at{}class ps extends at{}class hs extends at{}class Kr extends at{constructor(k,N){super(k,N),this.languageRegex=/^[a-z]{2}_[A-Z]{2}$/,this.language_codes=this.special_tokens.filter(Q=>this.languageRegex.test(Q)),this.lang_to_token=Q=>Q}_build_translation_inputs(k,N,Q){return Tr(this,k,N,Q)}}class ms extends Kr{}class _s extends at{}class Hr extends at{}const vr="▁";class cn extends at{constructor(N,Q){super(N,Q);te(this,"padding_side","left");this.legacy=Q.legacy??!0,this.legacy||(this.normalizer=null,this.pre_tokenizer=new wt({replacement:vr,add_prefix_space:!0,prepend_scheme:"first"}))}_encode_text(N){if(N===null)return null;if(this.legacy||N.length===0)return super._encode_text(N);let Q=super._encode_text(vr+N.replaceAll(vr," "));return Q.length>1&&Q[0]===vr&&this.special_tokens.includes(Q[1])&&(Q=Q.slice(1)),Q}}class xr extends at{}class $s extends at{}class ks extends at{}class fr extends at{}class Vs extends at{}class pn extends at{}class Fr extends at{}class hn extends at{}class qr extends at{}function Tr(he,k,N,Q){if(!("language_codes"in he)||!Array.isArray(he.language_codes))throw new Error("Tokenizer must have `language_codes` attribute set and it should be an array of language ids.");if(!("languageRegex"in he)||!(he.languageRegex instanceof RegExp))throw new Error("Tokenizer must have `languageRegex` attribute set and it should be a regular expression.");if(!("lang_to_token"in he)||typeof he.lang_to_token!="function")throw new Error("Tokenizer must have `lang_to_token` attribute set and it should be a function.");const ie=Q.src_lang,de=Q.tgt_lang;if(!he.language_codes.includes(de))throw new Error(`Target language code "${de}" is not valid. Must be one of: {${he.language_codes.join(", ")}}`);if(ie!==void 0){if(!he.language_codes.includes(ie))throw new Error(`Source language code "${ie}" is not valid. Must be one of: {${he.language_codes.join(", ")}}`);for(const ve of he.post_processor.config.single)if("SpecialToken"in ve&&he.languageRegex.test(ve.SpecialToken.id)){ve.SpecialToken.id=he.lang_to_token(ie);break}}return Q.forced_bos_token_id=he.model.convert_tokens_to_ids([he.lang_to_token(de)])[0],he._call(k,N)}class Is extends at{constructor(k,N){super(k,N),this.languageRegex=/^[a-z]{3}_[A-Z][a-z]{3}$/,this.language_codes=this.special_tokens.filter(Q=>this.languageRegex.test(Q)),this.lang_to_token=Q=>Q}_build_translation_inputs(k,N,Q){return Tr(this,k,N,Q)}}class dr extends at{constructor(k,N){super(k,N),this.languageRegex=/^__[a-z]{2,3}__$/,this.language_codes=this.special_tokens.filter(Q=>this.languageRegex.test(Q)).map(Q=>Q.slice(2,-2)),this.lang_to_token=Q=>`__${Q}__`}_build_translation_inputs(k,N,Q){return Tr(this,k,N,Q)}}class gr extends at{get timestamp_begin(){return this.model.convert_tokens_to_ids(["<|notimestamps|>"])[0]+1}_decode_asr(k,{return_timestamps:N=!1,return_language:Q=!1,time_precision:ie=null,force_full_sequences:de=!0}={}){if(ie===null)throw Error("Must specify time_precision");let ve=null;const je=N==="word";function He(){return{language:ve,timestamp:[null,null],text:""}}const We=[];let Je=He(),dt=0;const xt=this.timestamp_begin,jt=xt+1500;let kt=[],Ht=[],br=!1,cr=null;const pr=new Set(this.all_special_ids);for(const Dt of k){const rr=Dt.tokens,wr=je?Dt.token_timestamps:null;let Qr=null,Rr=xt;if("stride"in Dt){const[or,Vt,Zt]=Dt.stride;if(dt-=Vt,cr=or-Zt,Vt&&(Rr=Vt/ie+xt),Zt)for(let er=rr.length-1;er>=0;--er){const tr=Number(rr[er]);if(tr>=xt){if(Qr!==null&&(tr-xt)*ie=xt&&Vt<=jt){const Zt=(Vt-xt)*ie+dt,er=(0,i.round)(Zt,2);if(Qr!==null&&Vt>=Qr)br=!0;else if(br||kt.length>0&&Vt0?(kt.push(Yt),je&&Ht.push(jr)):kt.every(or=>or.length===0)&&(Je=He(),kt=[],Yt=[],Ht=[],jr=[])}if(kt.length>0){if(de&&N)throw new Error("Whisper did not predict an ending timestamp, which can happen if audio is cut off in the middle of a word. Also make sure WhisperTimeStampLogitsProcessor was used during generation.");const[Dt,rr]=this.findLongestCommonSequence(kt,Ht),wr=this.decode(Dt);Je.text=wr,je&&(Je.words=this.collateWordTimestamps(Dt,rr,ve)),We.push(Je)}let Nt=Object.create(null);const Xr=We.map(Dt=>Dt.text).join("");if(N||Q){for(let Dt=0;Dt0;let je=ve?[]:null,He=ve?N[0]:null;for(let We=1;WeVt===Rr[Zt]&&He[Xr+Zt]<=N[We][wr+Zt]).length:Yt=rr.filter((Vt,Zt)=>Vt===Rr[Zt]).length;const jr=Nt/1e4,or=Yt/Nt+jr;Yt>1&&or>dt&&(dt=or,xt=[Xr,Dt,wr,Qr])}const[jt,kt,Ht,br]=xt,cr=Math.floor((kt+jt)/2),pr=Math.floor((br+Ht)/2);de.push(...Q.slice(0,cr)),Q=Je.slice(pr),ie=Q.length,ve&&(je.push(...He.slice(0,cr)),He=N[We].slice(pr))}return de.push(...Q),ve?(je.push(...He),[de,je]):[de,[]]}collateWordTimestamps(k,N,Q){const[ie,de,ve]=this.combineTokensIntoWords(k,Q),je=[];for(let He=0;He=ie){const je=((ve-ie)*Q).toFixed(2);de.push(`<|${je}|>`),de.push([])}else de[de.length-1].push(ve);return de=de.map(ve=>typeof ve=="string"?ve:super.decode(ve,N)),de.join("")}splitTokensOnUnicode(k){const N=this.decode(k,{decode_with_timestamps:!0}),Q="�",ie=[],de=[],ve=[];let je=[],He=[],We=0;for(let Je=0;Je=this.model.tokens_to_ids.get("<|endoftext|>"),jt=Je.startsWith(" "),kt=Je.trim(),Ht=He.test(kt);if(Pt||jt||Ht||de.length===0)de.push(Je),ve.push(dt),je.push(xt);else{const br=de.length-1;de[br]+=Je,ve[br].push(...dt),je[br].push(...xt)}}return[de,ve,je]}mergePunctuations(k,N,Q,ie,de){const ve=structuredClone(k),je=structuredClone(N),He=structuredClone(Q);let We=ve.length-2,Je=ve.length-1;for(;We>=0;)ve[We].startsWith(" ")&&ie.includes(ve[We].trim())?(ve[Je]=ve[We]+ve[Je],je[Je]=(0,o.mergeArrays)(je[We],je[Je]),He[Je]=(0,o.mergeArrays)(He[We],He[Je]),ve[We]="",je[We]=[],He[We]=[]):Je=We,--We;for(We=0,Je=1;Jedt),je.filter(dt=>dt.length>0),He.filter(dt=>dt.length>0)]}}class Br extends at{}class mn extends at{}class _n extends at{}class fn extends at{constructor(k,N){super(k,N),this.languageRegex=/^(>>\w+<<)\s*/g,this.supported_language_codes=this.model.vocab.filter(Q=>this.languageRegex.test(Q)),console.warn('WARNING: `MarianTokenizer` is not yet supported by Hugging Face\'s "fast" tokenizers library. Therefore, you may experience slightly inaccurate results.')}_encode_text(k){if(k===null)return null;const[N,...Q]=k.trim().split(this.languageRegex);if(Q.length===0)return super._encode_text(N);if(Q.length===2){const[ie,de]=Q;return this.supported_language_codes.includes(ie)||console.warn(`Unsupported language code "${ie}" detected, which may lead to unexpected behavior. Should be one of: ${JSON.stringify(this.supported_language_codes)}`),(0,o.mergeArrays)([ie],super._encode_text(de))}}}class gn extends at{}class wn extends at{}class vs extends at{}class Mn extends at{}class Us extends at{}class bn extends at{constructor(k,N){super(k,N),this.decoder=new lt({})}}class yn extends at{}class xs extends at{}class vn{static async from_pretrained(k,{progress_callback:N=null,config:Q=null,cache_dir:ie=null,local_files_only:de=!1,revision:ve="main",legacy:je=null}={}){var xt;const[He,We]=await d(k,{progress_callback:N,config:Q,cache_dir:ie,local_files_only:de,revision:ve,legacy:je}),Je=((xt=We.tokenizer_class)==null?void 0:xt.replace(/Fast$/,""))??"PreTrainedTokenizer";let dt=this.TOKENIZER_CLASS_MAPPING[Je];return dt||(console.warn(`Unknown tokenizer class "${Je}", attempting to construct from base class.`),dt=at),new dt(He,We)}}te(vn,"TOKENIZER_CLASS_MAPPING",{T5Tokenizer:Sr,DistilBertTokenizer:Qe,CamembertTokenizer:tt,DebertaTokenizer:ds,DebertaV2Tokenizer:cs,BertTokenizer:us,HerbertTokenizer:ys,ConvBertTokenizer:Qt,RoFormerTokenizer:De,XLMTokenizer:Rt,ElectraTokenizer:zr,MobileBertTokenizer:bs,SqueezeBertTokenizer:Ft,AlbertTokenizer:Ar,GPT2Tokenizer:ps,BartTokenizer:hs,MBartTokenizer:Kr,MBart50Tokenizer:ms,RobertaTokenizer:_s,WhisperTokenizer:gr,CodeGenTokenizer:Br,CLIPTokenizer:mn,SiglipTokenizer:_n,MarianTokenizer:fn,BloomTokenizer:Hr,NllbTokenizer:Is,M2M100Tokenizer:dr,LlamaTokenizer:cn,CodeLlamaTokenizer:xr,XLMRobertaTokenizer:$s,MPNetTokenizer:ks,FalconTokenizer:fr,GPTNeoXTokenizer:Vs,EsmTokenizer:pn,Wav2Vec2CTCTokenizer:gn,BlenderbotTokenizer:wn,BlenderbotSmallTokenizer:vs,SpeechT5Tokenizer:Mn,NougatTokenizer:Us,VitsTokenizer:bn,Qwen2Tokenizer:Fr,GemmaTokenizer:hn,Grok1Tokenizer:qr,CohereTokenizer:yn,MgpstrTokenizer:xs,PreTrainedTokenizer:at})},"./src/utils/audio.js":(e,r,t)=>{t.r(r),t.d(r,{RawAudio:()=>G,hamming:()=>c,hanning:()=>d,mel_filter_bank:()=>S,read_audio:()=>u,spectrogram:()=>C,window_function:()=>A});var s=t("./src/utils/hub.js"),o=t("./src/utils/maths.js"),n=t("./src/utils/core.js"),i=t("./src/env.js"),a=t("?7a2c"),l=t("./src/utils/tensor.js");async function u(j,ee){if(typeof AudioContext>"u")throw Error("Unable to load audio from path/URL since `AudioContext` is not available in your environment. Instead, audio data should be passed directly to the pipeline/processor. For more information and some example code, see https://huggingface.co/docs/transformers.js/guides/node-audio-processing.");const H=await(await(0,s.getFile)(j)).arrayBuffer(),Z=new AudioContext({sampleRate:ee});typeof ee>"u"&&console.warn(`No sampling rate provided, using default of ${Z.sampleRate}Hz.`);const X=await Z.decodeAudioData(H);let oe;if(X.numberOfChannels===2){const me=Math.sqrt(2),ae=X.getChannelData(0),V=X.getChannelData(1);oe=new Float32Array(ae.length);for(let F=0;F2595*Math.log10(1+j/700),kaldi:j=>1127*Math.log(1+j/700),slaney:(j,ee=1e3,H=15,Z=27/Math.log(6.4))=>j>=ee?H+Math.log(j/ee)*Z:3*j/200};function _(j,ee="htk"){const H=f[ee];if(!H)throw new Error('mel_scale should be one of "htk", "slaney" or "kaldi".');return typeof j=="number"?H(j):j.map(Z=>H(Z))}const T={htk:j=>700*(10**(j/2595)-1),kaldi:j=>700*(Math.exp(j/1127)-1),slaney:(j,ee=1e3,H=15,Z=Math.log(6.4)/27)=>j>=H?ee*Math.exp(Z*(j-H)):200*j/3};function $(j,ee="htk"){const H=T[ee];if(!H)throw new Error('mel_scale should be one of "htk", "slaney" or "kaldi".');return typeof j=="number"?H(j):j.map(Z=>H(Z))}function w(j,ee){const H=Float64Array.from({length:ee.length-1},(me,ae)=>ee[ae+1]-ee[ae]),Z=Array.from({length:j.length},()=>new Array(ee.length));for(let me=0;menew Array(j.length));for(let me=0;mej+Z*oe)}function S(j,ee,H,Z,X,oe=null,me="htk",ae=!1){if(oe!==null&&oe!=="slaney")throw new Error('norm must be one of null or "slaney"');if(j<2)throw new Error(`Require num_frequency_bins: ${j} >= 2`);if(H>Z)throw new Error(`Require min_frequency: ${H} <= max_frequency: ${Z}`);const V=_(H,me),F=_(Z,me),W=g(V,F,ee+2);let re=$(W,me),_e;if(ae){const ce=X/((j-1)*2);_e=_(Float64Array.from({length:j},($e,Ue)=>Ue*ce),me),re=W}else _e=g(0,Math.floor(X/2),j);const se=w(_e,re);if(oe!==null&&oe==="slaney")for(let ce=0;ceX)throw Error(`frame_length (${H}) may not be larger than fft_length (${X})`);if(xe!==H)throw new Error(`Length of the window (${xe}) must equal frame_length (${H})`);if(Z<=0)throw new Error("hop_length must be greater than zero");if(oe===null&&W!==null)throw new Error("You have provided `mel_filters` but `power` is `None`. Mel spectrogram computation is not yet supported for complex-valued spectrogram. Specify `power` to fix this issue.");if(me){if(ae!=="reflect")throw new Error(`pad_mode="${ae}" not implemented yet.`);const ye=Math.floor((X-1)/2)+1;j=E(j,ye,ye)}let be=Math.floor(1+Math.floor((j.length-H)/Z));we!==null&&bebe?R&&(Fe=q):Fe=Ae=q);const ze=new o.FFT(X),Ve=new Float64Array(X),O=new Float64Array(ze.outputBufferSize),Y=new Float32Array(Se*Fe);for(let ye=0;ye=1;--Ie)Ve[Ie]-=F*Ve[Ie-1];Ve[0]*=1-F}for(let Ie=0;IeMath.pow(ae,.85));break;default:throw new Error(`Unknown window type ${ee}.`)}if(H&&(me=me.subarray(0,j)),Z===null)return me;if(j>Z)throw new Error(`Length of the window (${j}) may not be larger than frame_length (${Z})`);return me}function B(j,ee){let H=44;const Z=new ArrayBuffer(H+j.length*4),X=new DataView(Z);K(X,0,"RIFF"),X.setUint32(4,36+j.length*4,!0),K(X,8,"WAVE"),K(X,12,"fmt "),X.setUint32(16,16,!0),X.setUint16(20,3,!0),X.setUint16(22,1,!0),X.setUint32(24,ee,!0),X.setUint32(28,ee*4,!0),X.setUint16(32,4,!0),X.setUint16(34,32,!0),K(X,36,"data"),X.setUint32(40,j.length*4,!0);for(let oe=0;oe{let oe=await X.arrayBuffer();a.writeFileSync(Z,Buffer.from(oe))};else throw new Error("Unable to save because filesystem is disabled in this environment.");await H(ee,this.toBlob())}}},"./src/utils/constants.js":(e,r,t)=>{t.r(r),t.d(r,{CHAT_TEMPLATE_NAME:()=>l,CONFIG_NAME:()=>o,FEATURE_EXTRACTOR_NAME:()=>n,GENERATION_CONFIG_NAME:()=>u,GITHUB_ISSUE_URL:()=>s,IMAGE_PROCESSOR_NAME:()=>i,PROCESSOR_NAME:()=>a});const s="https://github.com/huggingface/transformers.js/issues/new/choose",o="config.json",n="preprocessor_config.json",i=n,a="processor_config.json",l="chat_template.json",u="generation_config.json"},"./src/utils/core.js":(e,r,t)=>{t.r(r),t.d(r,{calculateDimensions:()=>u,calculateReflectOffset:()=>f,count:()=>w,dispatchCallback:()=>s,escapeRegExp:()=>n,isIntegralNumber:()=>a,isNullishDimension:()=>l,isTypedArray:()=>i,len:()=>$,mergeArrays:()=>d,pick:()=>T,pop:()=>p,product:()=>c,reverseDictionary:()=>o,saveBlob:()=>_});function s(g,S){g&&g(S)}function o(g){return Object.fromEntries(Object.entries(g).map(([S,E])=>[E,S]))}function n(g){return g.replace(/[.*+?^${}()|[\]\\]/g,"\\$&")}function i(g){var S,E,y;return((y=(E=(S=g==null?void 0:g.prototype)==null?void 0:S.__proto__)==null?void 0:E.constructor)==null?void 0:y.name)==="TypedArray"}function a(g){return Number.isInteger(g)||typeof g=="bigint"}function l(g){return g==null||g===-1}function u(g){const S=[];let E=g;for(;Array.isArray(E);)S.push(E.length),E=E[0];return S}function p(g,S,E=void 0){const y=g[S];if(y!==void 0)return delete g[S],y;if(E===void 0)throw Error(`Key ${S} does not exist in object.`);return E}function d(...g){return Array.prototype.concat.apply([],g)}function c(...g){return g.reduce((S,E)=>S.flatMap(y=>E.map(M=>[y,M])))}function f(g,S){return Math.abs((g+S)%(2*S)-S)}function _(g,S){const E=URL.createObjectURL(S),y=document.createElement("a");y.href=E,y.download=g,y.click(),y.remove(),URL.revokeObjectURL(E)}function T(g,S){return Object.assign({},...S.map(E=>{if(g[E]!==void 0)return{[E]:g[E]}}))}function $(g){let S=0;for(const E of g)++S;return S}function w(g,S){let E=0;for(const y of g)y===S&&++E;return E}},"./src/utils/data-structures.js":(e,r,t)=>{t.r(r),t.d(r,{CharTrie:()=>o,DictionarySplitter:()=>l,LRUCache:()=>u,PriorityQueue:()=>s,TokenLattice:()=>i});class s{constructor(d=(f,_)=>f>_,c=1/0){this._heap=[],this._comparator=d,this._maxSize=c}get size(){return this._heap.length}isEmpty(){return this.size===0}peek(){return this._heap[0]}push(...d){return this.extend(d)}extend(d){for(const c of d)if(this.size0&&this._swap(0,c),this._heap.pop(),this._siftDown(),d}replace(d){const c=this.peek();return this._heap[0]=d,this._siftDown(),c}_parent(d){return(d+1>>>1)-1}_left(d){return(d<<1)+1}_right(d){return d+1<<1}_greater(d,c){return this._comparator(this._heap[d],this._heap[c])}_swap(d,c){const f=this._heap[d];this._heap[d]=this._heap[c],this._heap[c]=f}_siftUp(){this._siftUpFrom(this.size-1)}_siftUpFrom(d){for(;d>0&&this._greater(d,this._parent(d));)this._swap(d,this._parent(d)),d=this._parent(d)}_siftDown(){let d=0;for(;this._left(d)[]),this.endNodes=Array.from({length:this.len+1},()=>[]);const _=new a(this.bosTokenId,0,0,0,0),T=new a(this.eosTokenId,1,this.len,0,0);this.nodes.push(_.clone()),this.nodes.push(T.clone()),this.beginNodes[this.len].push(T),this.endNodes[0].push(_)}insert(d,c,f,_){const T=this.nodes.length,$=new a(_,T,d,c,f);this.beginNodes[d].push($),this.endNodes[d+c].push($),this.nodes.push($)}viterbi(){const d=this.len;let c=0;for(;c<=d;){if(this.beginNodes[c].length==0)return[];for(let w of this.beginNodes[c]){w.prev=null;let g=0,S=null;for(let E of this.endNodes[c]){const y=E.backtraceScore+w.score;(S===null||y>g)&&(S=E.clone(),g=y)}if(S!==null)w.prev=S,w.backtraceScore=g;else return[]}++c}const f=[],T=this.beginNodes[d][0].prev;if(T===null)return[];let $=T.clone();for(;$.prev!==null;)f.push($.clone()),$=$.clone().prev.clone();return f.reverse(),f}piece(d){return this.chars.slice(d.pos,d.pos+d.length).join("")}tokens(){return this.viterbi().map(c=>this.piece(c))}tokenIds(){return this.viterbi().map(c=>c.tokenId)}}class a{constructor(d,c,f,_,T){this.tokenId=d,this.nodeId=c,this.pos=f,this.length=_,this.score=T,this.prev=null,this.backtraceScore=0}clone(){const d=new a(this.tokenId,this.nodeId,this.pos,this.length,this.score);return d.prev=this.prev,d.backtraceScore=this.backtraceScore,d}}class l{constructor(d){this.trie=this._buildTrie(d)}_buildTrie(d){var f;const c=Object.create(null);for(const _ of d){let T=c;for(let $=0;$<_.length;++$)T=T[f=_[$]]??(T[f]=Object.create(null));T.end=_}return c}split(d){const c=[],f=d.length;let _=0,T=0;for(;T_&&c.push(d.slice(_,T)),c.push(w),T+=w.length,_=T):++T}return _this.capacity&&this.cache.delete(this.cache.keys().next().value)}clear(){this.cache.clear()}}},"./src/utils/devices.js":(e,r,t)=>{t.r(r),t.d(r,{DEVICE_TYPES:()=>s});const s=Object.freeze({auto:"auto",gpu:"gpu",cpu:"cpu",wasm:"wasm",webgpu:"webgpu",cuda:"cuda",dml:"dml",webnn:"webnn","webnn-npu":"webnn-npu","webnn-gpu":"webnn-gpu","webnn-cpu":"webnn-cpu"})},"./src/utils/dtypes.js":(e,r,t)=>{t.r(r),t.d(r,{DATA_TYPES:()=>i,DEFAULT_DEVICE_DTYPE_MAPPING:()=>a,DEFAULT_DTYPE_SUFFIX_MAPPING:()=>l,isWebGpuFp16Supported:()=>n});var s=t("./src/env.js"),o=t("./src/utils/devices.js");const n=function(){let u;return async function(){if(u===void 0)if(!s.apis.IS_WEBGPU_AVAILABLE)u=!1;else try{u=(await navigator.gpu.requestAdapter()).features.has("shader-f16")}catch{u=!1}return u}}(),i=Object.freeze({auto:"auto",fp32:"fp32",fp16:"fp16",q8:"q8",int8:"int8",uint8:"uint8",q4:"q4",bnb4:"bnb4",q4f16:"q4f16"}),a=Object.freeze({[o.DEVICE_TYPES.wasm]:i.q8}),l=Object.freeze({[i.fp32]:"",[i.fp16]:"_fp16",[i.int8]:"_int8",[i.uint8]:"_uint8",[i.q8]:"_quantized",[i.q4]:"_q4",[i.q4f16]:"_q4f16",[i.bnb4]:"_bnb4"})},"./src/utils/generic.js":(e,r,t)=>{t.r(r),t.d(r,{Callable:()=>s});const s=class{constructor(){let o=function(...n){return o._call(...n)};return Object.setPrototypeOf(o,new.target.prototype)}_call(...o){throw Error("Must implement _call method in subclass")}}},"./src/utils/hub.js":(e,r,t)=>{t.r(r),t.d(r,{MAX_EXTERNAL_DATA_CHUNKS:()=>a,getFile:()=>f,getModelFile:()=>g,getModelJSON:()=>S});var s=t("?7a2c"),o=t("?a42a"),n=t("./src/env.js"),i=t("./src/utils/core.js");const a=100,l={txt:"text/plain",html:"text/html",css:"text/css",js:"text/javascript",json:"application/json",png:"image/png",jpg:"image/jpeg",jpeg:"image/jpeg",gif:"image/gif"};class u{constructor(v){if(this.filePath=v,this.headers=new Headers,this.exists=s.existsSync(v),this.exists){this.status=200,this.statusText="OK";let C=s.statSync(v);this.headers.set("content-length",C.size.toString()),this.updateContentType();const A=s.createReadStream(v);this.body=new ReadableStream({start(B){A.on("data",K=>B.enqueue(K)),A.on("end",()=>B.close()),A.on("error",K=>B.error(K))},cancel(){A.destroy()}})}else this.status=404,this.statusText="Not Found",this.body=null}updateContentType(){const v=this.filePath.toString().split(".").pop().toLowerCase();this.headers.set("content-type",l[v]??"application/octet-stream")}clone(){let v=new u(this.filePath);return v.exists=this.exists,v.status=this.status,v.statusText=this.statusText,v.headers=new Headers(this.headers),v}async arrayBuffer(){return(await s.promises.readFile(this.filePath)).buffer}async blob(){const v=await s.promises.readFile(this.filePath);return new Blob([v],{type:this.headers.get("content-type")})}async text(){return await s.promises.readFile(this.filePath,"utf8")}async json(){return JSON.parse(await this.text())}}function p(M,v=null,C=null){let A;try{A=new URL(M)}catch{return!1}return!(v&&!v.includes(A.protocol)||C&&!C.includes(A.hostname))}const d=/^(\b[\w\-.]+\b\/)?\b[\w\-.]{1,96}\b$/;function c(M){return!(!d.test(M)||M.includes("..")||M.includes("--")||M.endsWith(".git")||M.endsWith(".ipynb"))}async function f(M){var v;if(n.env.useFS&&!p(M,["http:","https:","blob:"]))return new u(M.toString());if(typeof process<"u"&&((v=process==null?void 0:process.release)==null?void 0:v.name)==="node"){const C=!!(Cs!=null&&Cs.TESTING_REMOTELY),A=n.env.version,B=new Headers;if(B.set("User-Agent",`transformers.js/${A}; is_ci/${C};`),p(M,["http:","https:"],["huggingface.co","hf.co"])){const G=(Cs==null?void 0:Cs.HF_TOKEN)??(Cs==null?void 0:Cs.HF_ACCESS_TOKEN);G&&B.set("Authorization",`Bearer ${G}`)}return fetch(M,{headers:B})}else return fetch(M)}const _={400:"Bad request error occurred while trying to load file",401:"Unauthorized access to file",403:"Forbidden access to file",404:"Could not locate file",408:"Request timeout error occurred while trying to load file",500:"Internal server error error occurred while trying to load file",502:"Bad gateway error occurred while trying to load file",503:"Service unavailable error occurred while trying to load file",504:"Gateway timeout error occurred while trying to load file"};function T(M,v,C){if(!C)return null;const A=_[M]??`Error (${M}) occurred while trying to load file`;throw Error(`${A}: "${v}".`)}class ${constructor(v){this.path=v}async match(v){let C=o.join(this.path,v),A=new u(C);if(A.exists)return A}async put(v,C,A=void 0){let B=o.join(this.path,v);try{const K=C.headers.get("Content-Length"),G=parseInt(K??"0");let j=0;await s.promises.mkdir(o.dirname(B),{recursive:!0});const ee=s.createWriteStream(B),H=C.body.getReader();for(;;){const{done:Z,value:X}=await H.read();if(Z)break;await new Promise((me,ae)=>{ee.write(X,V=>{if(V){ae(V);return}me()})}),j+=X.length;const oe=G?j/G*100:0;A==null||A({progress:oe,loaded:j,total:G})}ee.close()}catch(K){try{await s.promises.unlink(B)}catch{}throw K}}}async function w(M,...v){for(let C of v)try{let A=await M.match(C);if(A)return A}catch{continue}}async function g(M,v,C=!0,A={},B=!1){if(!n.env.allowLocalModels){if(A.local_files_only)throw Error("Invalid configuration detected: local models are disabled (`env.allowLocalModels=false`) but you have requested to only use local models (`local_files_only=true`).");if(!n.env.allowRemoteModels)throw Error("Invalid configuration detected: both local and remote models are disabled. Fix by setting `env.allowLocalModels` or `env.allowRemoteModels` to `true`.")}(0,i.dispatchCallback)(A.progress_callback,{status:"initiate",name:M,file:v});let K;if(!K&&n.env.useCustomCache){if(!n.env.customCache)throw Error("`env.useCustomCache=true`, but `env.customCache` is not defined.");if(!n.env.customCache.match||!n.env.customCache.put)throw new Error("`env.customCache` must be an object which implements the `match` and `put` functions of the Web Cache API. For more information, see https://developer.mozilla.org/en-US/docs/Web/API/Cache");K=n.env.customCache}if(!K&&n.env.useBrowserCache){if(typeof caches>"u")throw Error("Browser cache is not available in this environment.");try{K=await caches.open("transformers-cache")}catch(re){console.warn("An error occurred while opening the browser cache:",re)}}if(!K&&n.env.useFSCache){if(!n.apis.IS_FS_AVAILABLE)throw Error("File System Cache is not available in this environment.");K=new $(A.cache_dir??n.env.cacheDir)}const G=A.revision??"main",j=y(M,v),ee=c(M),H=ee?y(n.env.localModelPath,j):j,Z=y(n.env.remoteHost,n.env.remotePathTemplate.replaceAll("{model}",M).replaceAll("{revision}",encodeURIComponent(G)),v);let X;const oe=K instanceof $?G==="main"?j:y(M,G,v):Z;let me=!1,ae;K&&(ae=await w(K,H,oe));const V=ae!==void 0;if(ae===void 0){if(n.env.allowLocalModels)if(p(j,["http:","https:"])){if(A.local_files_only)throw new Error(`\`local_files_only=true\`, but attempted to load a remote file from: ${j}.`);if(!n.env.allowRemoteModels)throw new Error(`\`env.allowRemoteModels=false\`, but attempted to load a remote file from: ${j}.`)}else try{ae=await f(H),X=H}catch(_e){console.warn(`Unable to load from local path "${H}": "${_e}"`)}if(ae===void 0||ae.status===404){if(A.local_files_only||!n.env.allowRemoteModels){if(C)throw Error(`\`local_files_only=true\` or \`env.allowRemoteModels=false\` and file was not found locally at "${H}".`);return null}if(!ee)throw Error(`Local file missing at "${H}" and download aborted due to invalid model ID "${M}".`);if(ae=await f(Z),ae.status!==200)return T(ae.status,Z,C);X=oe}me=K&&typeof Response<"u"&&ae instanceof Response&&ae.status===200}(0,i.dispatchCallback)(A.progress_callback,{status:"download",name:M,file:v});let F;if(!(n.apis.IS_NODE_ENV&&B)){let re;A.progress_callback?V&&typeof navigator<"u"&&/firefox/i.test(navigator.userAgent)?(re=new Uint8Array(await ae.arrayBuffer()),(0,i.dispatchCallback)(A.progress_callback,{status:"progress",name:M,file:v,progress:100,loaded:re.length,total:re.length})):re=await E(ae,_e=>{(0,i.dispatchCallback)(A.progress_callback,{status:"progress",name:M,file:v,..._e})}):re=new Uint8Array(await ae.arrayBuffer()),F=re}if(me&&X&&await K.match(X)===void 0&&(F?await K.put(X,new Response(F,{headers:ae.headers})).catch(re=>{console.warn(`Unable to add response to browser cache: ${re}.`)}):await K.put(X,ae,A.progress_callback)),(0,i.dispatchCallback)(A.progress_callback,{status:"done",name:M,file:v}),F){if(!n.apis.IS_NODE_ENV&&B)throw new Error("Cannot return path in a browser environment.");return F}if(ae instanceof u)return ae.filePath;const W=await(K==null?void 0:K.match(X));if(W instanceof u)return W.filePath;if(W instanceof Response)return new Uint8Array(await W.arrayBuffer());if(typeof W=="string")return W;throw new Error("Unable to get model file path or buffer.")}async function S(M,v,C=!0,A={}){const B=await g(M,v,C,A,!1);if(B===null)return{};const G=new TextDecoder("utf-8").decode(B);return JSON.parse(G)}async function E(M,v){const C=M.headers.get("Content-Length");C===null&&console.warn("Unable to determine content-length from response headers. Will expand buffer when needed.");let A=parseInt(C??"0"),B=new Uint8Array(A),K=0;const G=M.body.getReader();async function j(){const{done:ee,value:H}=await G.read();if(ee)return;const Z=K+H.length;if(Z>A){A=Z;const oe=new Uint8Array(A);oe.set(B),B=oe}B.set(H,K),K=Z;const X=K/A*100;return v({progress:X,loaded:K,total:A}),j()}return await j(),B}function y(...M){return M=M.map((v,C)=>(C&&(v=v.replace(new RegExp("^/"),"")),C!==M.length-1&&(v=v.replace(new RegExp("/$"),"")),v)),M.join("/")}},"./src/utils/image.js":(e,r,t)=>{t.r(r),t.d(r,{RawImage:()=>_,load_image:()=>T});var s=t("./src/utils/core.js"),o=t("./src/utils/hub.js"),n=t("./src/env.js"),i=t("./src/utils/tensor.js"),a=t("?2b25");let l,u,p;const d=n.apis.IS_BROWSER_ENV||n.apis.IS_WEBWORKER_ENV;if(d)l=($,w)=>{if(!self.OffscreenCanvas)throw new Error("OffscreenCanvas not supported by this browser.");return new self.OffscreenCanvas($,w)},p=self.createImageBitmap,u=self.ImageData;else if(a)p=async $=>{const g=(await $.metadata()).channels,{data:S,info:E}=await $.rotate().raw().toBuffer({resolveWithObject:!0}),y=new _(new Uint8ClampedArray(S),E.width,E.height,E.channels);return g!==void 0&&g!==E.channels&&y.convert(g),y};else throw new Error("Unable to load image processing library.");const c={0:"nearest",1:"lanczos",2:"bilinear",3:"bicubic",4:"box",5:"hamming"},f=new Map([["png","image/png"],["jpg","image/jpeg"],["jpeg","image/jpeg"],["gif","image/gif"]]);class _{constructor(w,g,S,E){this.data=w,this.width=g,this.height=S,this.channels=E}get size(){return[this.width,this.height]}static async read(w){if(w instanceof _)return w;if(typeof w=="string"||w instanceof URL)return await this.fromURL(w);if(w instanceof Blob)return await this.fromBlob(w);if(typeof HTMLCanvasElement<"u"&&w instanceof HTMLCanvasElement||typeof OffscreenCanvas<"u"&&w instanceof OffscreenCanvas)return this.fromCanvas(w);throw new Error(`Unsupported input type: ${typeof w}`)}static fromCanvas(w){if(!d)throw new Error("fromCanvas() is only supported in browser environments.");const S=w.getContext("2d").getImageData(0,0,w.width,w.height).data;return new _(S,w.width,w.height,4)}static async fromURL(w){const g=await(0,o.getFile)(w);if(g.status!==200)throw new Error(`Unable to read image from "${w}" (${g.status} ${g.statusText})`);const S=await g.blob();return this.fromBlob(S)}static async fromBlob(w){if(d){const g=await p(w),S=l(g.width,g.height).getContext("2d");return S.drawImage(g,0,0),new this(S.getImageData(0,0,g.width,g.height).data,g.width,g.height,4)}else{const g=a(await w.arrayBuffer());return await p(g)}}static fromTensor(w,g="CHW"){if(w.dims.length!==3)throw new Error(`Tensor should have 3 dimensions, but has ${w.dims.length} dimensions.`);if(g==="CHW")w=w.transpose(1,2,0);else if(g!=="HWC")throw new Error(`Unsupported channel format: ${g}`);if(!(w.data instanceof Uint8ClampedArray||w.data instanceof Uint8Array))throw new Error(`Unsupported tensor type: ${w.type}`);switch(w.dims[2]){case 1:case 2:case 3:case 4:return new _(w.data,w.dims[1],w.dims[0],w.dims[2]);default:throw new Error(`Unsupported number of channels: ${w.dims[2]}`)}}grayscale(){if(this.channels===1)return this;const w=new Uint8ClampedArray(this.width*this.height*1);switch(this.channels){case 3:case 4:for(let g=0,S=0;g=0?C=S:B=-S,E>=0?A=E:K=-E,v.drawImage(M,C,A,w,g,B,K,w,g),new _(v.getImageData(0,0,w,g).data,w,g,4).convert(y)}else{let y=this.toSharp();if(S>=0&&E>=0)y=y.extract({left:Math.floor(S),top:Math.floor(E),width:w,height:g});else if(S<=0&&E<=0){const M=Math.floor(-E),v=Math.floor(-S);y=y.extend({top:M,left:v,right:w-this.width-v,bottom:g-this.height-M})}else{let M=[0,0],v=0;E<0?(M[0]=Math.floor(-E),M[1]=g-this.height-M[0]):v=Math.floor(E);let C=[0,0],A=0;S<0?(C[0]=Math.floor(-S),C[1]=w-this.width-C[0]):A=Math.floor(S),y=y.extend({top:M[0],bottom:M[1],left:C[0],right:C[1]}).extract({left:A,top:v,width:w,height:g})}return await p(y)}}async toBlob(w="image/png",g=1){if(!d)throw new Error("toBlob() is only supported in browser environments.");return await this.toCanvas().convertToBlob({type:w,quality:g})}toTensor(w="CHW"){let g=new i.Tensor("uint8",new Uint8Array(this.data),[this.height,this.width,this.channels]);if(w!=="HWC")if(w==="CHW")g=g.permute(2,0,1);else throw new Error(`Unsupported channel format: ${w}`);return g}toCanvas(){if(!d)throw new Error("toCanvas() is only supported in browser environments.");const w=this.clone().rgba(),g=l(w.width,w.height),S=new u(w.data,w.width,w.height);return g.getContext("2d").putImageData(S,0,0),g}split(){const{data:w,width:g,height:S,channels:E}=this,y=w.constructor,M=w.length/E,v=Array.from({length:E},()=>new y(M));for(let C=0;Cnew _(C,g,S,1))}_update(w,g,S,E=null){return this.data=w,this.width=g,this.height=S,E!==null&&(this.channels=E),this}clone(){return new _(this.data.slice(),this.width,this.height,this.channels)}convert(w){if(this.channels===w)return this;switch(w){case 1:this.grayscale();break;case 3:this.rgb();break;case 4:this.rgba();break;default:throw new Error(`Conversion failed due to unsupported number of channels: ${this.channels}`)}return this}async save(w){if(d){if(n.apis.IS_WEBWORKER_ENV)throw new Error("Unable to save an image from a Web Worker.");const g=w.split(".").pop().toLowerCase(),S=f.get(g)??"image/png",E=await this.toBlob(S);(0,s.saveBlob)(w,E)}else{if(n.apis.IS_FS_AVAILABLE)return await this.toSharp().toFile(w);throw new Error("Unable to save the image because filesystem is disabled in this environment.")}}toSharp(){if(d)throw new Error("toSharp() is only supported in server-side environments.");return a(this.data,{raw:{width:this.width,height:this.height,channels:this.channels}})}}const T=_.read.bind(_)},"./src/utils/maths.js":(e,r,t)=>{t.r(r),t.d(r,{FFT:()=>T,bankers_round:()=>g,cos_sim:()=>l,dot:()=>a,dynamic_time_warping:()=>S,interpolate_data:()=>s,log_softmax:()=>i,magnitude:()=>u,max:()=>d,medianFilter:()=>$,min:()=>p,permute_data:()=>o,round:()=>w,softmax:()=>n});function s(E,[y,M,v],[C,A],B="bilinear",K=!1){const G=A/v,j=C/M,ee=new E.constructor(C*A*y),H=M*v,Z=C*A;for(let X=0;X=0;--K)C[K]=G,v[K]=y[M[K]],G*=v[K];const A=M.map((K,G)=>C[M.indexOf(G)]),B=new E.constructor(E.length);for(let K=0;K=0;--j)G+=ee%y[j]*A[j],ee=Math.floor(ee/y[j]);B[G]=E[K]}return[B,v]}function n(E){const y=d(E)[0],M=E.map(A=>Math.exp(A-y)),v=M.reduce((A,B)=>A+B,0);return M.map(A=>A/v)}function i(E){const y=d(E)[0];let M=0;for(let A=0;AA-y-v)}function a(E,y){let M=0;for(let v=0;vy+M*M,0))}function p(E){if(E.length===0)throw Error("Array must not be empty");let y=E[0],M=0;for(let v=1;vy&&(y=E[v],M=v);return[y,M]}function c(E){return E>0&&(E&E-1)===0}class f{constructor(y){if(this.size=y|0,this.size<=1||!c(this.size))throw new Error("FFT size must be a power of two larger than 1");this._csize=y<<1,this.table=new Float64Array(this.size*2);for(let v=0;vv;v<<=1)++M;this._width=M%2===0?M-1:M,this._bitrev=new Int32Array(1<>>C&3)<>>1);for(let C=0;C>>1]=y[C];return v}toComplexArray(y,M){const v=M||this.createComplexArray();for(let C=0;C>>1],v[C+1]=0;return v}transform(y,M){if(y===M)throw new Error("Input and output buffers must be different");this._transform4(y,M,1)}realTransform(y,M){if(y===M)throw new Error("Input and output buffers must be different");this._realTransform4(y,M,1)}inverseTransform(y,M){if(y===M)throw new Error("Input and output buffers must be different");this._transform4(y,M,-1);for(let v=0;v>=2;B>=2;B>>=2){K=C/B<<1;const Z=K>>>2;for(G=0;G>>1,B>>>1)}else for(G=0,j=0;G>>1,B>>>1,v)}const H=this.table;for(B>>=2;B>=2;B>>=2){K=C/B<<1;const X=K>>>1,oe=X>>>1,me=oe>>>1;for(G=0;G>>1;for(let X=2;X>1;++ee){const H=(ee+1-y)**2/2,Z=Math.sqrt(G**2+j**2)**H,X=H*Math.atan2(j,G),oe=2*ee;A[oe]=Z*Math.cos(X),A[oe+1]=Z*Math.sin(X),B[oe]=A[oe],B[oe+1]=-A[oe+1]}this._slicedChirpBuffer=A.subarray(M,v),this._f=new f(C>>1),this._f.transform(this._chirpBuffer,B)}_transform(y,M,v){const C=this._buffer1,A=this._buffer2,B=this._outBuffer1,K=this._outBuffer2,G=this._chirpBuffer,j=this._slicedChirpBuffer,ee=this._a;if(v)for(let H=0;H>1,oe=M[X];C[H]=oe*j[H],C[Z]=oe*j[Z]}else for(let H=0;H=E.length&&(G=2*(E.length-1)-G),v[B++]=E[G]}v.sort(),M[A]=v[C]}return M}function w(E,y){const M=Math.pow(10,y);return Math.round(E*M)/M}function g(E){const y=Math.round(E);return Math.abs(E)%1===.5?y%2===0?y:y-1:y}function S(E){const y=E.length,M=E[0].length,v=[y+1,M+1],C=Array.from({length:v[0]},()=>Array(v[1]).fill(1/0));C[0][0]=0;const A=Array.from({length:v[0]},()=>Array(v[1]).fill(-1));for(let ee=1;ee0||K>0;)switch(G.push(B-1),j.push(K-1),A[B][K]){case 0:--B,--K;break;case 1:--B;break;case 2:--K;break;default:throw new Error(`Internal error in dynamic time warping. Unexpected trace[${B}, ${K}]. Please file a bug report.`)}return G.reverse(),j.reverse(),[G,j]}},"./src/utils/tensor.js":(e,r,t)=>{t.r(r),t.d(r,{DataTypeMap:()=>i,Tensor:()=>a,cat:()=>M,full:()=>j,full_like:()=>ee,interpolate:()=>p,interpolate_4d:()=>d,layer_norm:()=>g,matmul:()=>c,mean:()=>B,mean_pooling:()=>w,ones:()=>H,ones_like:()=>Z,permute:()=>u,quantize_embeddings:()=>ae,rand:()=>me,rfft:()=>f,slice:()=>$,stack:()=>v,std_mean:()=>A,topk:()=>_,zeros:()=>X,zeros_like:()=>oe});var s=t("./src/utils/maths.js"),o=t("./src/backends/onnx.js"),n=t("./src/ops/registry.js");const i=Object.freeze({float32:Float32Array,float16:typeof Float16Array<"u"?Float16Array:Uint16Array,float64:Float64Array,string:Array,int8:Int8Array,uint8:Uint8Array,int16:Int16Array,uint16:Uint16Array,int32:Int32Array,uint32:Uint32Array,int64:BigInt64Array,uint64:BigUint64Array,bool:Uint8Array,uint4:Uint8Array,int4:Int8Array});class a{constructor(...F){te(this,"ort_tensor");return(0,o.isONNXTensor)(F[0])?this.ort_tensor=F[0]:this.ort_tensor=new o.Tensor(F[0],F[1],F[2]),new Proxy(this,{get:(W,re)=>{if(typeof re=="string"){let _e=Number(re);if(Number.isInteger(_e))return W._getitem(_e)}return W[re]},set:(W,re,_e)=>W[re]=_e})}get dims(){return this.ort_tensor.dims}set dims(F){this.ort_tensor.dims=F}get type(){return this.ort_tensor.type}get data(){return this.ort_tensor.data}get size(){return this.ort_tensor.size}get location(){return this.ort_tensor.location}dispose(){this.ort_tensor.dispose()}*[Symbol.iterator](){const[F,...W]=this.dims;if(W.length>0){const re=W.reduce((_e,se)=>_e*se);for(let _e=0;_e0){const _e=re.reduce((se,ce)=>se*ce);return this._subarray(F,_e,re)}else return new a(this.type,[this.data[F]],re)}indexOf(F){const W=this.data;for(let re=0;repe)throw new Error(`Invalid slice: ${q}`);const xe=[Math.max(R,0),Math.min(pe,this.dims[we])];re.push(xe),W.push(xe[1]-xe[0])}else throw new Error(`Invalid slice: ${q}`)}const _e=re.map(([we,q])=>q-we),se=_e.reduce((we,q)=>we*q),ce=this.data,$e=new ce.constructor(se),Ue=this.stride();for(let we=0;we=0;--R){const xe=_e[R];q+=(pe%xe+re[R][0])*Ue[R],pe=Math.floor(pe/xe)}$e[we]=ce[q]}return new a(this.type,$e,W)}permute(...F){return u(this,F)}transpose(...F){return this.permute(...F)}sum(F=null,W=!1){return this.norm(1,F,W)}norm(F="fro",W=null,re=!1){if(F==="fro")F=2;else if(typeof F=="string")throw Error(`Unsupported norm: ${F}`);const _e=this.data,se=(we,q)=>we+q**F;if(W===null){const we=_e.reduce(se,0)**(1/F);return new a(this.type,[we],[])}const[ce,$e,Ue]=C(se,this,W,re);if(F!==1)for(let we=0;we<$e.length;++we)$e[we]=$e[we]**(1/F);return new a(ce,$e,Ue)}normalize_(F=2,W=1){W=y(W,this.dims.length);const re=this.norm(F,W,!0),_e=this.data,se=re.data;for(let ce=0;ce<_e.length;++ce){let $e=0;for(let Ue=this.dims.length-1,we=ce,q=1;Ue>=0;--Ue){const R=this.dims[Ue];if(Ue!==W){const pe=we%R;$e+=pe*q,q*=this.dims[Ue]}we=Math.floor(we/R)}_e[ce]/=se[$e]}return this}normalize(F=2,W=1){return this.clone().normalize_(F,W)}stride(){return K(this.dims)}squeeze(F=null){return new a(this.type,this.data,S(this.dims,F))}squeeze_(F=null){return this.dims=S(this.dims,F),this}unsqueeze(F=null){return new a(this.type,this.data,E(this.dims,F))}unsqueeze_(F=null){return this.dims=E(this.dims,F),this}flatten_(F=0,W=-1){W=(W+this.dims.length)%this.dims.length;let re=this.dims.slice(0,F),_e=this.dims.slice(F,W+1),se=this.dims.slice(W+1);return this.dims=[...re,_e.reduce((ce,$e)=>ce*$e,1),...se],this}flatten(F=0,W=-1){return this.clone().flatten_(F,W)}view(...F){let W=-1;for(let _e=0;_e$e!==W?se*ce:se,1);F[W]=re.length/_e}return new a(this.type,re,F)}neg_(){const F=this.data;for(let W=0;WF?1:0;return new a("bool",W,this.dims)}lt(F){const W=new Uint8Array(this.data.length),re=this.data;for(let _e=0;_eMath.min(ce,$e),this,F,W,1/0);return new a(re,_e,se)}max(F=null,W=!1){if(F===null){const ce=(0,s.max)(this.data)[0];return new a(this.type,[ce],[])}const[re,_e,se]=C((ce,$e)=>Math.max(ce,$e),this,F,W,-1/0);return new a(re,_e,se)}argmin(F=null,W=!1){if(F!==null)throw new Error("`dim !== null` not yet implemented.");const re=(0,s.min)(this.data)[1];return new a("int64",[BigInt(re)],[])}argmax(F=null,W=!1){if(F!==null)throw new Error("`dim !== null` not yet implemented.");const re=(0,s.max)(this.data)[1];return new a("int64",[BigInt(re)],[])}to(F){if(this.type===F)return this;if(!i.hasOwnProperty(F))throw new Error(`Unsupported type: ${F}`);let W;const re=["int64","uint64"].includes(this.type),_e=["int64","uint64"].includes(F);return re&&!_e?W=Number:!re&&_e&&(W=BigInt),new a(F,i[F].from(this.data,W),this.dims)}}function l(V,F){const W=V.length,re=F.reduce((se,ce)=>se*ce);if(W!==re)throw Error(`cannot reshape array of size ${W} into shape (${F})`);let _e=V;for(let se=F.length-1;se>=0;se--)_e=_e.reduce((ce,$e)=>{let Ue=ce[ce.length-1];return Ue.lengthnew a("int64",V,[V.length]);async function $(V,F,W,re,_e){return await(await n.TensorOpRegistry.slice)({x:V,s:T(F),e:T(W),a:T(re),t:T(_e??new Array(re.length).fill(1))})}function w(V,F){const W=V.data,re=F.data,_e=[V.dims[0],V.dims[2]],se=new W.constructor(_e[0]*_e[1]),[ce,$e,Ue]=V.dims;let we=0;for(let q=0;qW!==1):typeof F=="number"?V[F]===1&&V.splice(F,1):Array.isArray(F)&&(V=V.filter((W,re)=>W!==1||!F.includes(re))),V}function E(V,F){return F=y(F,V.length+1),V=V.slice(),V.splice(F,0,1),V}function y(V,F,W=null,re=!0){if(V<-F||V>=F){if(re)throw new Error(`IndexError: index ${V} is out of bounds for dimension${W===null?"":" "+W} with size ${F}`);return V<-F?0:F}return V<0&&(V=(V%F+F)%F),V}function M(V,F=0){F=y(F,V[0].dims.length);const W=V[0].dims.slice();W[F]=V.reduce((ce,$e)=>ce+$e.dims[F],0);const re=W.reduce((ce,$e)=>ce*$e,1),_e=new V[0].data.constructor(re),se=V[0].type;if(F===0){let ce=0;for(const $e of V){const Ue=$e.data;_e.set(Ue,ce),ce+=Ue.length}}else{let ce=0;for(let $e=0;$e=0;--pe){const Se=we[pe];let Ae=xe%Se;pe===F&&(Ae+=ce),R+=Ae*be,be*=W[pe],xe=Math.floor(xe/Se)}_e[R]=Ue[q]}ce+=we[F]}}return new a(se,_e,W)}function v(V,F=0){return M(V.map(W=>W.unsqueeze(F)),F)}function C(V,F,W=null,re=!1,_e=null){const se=F.data,ce=F.dims;W=y(W,ce.length);const $e=ce.slice();$e[W]=1;const Ue=new se.constructor(se.length/ce[W]);_e!==null&&Ue.fill(_e);for(let we=0;we=0;--R){const be=ce[R];if(R!==W){const Se=pe%be;q+=Se*xe,xe*=$e[R]}pe=Math.floor(pe/be)}Ue[q]=V(Ue[q],se[we],we,q)}return re||$e.splice(W,1),[F.type,Ue,$e]}function A(V,F=null,W=1,re=!1){const _e=V.data,se=V.dims;if(F===null){const xe=_e.reduce((Fe,ze)=>Fe+ze,0)/_e.length,be=Math.sqrt(_e.reduce((Fe,ze)=>Fe+(ze-xe)**2,0)/(_e.length-W)),Se=new a(V.type,[xe],[]);return[new a(V.type,[be],[]),Se]}F=y(F,se.length);const ce=B(V,F,re),$e=ce.data,[Ue,we,q]=C((pe,xe,be,Se)=>pe+(xe-$e[Se])**2,V,F,re);for(let pe=0;pewe+q,0);return new a(V.type,[Ue/_e.length],[])}F=y(F,re.length);const[se,ce,$e]=C((Ue,we)=>Ue+we,V,F,W);if(re[F]!==1)for(let Ue=0;Ue=0;--W)F[W]=re,re*=V[W];return F}function G(V,F,W,re){const _e=V.reduce((se,ce)=>se*ce,1);return new a(W,new re(_e).fill(F),V)}function j(V,F){let W,re;if(typeof F=="number")W="float32",re=Float32Array;else if(typeof F=="bigint")W="int64",re=BigInt64Array;else if(typeof F=="boolean")W="bool",re=Uint8Array;else throw new Error(`Unsupported data type: ${typeof F}`);return G(V,F,W,re)}function ee(V,F){return j(V.dims,F)}function H(V){return G(V,1n,"int64",BigInt64Array)}function Z(V){return H(V.dims)}function X(V){return G(V,0n,"int64",BigInt64Array)}function oe(V){return X(V.dims)}function me(V){const F=V.reduce((W,re)=>W*re,1);return new a("float32",Float32Array.from({length:F},()=>Math.random()),V)}function ae(V,F){if(V.dims.length!==2)throw new Error("The tensor must have 2 dimensions");if(V.dims.at(-1)%8!==0)throw new Error("The last dimension of the tensor must be a multiple of 8");if(!["binary","ubinary"].includes(F))throw new Error("The precision must be either 'binary' or 'ubinary'");const W=F==="binary",re=W?"int8":"uint8",_e=W?Int8Array:Uint8Array,se=V.data,ce=new _e(se.length/8);for(let $e=0;$e0?1:0,we=Math.floor($e/8),q=$e%8;ce[we]|=Ue<<7-q,W&&q===0&&(ce[we]-=128)}return new a(re,ce,[V.dims[0],V.dims[1]/8])}},"./src/utils/video.js":(e,r,t)=>{t.r(r),t.d(r,{RawVideo:()=>i,RawVideoFrame:()=>n,load_video:()=>a});var s=t("./src/utils/image.js"),o=t("./src/env.js");class n{constructor(u,p){this.image=u,this.timestamp=p}}class i{constructor(u,p){u.length>0&&u[0]instanceof s.RawImage&&(u=u.map((d,c)=>new n(d,(c+1)/(u.length+1)*p))),this.frames=u,this.duration=p}get width(){return this.frames[0].image.width}get height(){return this.frames[0].image.height}get fps(){return this.frames.length/this.duration}}async function a(l,{num_frames:u=null,fps:p=null}={}){if(!o.apis.IS_BROWSER_ENV)throw new Error("`load_video` is currently only supported in browser environments.");if(u==null&&p==null)throw new Error("Either num_frames or fps must be provided.");const d=[],c=document.createElement("video");if(c.crossOrigin="anonymous",c.muted=!0,typeof l=="string")c.src=l;else if(l instanceof Blob)c.src=URL.createObjectURL(l);else if(l instanceof HTMLVideoElement)c.src=l.src;else throw new Error("Invalid URL or video element provided.");if(await new Promise(S=>c.onloadedmetadata=S),c.seekable.start(0)===c.seekable.end(0)){const E=await(await fetch(c.src)).blob();c.src=URL.createObjectURL(E),await new Promise(y=>c.onloadedmetadata=y)}const f=c.duration;let _,T;u!=null?(_=u,T=u===1?0:f/(u-1)):(T=1/p,_=Math.floor(f/T));let $=[];for(let S=0;S<_;++S)$.push(u===1?f/2:S*T);const w=document.createElement("canvas");w.width=c.videoWidth,w.height=c.videoHeight;const g=w.getContext("2d",{willReadFrequently:!0});for(const S of $){c.currentTime=S,await new Promise(v=>{c.onseeked=v}),g.drawImage(c,0,0,w.width,w.height);const E=g.getImageData(0,0,w.width,w.height),y=new s.RawImage(E.data,w.width,w.height,4),M=new n(y,S);d.push(M)}return c.remove(),new i(d,f)}}},Ng={};function $t(e){var r=Ng[e];if(r!==void 0)return r.exports;var t=Ng[e]={exports:{}};return bx[e](t,t.exports,$t),t.exports}(()=>{var e=Object.getPrototypeOf?t=>Object.getPrototypeOf(t):t=>t.__proto__,r;$t.t=function(t,s){if(s&1&&(t=this(t)),s&8||typeof t=="object"&&t&&(s&4&&t.__esModule||s&16&&typeof t.then=="function"))return t;var o=Object.create(null);$t.r(o);var n={};r=r||[null,e({}),e([]),e(e)];for(var i=s&2&&t;typeof i=="object"&&!~r.indexOf(i);i=e(i))Object.getOwnPropertyNames(i).forEach(a=>n[a]=()=>t[a]);return n.default=()=>t,$t.d(o,n),o}})(),$t.d=(e,r)=>{for(var t in r)$t.o(r,t)&&!$t.o(e,t)&&Object.defineProperty(e,t,{enumerable:!0,get:r[t]})},$t.o=(e,r)=>Object.prototype.hasOwnProperty.call(e,r),$t.r=e=>{typeof Symbol<"u"&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})};var m={};(()=>{/*!*****************************!*\ !*** ./src/transformers.js ***! \*****************************/$t.r(m),$t.d(m,{ASTFeatureExtractor:()=>d.ASTFeatureExtractor,ASTForAudioClassification:()=>t.ASTForAudioClassification,ASTModel:()=>t.ASTModel,ASTPreTrainedModel:()=>t.ASTPreTrainedModel,AlbertForMaskedLM:()=>t.AlbertForMaskedLM,AlbertForQuestionAnswering:()=>t.AlbertForQuestionAnswering,AlbertForSequenceClassification:()=>t.AlbertForSequenceClassification,AlbertModel:()=>t.AlbertModel,AlbertPreTrainedModel:()=>t.AlbertPreTrainedModel,AlbertTokenizer:()=>s.AlbertTokenizer,AudioClassificationPipeline:()=>r.AudioClassificationPipeline,AutoConfig:()=>o.AutoConfig,AutoFeatureExtractor:()=>c.AutoFeatureExtractor,AutoImageProcessor:()=>T.AutoImageProcessor,AutoModel:()=>t.AutoModel,AutoModelForAudioClassification:()=>t.AutoModelForAudioClassification,AutoModelForAudioFrameClassification:()=>t.AutoModelForAudioFrameClassification,AutoModelForAudioTextToText:()=>t.AutoModelForAudioTextToText,AutoModelForCTC:()=>t.AutoModelForCTC,AutoModelForCausalLM:()=>t.AutoModelForCausalLM,AutoModelForDepthEstimation:()=>t.AutoModelForDepthEstimation,AutoModelForDocumentQuestionAnswering:()=>t.AutoModelForDocumentQuestionAnswering,AutoModelForImageClassification:()=>t.AutoModelForImageClassification,AutoModelForImageFeatureExtraction:()=>t.AutoModelForImageFeatureExtraction,AutoModelForImageMatting:()=>t.AutoModelForImageMatting,AutoModelForImageSegmentation:()=>t.AutoModelForImageSegmentation,AutoModelForImageTextToText:()=>t.AutoModelForImageTextToText,AutoModelForImageToImage:()=>t.AutoModelForImageToImage,AutoModelForMaskGeneration:()=>t.AutoModelForMaskGeneration,AutoModelForMaskedLM:()=>t.AutoModelForMaskedLM,AutoModelForNormalEstimation:()=>t.AutoModelForNormalEstimation,AutoModelForObjectDetection:()=>t.AutoModelForObjectDetection,AutoModelForPoseEstimation:()=>t.AutoModelForPoseEstimation,AutoModelForQuestionAnswering:()=>t.AutoModelForQuestionAnswering,AutoModelForSemanticSegmentation:()=>t.AutoModelForSemanticSegmentation,AutoModelForSeq2SeqLM:()=>t.AutoModelForSeq2SeqLM,AutoModelForSequenceClassification:()=>t.AutoModelForSequenceClassification,AutoModelForSpeechSeq2Seq:()=>t.AutoModelForSpeechSeq2Seq,AutoModelForTextToSpectrogram:()=>t.AutoModelForTextToSpectrogram,AutoModelForTextToWaveform:()=>t.AutoModelForTextToWaveform,AutoModelForTokenClassification:()=>t.AutoModelForTokenClassification,AutoModelForUniversalSegmentation:()=>t.AutoModelForUniversalSegmentation,AutoModelForVision2Seq:()=>t.AutoModelForVision2Seq,AutoModelForXVector:()=>t.AutoModelForXVector,AutoModelForZeroShotObjectDetection:()=>t.AutoModelForZeroShotObjectDetection,AutoProcessor:()=>g.AutoProcessor,AutoTokenizer:()=>s.AutoTokenizer,AutomaticSpeechRecognitionPipeline:()=>r.AutomaticSpeechRecognitionPipeline,BackgroundRemovalPipeline:()=>r.BackgroundRemovalPipeline,BartForConditionalGeneration:()=>t.BartForConditionalGeneration,BartForSequenceClassification:()=>t.BartForSequenceClassification,BartModel:()=>t.BartModel,BartPretrainedModel:()=>t.BartPretrainedModel,BartTokenizer:()=>s.BartTokenizer,BaseModelOutput:()=>t.BaseModelOutput,BaseStreamer:()=>S.BaseStreamer,BeitFeatureExtractor:()=>_.BeitFeatureExtractor,BeitForImageClassification:()=>t.BeitForImageClassification,BeitModel:()=>t.BeitModel,BeitPreTrainedModel:()=>t.BeitPreTrainedModel,BertForMaskedLM:()=>t.BertForMaskedLM,BertForQuestionAnswering:()=>t.BertForQuestionAnswering,BertForSequenceClassification:()=>t.BertForSequenceClassification,BertForTokenClassification:()=>t.BertForTokenClassification,BertModel:()=>t.BertModel,BertPreTrainedModel:()=>t.BertPreTrainedModel,BertTokenizer:()=>s.BertTokenizer,BitImageProcessor:()=>_.BitImageProcessor,BlenderbotForConditionalGeneration:()=>t.BlenderbotForConditionalGeneration,BlenderbotModel:()=>t.BlenderbotModel,BlenderbotPreTrainedModel:()=>t.BlenderbotPreTrainedModel,BlenderbotSmallForConditionalGeneration:()=>t.BlenderbotSmallForConditionalGeneration,BlenderbotSmallModel:()=>t.BlenderbotSmallModel,BlenderbotSmallPreTrainedModel:()=>t.BlenderbotSmallPreTrainedModel,BlenderbotSmallTokenizer:()=>s.BlenderbotSmallTokenizer,BlenderbotTokenizer:()=>s.BlenderbotTokenizer,BloomForCausalLM:()=>t.BloomForCausalLM,BloomModel:()=>t.BloomModel,BloomPreTrainedModel:()=>t.BloomPreTrainedModel,BloomTokenizer:()=>s.BloomTokenizer,CLIPFeatureExtractor:()=>_.CLIPFeatureExtractor,CLIPImageProcessor:()=>_.CLIPImageProcessor,CLIPModel:()=>t.CLIPModel,CLIPPreTrainedModel:()=>t.CLIPPreTrainedModel,CLIPSegForImageSegmentation:()=>t.CLIPSegForImageSegmentation,CLIPSegModel:()=>t.CLIPSegModel,CLIPSegPreTrainedModel:()=>t.CLIPSegPreTrainedModel,CLIPTextModel:()=>t.CLIPTextModel,CLIPTextModelWithProjection:()=>t.CLIPTextModelWithProjection,CLIPTokenizer:()=>s.CLIPTokenizer,CLIPVisionModel:()=>t.CLIPVisionModel,CLIPVisionModelWithProjection:()=>t.CLIPVisionModelWithProjection,CamembertForMaskedLM:()=>t.CamembertForMaskedLM,CamembertForQuestionAnswering:()=>t.CamembertForQuestionAnswering,CamembertForSequenceClassification:()=>t.CamembertForSequenceClassification,CamembertForTokenClassification:()=>t.CamembertForTokenClassification,CamembertModel:()=>t.CamembertModel,CamembertPreTrainedModel:()=>t.CamembertPreTrainedModel,CamembertTokenizer:()=>s.CamembertTokenizer,CausalLMOutput:()=>t.CausalLMOutput,CausalLMOutputWithPast:()=>t.CausalLMOutputWithPast,ChineseCLIPFeatureExtractor:()=>_.ChineseCLIPFeatureExtractor,ChineseCLIPModel:()=>t.ChineseCLIPModel,ChineseCLIPPreTrainedModel:()=>t.ChineseCLIPPreTrainedModel,ClapAudioModelWithProjection:()=>t.ClapAudioModelWithProjection,ClapFeatureExtractor:()=>d.ClapFeatureExtractor,ClapModel:()=>t.ClapModel,ClapPreTrainedModel:()=>t.ClapPreTrainedModel,ClapTextModelWithProjection:()=>t.ClapTextModelWithProjection,ClassifierFreeGuidanceLogitsProcessor:()=>y.ClassifierFreeGuidanceLogitsProcessor,CodeGenForCausalLM:()=>t.CodeGenForCausalLM,CodeGenModel:()=>t.CodeGenModel,CodeGenPreTrainedModel:()=>t.CodeGenPreTrainedModel,CodeGenTokenizer:()=>s.CodeGenTokenizer,CodeLlamaTokenizer:()=>s.CodeLlamaTokenizer,CohereForCausalLM:()=>t.CohereForCausalLM,CohereModel:()=>t.CohereModel,CoherePreTrainedModel:()=>t.CoherePreTrainedModel,CohereTokenizer:()=>s.CohereTokenizer,ConvBertForMaskedLM:()=>t.ConvBertForMaskedLM,ConvBertForQuestionAnswering:()=>t.ConvBertForQuestionAnswering,ConvBertForSequenceClassification:()=>t.ConvBertForSequenceClassification,ConvBertForTokenClassification:()=>t.ConvBertForTokenClassification,ConvBertModel:()=>t.ConvBertModel,ConvBertPreTrainedModel:()=>t.ConvBertPreTrainedModel,ConvBertTokenizer:()=>s.ConvBertTokenizer,ConvNextFeatureExtractor:()=>_.ConvNextFeatureExtractor,ConvNextForImageClassification:()=>t.ConvNextForImageClassification,ConvNextImageProcessor:()=>_.ConvNextImageProcessor,ConvNextModel:()=>t.ConvNextModel,ConvNextPreTrainedModel:()=>t.ConvNextPreTrainedModel,ConvNextV2ForImageClassification:()=>t.ConvNextV2ForImageClassification,ConvNextV2Model:()=>t.ConvNextV2Model,ConvNextV2PreTrainedModel:()=>t.ConvNextV2PreTrainedModel,DPTFeatureExtractor:()=>_.DPTFeatureExtractor,DPTForDepthEstimation:()=>t.DPTForDepthEstimation,DPTImageProcessor:()=>_.DPTImageProcessor,DPTModel:()=>t.DPTModel,DPTPreTrainedModel:()=>t.DPTPreTrainedModel,DacDecoderModel:()=>t.DacDecoderModel,DacDecoderOutput:()=>t.DacDecoderOutput,DacEncoderModel:()=>t.DacEncoderModel,DacEncoderOutput:()=>t.DacEncoderOutput,DacFeatureExtractor:()=>d.DacFeatureExtractor,DacModel:()=>t.DacModel,DacPreTrainedModel:()=>t.DacPreTrainedModel,DataTypeMap:()=>l.DataTypeMap,DebertaForMaskedLM:()=>t.DebertaForMaskedLM,DebertaForQuestionAnswering:()=>t.DebertaForQuestionAnswering,DebertaForSequenceClassification:()=>t.DebertaForSequenceClassification,DebertaForTokenClassification:()=>t.DebertaForTokenClassification,DebertaModel:()=>t.DebertaModel,DebertaPreTrainedModel:()=>t.DebertaPreTrainedModel,DebertaTokenizer:()=>s.DebertaTokenizer,DebertaV2ForMaskedLM:()=>t.DebertaV2ForMaskedLM,DebertaV2ForQuestionAnswering:()=>t.DebertaV2ForQuestionAnswering,DebertaV2ForSequenceClassification:()=>t.DebertaV2ForSequenceClassification,DebertaV2ForTokenClassification:()=>t.DebertaV2ForTokenClassification,DebertaV2Model:()=>t.DebertaV2Model,DebertaV2PreTrainedModel:()=>t.DebertaV2PreTrainedModel,DebertaV2Tokenizer:()=>s.DebertaV2Tokenizer,DecisionTransformerModel:()=>t.DecisionTransformerModel,DecisionTransformerPreTrainedModel:()=>t.DecisionTransformerPreTrainedModel,DeiTFeatureExtractor:()=>_.DeiTFeatureExtractor,DeiTForImageClassification:()=>t.DeiTForImageClassification,DeiTImageProcessor:()=>_.DeiTImageProcessor,DeiTModel:()=>t.DeiTModel,DeiTPreTrainedModel:()=>t.DeiTPreTrainedModel,DepthAnythingForDepthEstimation:()=>t.DepthAnythingForDepthEstimation,DepthAnythingPreTrainedModel:()=>t.DepthAnythingPreTrainedModel,DepthEstimationPipeline:()=>r.DepthEstimationPipeline,DepthProForDepthEstimation:()=>t.DepthProForDepthEstimation,DepthProPreTrainedModel:()=>t.DepthProPreTrainedModel,DetrFeatureExtractor:()=>_.DetrFeatureExtractor,DetrForObjectDetection:()=>t.DetrForObjectDetection,DetrForSegmentation:()=>t.DetrForSegmentation,DetrImageProcessor:()=>_.DetrImageProcessor,DetrModel:()=>t.DetrModel,DetrObjectDetectionOutput:()=>t.DetrObjectDetectionOutput,DetrPreTrainedModel:()=>t.DetrPreTrainedModel,DetrSegmentationOutput:()=>t.DetrSegmentationOutput,Dinov2ForImageClassification:()=>t.Dinov2ForImageClassification,Dinov2Model:()=>t.Dinov2Model,Dinov2PreTrainedModel:()=>t.Dinov2PreTrainedModel,Dinov2WithRegistersForImageClassification:()=>t.Dinov2WithRegistersForImageClassification,Dinov2WithRegistersModel:()=>t.Dinov2WithRegistersModel,Dinov2WithRegistersPreTrainedModel:()=>t.Dinov2WithRegistersPreTrainedModel,DistilBertForMaskedLM:()=>t.DistilBertForMaskedLM,DistilBertForQuestionAnswering:()=>t.DistilBertForQuestionAnswering,DistilBertForSequenceClassification:()=>t.DistilBertForSequenceClassification,DistilBertForTokenClassification:()=>t.DistilBertForTokenClassification,DistilBertModel:()=>t.DistilBertModel,DistilBertPreTrainedModel:()=>t.DistilBertPreTrainedModel,DistilBertTokenizer:()=>s.DistilBertTokenizer,DocumentQuestionAnsweringPipeline:()=>r.DocumentQuestionAnsweringPipeline,DonutFeatureExtractor:()=>_.DonutFeatureExtractor,DonutImageProcessor:()=>_.DonutImageProcessor,DonutSwinModel:()=>t.DonutSwinModel,DonutSwinPreTrainedModel:()=>t.DonutSwinPreTrainedModel,EfficientNetForImageClassification:()=>t.EfficientNetForImageClassification,EfficientNetImageProcessor:()=>_.EfficientNetImageProcessor,EfficientNetModel:()=>t.EfficientNetModel,EfficientNetPreTrainedModel:()=>t.EfficientNetPreTrainedModel,ElectraForMaskedLM:()=>t.ElectraForMaskedLM,ElectraForQuestionAnswering:()=>t.ElectraForQuestionAnswering,ElectraForSequenceClassification:()=>t.ElectraForSequenceClassification,ElectraForTokenClassification:()=>t.ElectraForTokenClassification,ElectraModel:()=>t.ElectraModel,ElectraPreTrainedModel:()=>t.ElectraPreTrainedModel,ElectraTokenizer:()=>s.ElectraTokenizer,EncodecFeatureExtractor:()=>d.EncodecFeatureExtractor,EosTokenCriteria:()=>E.EosTokenCriteria,EsmForMaskedLM:()=>t.EsmForMaskedLM,EsmForSequenceClassification:()=>t.EsmForSequenceClassification,EsmForTokenClassification:()=>t.EsmForTokenClassification,EsmModel:()=>t.EsmModel,EsmPreTrainedModel:()=>t.EsmPreTrainedModel,EsmTokenizer:()=>s.EsmTokenizer,ExaoneForCausalLM:()=>t.ExaoneForCausalLM,ExaoneModel:()=>t.ExaoneModel,ExaonePreTrainedModel:()=>t.ExaonePreTrainedModel,FFT:()=>u.FFT,FalconForCausalLM:()=>t.FalconForCausalLM,FalconModel:()=>t.FalconModel,FalconPreTrainedModel:()=>t.FalconPreTrainedModel,FalconTokenizer:()=>s.FalconTokenizer,FastViTForImageClassification:()=>t.FastViTForImageClassification,FastViTModel:()=>t.FastViTModel,FastViTPreTrainedModel:()=>t.FastViTPreTrainedModel,FeatureExtractionPipeline:()=>r.FeatureExtractionPipeline,FeatureExtractor:()=>p.FeatureExtractor,FillMaskPipeline:()=>r.FillMaskPipeline,Florence2ForConditionalGeneration:()=>t.Florence2ForConditionalGeneration,Florence2PreTrainedModel:()=>t.Florence2PreTrainedModel,Florence2Processor:()=>w.Florence2Processor,ForcedBOSTokenLogitsProcessor:()=>y.ForcedBOSTokenLogitsProcessor,ForcedEOSTokenLogitsProcessor:()=>y.ForcedEOSTokenLogitsProcessor,GLPNFeatureExtractor:()=>_.GLPNFeatureExtractor,GLPNForDepthEstimation:()=>t.GLPNForDepthEstimation,GLPNModel:()=>t.GLPNModel,GLPNPreTrainedModel:()=>t.GLPNPreTrainedModel,GPT2LMHeadModel:()=>t.GPT2LMHeadModel,GPT2Model:()=>t.GPT2Model,GPT2PreTrainedModel:()=>t.GPT2PreTrainedModel,GPT2Tokenizer:()=>s.GPT2Tokenizer,GPTBigCodeForCausalLM:()=>t.GPTBigCodeForCausalLM,GPTBigCodeModel:()=>t.GPTBigCodeModel,GPTBigCodePreTrainedModel:()=>t.GPTBigCodePreTrainedModel,GPTJForCausalLM:()=>t.GPTJForCausalLM,GPTJModel:()=>t.GPTJModel,GPTJPreTrainedModel:()=>t.GPTJPreTrainedModel,GPTNeoForCausalLM:()=>t.GPTNeoForCausalLM,GPTNeoModel:()=>t.GPTNeoModel,GPTNeoPreTrainedModel:()=>t.GPTNeoPreTrainedModel,GPTNeoXForCausalLM:()=>t.GPTNeoXForCausalLM,GPTNeoXModel:()=>t.GPTNeoXModel,GPTNeoXPreTrainedModel:()=>t.GPTNeoXPreTrainedModel,GPTNeoXTokenizer:()=>s.GPTNeoXTokenizer,Gemma2ForCausalLM:()=>t.Gemma2ForCausalLM,Gemma2Model:()=>t.Gemma2Model,Gemma2PreTrainedModel:()=>t.Gemma2PreTrainedModel,Gemma3ForCausalLM:()=>t.Gemma3ForCausalLM,Gemma3Model:()=>t.Gemma3Model,Gemma3PreTrainedModel:()=>t.Gemma3PreTrainedModel,GemmaForCausalLM:()=>t.GemmaForCausalLM,GemmaModel:()=>t.GemmaModel,GemmaPreTrainedModel:()=>t.GemmaPreTrainedModel,GemmaTokenizer:()=>s.GemmaTokenizer,GlmForCausalLM:()=>t.GlmForCausalLM,GlmModel:()=>t.GlmModel,GlmPreTrainedModel:()=>t.GlmPreTrainedModel,GraniteForCausalLM:()=>t.GraniteForCausalLM,GraniteModel:()=>t.GraniteModel,GranitePreTrainedModel:()=>t.GranitePreTrainedModel,Grok1Tokenizer:()=>s.Grok1Tokenizer,GroundingDinoForObjectDetection:()=>t.GroundingDinoForObjectDetection,GroundingDinoImageProcessor:()=>_.GroundingDinoImageProcessor,GroundingDinoPreTrainedModel:()=>t.GroundingDinoPreTrainedModel,GroundingDinoProcessor:()=>w.GroundingDinoProcessor,GroupViTModel:()=>t.GroupViTModel,GroupViTPreTrainedModel:()=>t.GroupViTPreTrainedModel,HeliumForCausalLM:()=>t.HeliumForCausalLM,HeliumModel:()=>t.HeliumModel,HeliumPreTrainedModel:()=>t.HeliumPreTrainedModel,HerbertTokenizer:()=>s.HerbertTokenizer,HieraForImageClassification:()=>t.HieraForImageClassification,HieraModel:()=>t.HieraModel,HieraPreTrainedModel:()=>t.HieraPreTrainedModel,HubertForCTC:()=>t.HubertForCTC,HubertForSequenceClassification:()=>t.HubertForSequenceClassification,HubertModel:()=>t.HubertModel,HubertPreTrainedModel:()=>t.HubertPreTrainedModel,IJepaForImageClassification:()=>t.IJepaForImageClassification,IJepaModel:()=>t.IJepaModel,IJepaPreTrainedModel:()=>t.IJepaPreTrainedModel,Idefics3ForConditionalGeneration:()=>t.Idefics3ForConditionalGeneration,Idefics3ImageProcessor:()=>_.Idefics3ImageProcessor,Idefics3PreTrainedModel:()=>t.Idefics3PreTrainedModel,Idefics3Processor:()=>w.Idefics3Processor,ImageClassificationPipeline:()=>r.ImageClassificationPipeline,ImageFeatureExtractionPipeline:()=>r.ImageFeatureExtractionPipeline,ImageFeatureExtractor:()=>d.ImageFeatureExtractor,ImageMattingOutput:()=>t.ImageMattingOutput,ImageProcessor:()=>f.ImageProcessor,ImageSegmentationPipeline:()=>r.ImageSegmentationPipeline,ImageToImagePipeline:()=>r.ImageToImagePipeline,ImageToTextPipeline:()=>r.ImageToTextPipeline,InterruptableStoppingCriteria:()=>E.InterruptableStoppingCriteria,JAISLMHeadModel:()=>t.JAISLMHeadModel,JAISModel:()=>t.JAISModel,JAISPreTrainedModel:()=>t.JAISPreTrainedModel,JinaCLIPImageProcessor:()=>_.JinaCLIPImageProcessor,JinaCLIPModel:()=>t.JinaCLIPModel,JinaCLIPPreTrainedModel:()=>t.JinaCLIPPreTrainedModel,JinaCLIPProcessor:()=>w.JinaCLIPProcessor,JinaCLIPTextModel:()=>t.JinaCLIPTextModel,JinaCLIPVisionModel:()=>t.JinaCLIPVisionModel,LiteWhisperForConditionalGeneration:()=>t.LiteWhisperForConditionalGeneration,LlamaForCausalLM:()=>t.LlamaForCausalLM,LlamaModel:()=>t.LlamaModel,LlamaPreTrainedModel:()=>t.LlamaPreTrainedModel,LlamaTokenizer:()=>s.LlamaTokenizer,LlavaForConditionalGeneration:()=>t.LlavaForConditionalGeneration,LlavaOnevisionForConditionalGeneration:()=>t.LlavaOnevisionForConditionalGeneration,LlavaOnevisionImageProcessor:()=>_.LlavaOnevisionImageProcessor,LlavaPreTrainedModel:()=>t.LlavaPreTrainedModel,LogitsProcessor:()=>y.LogitsProcessor,LogitsProcessorList:()=>y.LogitsProcessorList,LogitsWarper:()=>y.LogitsWarper,LongT5ForConditionalGeneration:()=>t.LongT5ForConditionalGeneration,LongT5Model:()=>t.LongT5Model,LongT5PreTrainedModel:()=>t.LongT5PreTrainedModel,M2M100ForConditionalGeneration:()=>t.M2M100ForConditionalGeneration,M2M100Model:()=>t.M2M100Model,M2M100PreTrainedModel:()=>t.M2M100PreTrainedModel,M2M100Tokenizer:()=>s.M2M100Tokenizer,MBart50Tokenizer:()=>s.MBart50Tokenizer,MBartForCausalLM:()=>t.MBartForCausalLM,MBartForConditionalGeneration:()=>t.MBartForConditionalGeneration,MBartForSequenceClassification:()=>t.MBartForSequenceClassification,MBartModel:()=>t.MBartModel,MBartPreTrainedModel:()=>t.MBartPreTrainedModel,MBartTokenizer:()=>s.MBartTokenizer,MPNetForMaskedLM:()=>t.MPNetForMaskedLM,MPNetForQuestionAnswering:()=>t.MPNetForQuestionAnswering,MPNetForSequenceClassification:()=>t.MPNetForSequenceClassification,MPNetForTokenClassification:()=>t.MPNetForTokenClassification,MPNetModel:()=>t.MPNetModel,MPNetPreTrainedModel:()=>t.MPNetPreTrainedModel,MPNetTokenizer:()=>s.MPNetTokenizer,MT5ForConditionalGeneration:()=>t.MT5ForConditionalGeneration,MT5Model:()=>t.MT5Model,MT5PreTrainedModel:()=>t.MT5PreTrainedModel,MarianMTModel:()=>t.MarianMTModel,MarianModel:()=>t.MarianModel,MarianPreTrainedModel:()=>t.MarianPreTrainedModel,MarianTokenizer:()=>s.MarianTokenizer,Mask2FormerImageProcessor:()=>_.Mask2FormerImageProcessor,MaskFormerFeatureExtractor:()=>_.MaskFormerFeatureExtractor,MaskFormerForInstanceSegmentation:()=>t.MaskFormerForInstanceSegmentation,MaskFormerImageProcessor:()=>_.MaskFormerImageProcessor,MaskFormerModel:()=>t.MaskFormerModel,MaskFormerPreTrainedModel:()=>t.MaskFormerPreTrainedModel,MaskedLMOutput:()=>t.MaskedLMOutput,MaxLengthCriteria:()=>E.MaxLengthCriteria,Metric3DForDepthEstimation:()=>t.Metric3DForDepthEstimation,Metric3DPreTrainedModel:()=>t.Metric3DPreTrainedModel,Metric3Dv2ForDepthEstimation:()=>t.Metric3Dv2ForDepthEstimation,Metric3Dv2PreTrainedModel:()=>t.Metric3Dv2PreTrainedModel,MgpstrForSceneTextRecognition:()=>t.MgpstrForSceneTextRecognition,MgpstrModelOutput:()=>t.MgpstrModelOutput,MgpstrPreTrainedModel:()=>t.MgpstrPreTrainedModel,MgpstrProcessor:()=>w.MgpstrProcessor,MgpstrTokenizer:()=>s.MgpstrTokenizer,MimiDecoderModel:()=>t.MimiDecoderModel,MimiDecoderOutput:()=>t.MimiDecoderOutput,MimiEncoderModel:()=>t.MimiEncoderModel,MimiEncoderOutput:()=>t.MimiEncoderOutput,MimiModel:()=>t.MimiModel,MimiPreTrainedModel:()=>t.MimiPreTrainedModel,MinLengthLogitsProcessor:()=>y.MinLengthLogitsProcessor,MinNewTokensLengthLogitsProcessor:()=>y.MinNewTokensLengthLogitsProcessor,MistralForCausalLM:()=>t.MistralForCausalLM,MistralModel:()=>t.MistralModel,MistralPreTrainedModel:()=>t.MistralPreTrainedModel,MobileBertForMaskedLM:()=>t.MobileBertForMaskedLM,MobileBertForQuestionAnswering:()=>t.MobileBertForQuestionAnswering,MobileBertForSequenceClassification:()=>t.MobileBertForSequenceClassification,MobileBertModel:()=>t.MobileBertModel,MobileBertPreTrainedModel:()=>t.MobileBertPreTrainedModel,MobileBertTokenizer:()=>s.MobileBertTokenizer,MobileLLMForCausalLM:()=>t.MobileLLMForCausalLM,MobileLLMModel:()=>t.MobileLLMModel,MobileLLMPreTrainedModel:()=>t.MobileLLMPreTrainedModel,MobileNetV1FeatureExtractor:()=>_.MobileNetV1FeatureExtractor,MobileNetV1ForImageClassification:()=>t.MobileNetV1ForImageClassification,MobileNetV1ForSemanticSegmentation:()=>t.MobileNetV1ForSemanticSegmentation,MobileNetV1ImageProcessor:()=>_.MobileNetV1ImageProcessor,MobileNetV1Model:()=>t.MobileNetV1Model,MobileNetV1PreTrainedModel:()=>t.MobileNetV1PreTrainedModel,MobileNetV2FeatureExtractor:()=>_.MobileNetV2FeatureExtractor,MobileNetV2ForImageClassification:()=>t.MobileNetV2ForImageClassification,MobileNetV2ForSemanticSegmentation:()=>t.MobileNetV2ForSemanticSegmentation,MobileNetV2ImageProcessor:()=>_.MobileNetV2ImageProcessor,MobileNetV2Model:()=>t.MobileNetV2Model,MobileNetV2PreTrainedModel:()=>t.MobileNetV2PreTrainedModel,MobileNetV3FeatureExtractor:()=>_.MobileNetV3FeatureExtractor,MobileNetV3ForImageClassification:()=>t.MobileNetV3ForImageClassification,MobileNetV3ForSemanticSegmentation:()=>t.MobileNetV3ForSemanticSegmentation,MobileNetV3ImageProcessor:()=>_.MobileNetV3ImageProcessor,MobileNetV3Model:()=>t.MobileNetV3Model,MobileNetV3PreTrainedModel:()=>t.MobileNetV3PreTrainedModel,MobileNetV4FeatureExtractor:()=>_.MobileNetV4FeatureExtractor,MobileNetV4ForImageClassification:()=>t.MobileNetV4ForImageClassification,MobileNetV4ForSemanticSegmentation:()=>t.MobileNetV4ForSemanticSegmentation,MobileNetV4ImageProcessor:()=>_.MobileNetV4ImageProcessor,MobileNetV4Model:()=>t.MobileNetV4Model,MobileNetV4PreTrainedModel:()=>t.MobileNetV4PreTrainedModel,MobileViTFeatureExtractor:()=>_.MobileViTFeatureExtractor,MobileViTForImageClassification:()=>t.MobileViTForImageClassification,MobileViTImageProcessor:()=>_.MobileViTImageProcessor,MobileViTModel:()=>t.MobileViTModel,MobileViTPreTrainedModel:()=>t.MobileViTPreTrainedModel,MobileViTV2ForImageClassification:()=>t.MobileViTV2ForImageClassification,MobileViTV2Model:()=>t.MobileViTV2Model,MobileViTV2PreTrainedModel:()=>t.MobileViTV2PreTrainedModel,ModelOutput:()=>t.ModelOutput,ModernBertForMaskedLM:()=>t.ModernBertForMaskedLM,ModernBertForSequenceClassification:()=>t.ModernBertForSequenceClassification,ModernBertForTokenClassification:()=>t.ModernBertForTokenClassification,ModernBertModel:()=>t.ModernBertModel,ModernBertPreTrainedModel:()=>t.ModernBertPreTrainedModel,Moondream1ForConditionalGeneration:()=>t.Moondream1ForConditionalGeneration,MoonshineFeatureExtractor:()=>d.MoonshineFeatureExtractor,MoonshineForConditionalGeneration:()=>t.MoonshineForConditionalGeneration,MoonshineModel:()=>t.MoonshineModel,MoonshinePreTrainedModel:()=>t.MoonshinePreTrainedModel,MoonshineProcessor:()=>w.MoonshineProcessor,MptForCausalLM:()=>t.MptForCausalLM,MptModel:()=>t.MptModel,MptPreTrainedModel:()=>t.MptPreTrainedModel,MultiModalityCausalLM:()=>t.MultiModalityCausalLM,MultiModalityPreTrainedModel:()=>t.MultiModalityPreTrainedModel,MusicgenForCausalLM:()=>t.MusicgenForCausalLM,MusicgenForConditionalGeneration:()=>t.MusicgenForConditionalGeneration,MusicgenModel:()=>t.MusicgenModel,MusicgenPreTrainedModel:()=>t.MusicgenPreTrainedModel,NllbTokenizer:()=>s.NllbTokenizer,NoBadWordsLogitsProcessor:()=>y.NoBadWordsLogitsProcessor,NoRepeatNGramLogitsProcessor:()=>y.NoRepeatNGramLogitsProcessor,NomicBertModel:()=>t.NomicBertModel,NomicBertPreTrainedModel:()=>t.NomicBertPreTrainedModel,NougatImageProcessor:()=>_.NougatImageProcessor,NougatTokenizer:()=>s.NougatTokenizer,OPTForCausalLM:()=>t.OPTForCausalLM,OPTModel:()=>t.OPTModel,OPTPreTrainedModel:()=>t.OPTPreTrainedModel,ObjectDetectionPipeline:()=>r.ObjectDetectionPipeline,Olmo2ForCausalLM:()=>t.Olmo2ForCausalLM,Olmo2Model:()=>t.Olmo2Model,Olmo2PreTrainedModel:()=>t.Olmo2PreTrainedModel,OlmoForCausalLM:()=>t.OlmoForCausalLM,OlmoModel:()=>t.OlmoModel,OlmoPreTrainedModel:()=>t.OlmoPreTrainedModel,OpenELMForCausalLM:()=>t.OpenELMForCausalLM,OpenELMModel:()=>t.OpenELMModel,OpenELMPreTrainedModel:()=>t.OpenELMPreTrainedModel,OwlViTFeatureExtractor:()=>_.OwlViTFeatureExtractor,OwlViTForObjectDetection:()=>t.OwlViTForObjectDetection,OwlViTImageProcessor:()=>_.OwlViTImageProcessor,OwlViTModel:()=>t.OwlViTModel,OwlViTPreTrainedModel:()=>t.OwlViTPreTrainedModel,OwlViTProcessor:()=>w.OwlViTProcessor,Owlv2ForObjectDetection:()=>t.Owlv2ForObjectDetection,Owlv2ImageProcessor:()=>_.Owlv2ImageProcessor,Owlv2Model:()=>t.Owlv2Model,Owlv2PreTrainedModel:()=>t.Owlv2PreTrainedModel,PaliGemmaForConditionalGeneration:()=>t.PaliGemmaForConditionalGeneration,PaliGemmaPreTrainedModel:()=>t.PaliGemmaPreTrainedModel,PaliGemmaProcessor:()=>w.PaliGemmaProcessor,PatchTSMixerForPrediction:()=>t.PatchTSMixerForPrediction,PatchTSMixerModel:()=>t.PatchTSMixerModel,PatchTSMixerPreTrainedModel:()=>t.PatchTSMixerPreTrainedModel,PatchTSTForPrediction:()=>t.PatchTSTForPrediction,PatchTSTModel:()=>t.PatchTSTModel,PatchTSTPreTrainedModel:()=>t.PatchTSTPreTrainedModel,Phi3ForCausalLM:()=>t.Phi3ForCausalLM,Phi3Model:()=>t.Phi3Model,Phi3PreTrainedModel:()=>t.Phi3PreTrainedModel,Phi3VForCausalLM:()=>t.Phi3VForCausalLM,Phi3VImageProcessor:()=>_.Phi3VImageProcessor,Phi3VPreTrainedModel:()=>t.Phi3VPreTrainedModel,Phi3VProcessor:()=>w.Phi3VProcessor,PhiForCausalLM:()=>t.PhiForCausalLM,PhiModel:()=>t.PhiModel,PhiPreTrainedModel:()=>t.PhiPreTrainedModel,Pipeline:()=>r.Pipeline,PreTrainedModel:()=>t.PreTrainedModel,PreTrainedTokenizer:()=>s.PreTrainedTokenizer,PretrainedConfig:()=>o.PretrainedConfig,PretrainedMixin:()=>t.PretrainedMixin,Processor:()=>$.Processor,PvtForImageClassification:()=>t.PvtForImageClassification,PvtImageProcessor:()=>_.PvtImageProcessor,PvtModel:()=>t.PvtModel,PvtPreTrainedModel:()=>t.PvtPreTrainedModel,PyAnnoteFeatureExtractor:()=>d.PyAnnoteFeatureExtractor,PyAnnoteForAudioFrameClassification:()=>t.PyAnnoteForAudioFrameClassification,PyAnnoteModel:()=>t.PyAnnoteModel,PyAnnotePreTrainedModel:()=>t.PyAnnotePreTrainedModel,PyAnnoteProcessor:()=>w.PyAnnoteProcessor,QuestionAnsweringModelOutput:()=>t.QuestionAnsweringModelOutput,QuestionAnsweringPipeline:()=>r.QuestionAnsweringPipeline,Qwen2ForCausalLM:()=>t.Qwen2ForCausalLM,Qwen2Model:()=>t.Qwen2Model,Qwen2PreTrainedModel:()=>t.Qwen2PreTrainedModel,Qwen2Tokenizer:()=>s.Qwen2Tokenizer,Qwen2VLForConditionalGeneration:()=>t.Qwen2VLForConditionalGeneration,Qwen2VLImageProcessor:()=>_.Qwen2VLImageProcessor,Qwen2VLPreTrainedModel:()=>t.Qwen2VLPreTrainedModel,Qwen2VLProcessor:()=>w.Qwen2VLProcessor,RFDetrForObjectDetection:()=>t.RFDetrForObjectDetection,RFDetrModel:()=>t.RFDetrModel,RFDetrObjectDetectionOutput:()=>t.RFDetrObjectDetectionOutput,RFDetrPreTrainedModel:()=>t.RFDetrPreTrainedModel,RTDetrForObjectDetection:()=>t.RTDetrForObjectDetection,RTDetrImageProcessor:()=>_.RTDetrImageProcessor,RTDetrModel:()=>t.RTDetrModel,RTDetrObjectDetectionOutput:()=>t.RTDetrObjectDetectionOutput,RTDetrPreTrainedModel:()=>t.RTDetrPreTrainedModel,RTDetrV2ForObjectDetection:()=>t.RTDetrV2ForObjectDetection,RTDetrV2Model:()=>t.RTDetrV2Model,RTDetrV2ObjectDetectionOutput:()=>t.RTDetrV2ObjectDetectionOutput,RTDetrV2PreTrainedModel:()=>t.RTDetrV2PreTrainedModel,RawAudio:()=>n.RawAudio,RawImage:()=>i.RawImage,RawVideo:()=>a.RawVideo,RawVideoFrame:()=>a.RawVideoFrame,RepetitionPenaltyLogitsProcessor:()=>y.RepetitionPenaltyLogitsProcessor,ResNetForImageClassification:()=>t.ResNetForImageClassification,ResNetModel:()=>t.ResNetModel,ResNetPreTrainedModel:()=>t.ResNetPreTrainedModel,RoFormerForMaskedLM:()=>t.RoFormerForMaskedLM,RoFormerForQuestionAnswering:()=>t.RoFormerForQuestionAnswering,RoFormerForSequenceClassification:()=>t.RoFormerForSequenceClassification,RoFormerForTokenClassification:()=>t.RoFormerForTokenClassification,RoFormerModel:()=>t.RoFormerModel,RoFormerPreTrainedModel:()=>t.RoFormerPreTrainedModel,RoFormerTokenizer:()=>s.RoFormerTokenizer,RobertaForMaskedLM:()=>t.RobertaForMaskedLM,RobertaForQuestionAnswering:()=>t.RobertaForQuestionAnswering,RobertaForSequenceClassification:()=>t.RobertaForSequenceClassification,RobertaForTokenClassification:()=>t.RobertaForTokenClassification,RobertaModel:()=>t.RobertaModel,RobertaPreTrainedModel:()=>t.RobertaPreTrainedModel,RobertaTokenizer:()=>s.RobertaTokenizer,SamImageProcessor:()=>_.SamImageProcessor,SamImageSegmentationOutput:()=>t.SamImageSegmentationOutput,SamModel:()=>t.SamModel,SamPreTrainedModel:()=>t.SamPreTrainedModel,SamProcessor:()=>w.SamProcessor,SapiensForDepthEstimation:()=>t.SapiensForDepthEstimation,SapiensForNormalEstimation:()=>t.SapiensForNormalEstimation,SapiensForSemanticSegmentation:()=>t.SapiensForSemanticSegmentation,SapiensPreTrainedModel:()=>t.SapiensPreTrainedModel,SeamlessM4TFeatureExtractor:()=>d.SeamlessM4TFeatureExtractor,SegformerFeatureExtractor:()=>_.SegformerFeatureExtractor,SegformerForImageClassification:()=>t.SegformerForImageClassification,SegformerForSemanticSegmentation:()=>t.SegformerForSemanticSegmentation,SegformerImageProcessor:()=>_.SegformerImageProcessor,SegformerModel:()=>t.SegformerModel,SegformerPreTrainedModel:()=>t.SegformerPreTrainedModel,Seq2SeqLMOutput:()=>t.Seq2SeqLMOutput,SequenceClassifierOutput:()=>t.SequenceClassifierOutput,SiglipImageProcessor:()=>_.SiglipImageProcessor,SiglipModel:()=>t.SiglipModel,SiglipPreTrainedModel:()=>t.SiglipPreTrainedModel,SiglipTextModel:()=>t.SiglipTextModel,SiglipTokenizer:()=>s.SiglipTokenizer,SiglipVisionModel:()=>t.SiglipVisionModel,SmolVLMForConditionalGeneration:()=>t.SmolVLMForConditionalGeneration,SmolVLMImageProcessor:()=>_.SmolVLMImageProcessor,SmolVLMProcessor:()=>w.SmolVLMProcessor,SnacDecoderModel:()=>t.SnacDecoderModel,SnacEncoderModel:()=>t.SnacEncoderModel,SnacFeatureExtractor:()=>d.SnacFeatureExtractor,SnacModel:()=>t.SnacModel,SnacPreTrainedModel:()=>t.SnacPreTrainedModel,SpeechT5FeatureExtractor:()=>d.SpeechT5FeatureExtractor,SpeechT5ForSpeechToText:()=>t.SpeechT5ForSpeechToText,SpeechT5ForTextToSpeech:()=>t.SpeechT5ForTextToSpeech,SpeechT5HifiGan:()=>t.SpeechT5HifiGan,SpeechT5Model:()=>t.SpeechT5Model,SpeechT5PreTrainedModel:()=>t.SpeechT5PreTrainedModel,SpeechT5Processor:()=>w.SpeechT5Processor,SpeechT5Tokenizer:()=>s.SpeechT5Tokenizer,SqueezeBertForMaskedLM:()=>t.SqueezeBertForMaskedLM,SqueezeBertForQuestionAnswering:()=>t.SqueezeBertForQuestionAnswering,SqueezeBertForSequenceClassification:()=>t.SqueezeBertForSequenceClassification,SqueezeBertModel:()=>t.SqueezeBertModel,SqueezeBertPreTrainedModel:()=>t.SqueezeBertPreTrainedModel,SqueezeBertTokenizer:()=>s.SqueezeBertTokenizer,StableLmForCausalLM:()=>t.StableLmForCausalLM,StableLmModel:()=>t.StableLmModel,StableLmPreTrainedModel:()=>t.StableLmPreTrainedModel,Starcoder2ForCausalLM:()=>t.Starcoder2ForCausalLM,Starcoder2Model:()=>t.Starcoder2Model,Starcoder2PreTrainedModel:()=>t.Starcoder2PreTrainedModel,StoppingCriteria:()=>E.StoppingCriteria,StoppingCriteriaList:()=>E.StoppingCriteriaList,StyleTextToSpeech2Model:()=>t.StyleTextToSpeech2Model,StyleTextToSpeech2PreTrainedModel:()=>t.StyleTextToSpeech2PreTrainedModel,SummarizationPipeline:()=>r.SummarizationPipeline,SuppressTokensAtBeginLogitsProcessor:()=>y.SuppressTokensAtBeginLogitsProcessor,Swin2SRForImageSuperResolution:()=>t.Swin2SRForImageSuperResolution,Swin2SRImageProcessor:()=>_.Swin2SRImageProcessor,Swin2SRModel:()=>t.Swin2SRModel,Swin2SRPreTrainedModel:()=>t.Swin2SRPreTrainedModel,SwinForImageClassification:()=>t.SwinForImageClassification,SwinForSemanticSegmentation:()=>t.SwinForSemanticSegmentation,SwinModel:()=>t.SwinModel,SwinPreTrainedModel:()=>t.SwinPreTrainedModel,T5ForConditionalGeneration:()=>t.T5ForConditionalGeneration,T5Model:()=>t.T5Model,T5PreTrainedModel:()=>t.T5PreTrainedModel,T5Tokenizer:()=>s.T5Tokenizer,TableTransformerForObjectDetection:()=>t.TableTransformerForObjectDetection,TableTransformerModel:()=>t.TableTransformerModel,TableTransformerObjectDetectionOutput:()=>t.TableTransformerObjectDetectionOutput,TableTransformerPreTrainedModel:()=>t.TableTransformerPreTrainedModel,TemperatureLogitsWarper:()=>y.TemperatureLogitsWarper,Tensor:()=>l.Tensor,Text2TextGenerationPipeline:()=>r.Text2TextGenerationPipeline,TextClassificationPipeline:()=>r.TextClassificationPipeline,TextGenerationPipeline:()=>r.TextGenerationPipeline,TextStreamer:()=>S.TextStreamer,TextToAudioPipeline:()=>r.TextToAudioPipeline,TokenClassificationPipeline:()=>r.TokenClassificationPipeline,TokenClassifierOutput:()=>t.TokenClassifierOutput,TokenizerModel:()=>s.TokenizerModel,TopKLogitsWarper:()=>y.TopKLogitsWarper,TopPLogitsWarper:()=>y.TopPLogitsWarper,TrOCRForCausalLM:()=>t.TrOCRForCausalLM,TrOCRPreTrainedModel:()=>t.TrOCRPreTrainedModel,TranslationPipeline:()=>r.TranslationPipeline,UltravoxModel:()=>t.UltravoxModel,UltravoxPreTrainedModel:()=>t.UltravoxPreTrainedModel,UltravoxProcessor:()=>w.UltravoxProcessor,UniSpeechForCTC:()=>t.UniSpeechForCTC,UniSpeechForSequenceClassification:()=>t.UniSpeechForSequenceClassification,UniSpeechModel:()=>t.UniSpeechModel,UniSpeechPreTrainedModel:()=>t.UniSpeechPreTrainedModel,UniSpeechSatForAudioFrameClassification:()=>t.UniSpeechSatForAudioFrameClassification,UniSpeechSatForCTC:()=>t.UniSpeechSatForCTC,UniSpeechSatForSequenceClassification:()=>t.UniSpeechSatForSequenceClassification,UniSpeechSatModel:()=>t.UniSpeechSatModel,UniSpeechSatPreTrainedModel:()=>t.UniSpeechSatPreTrainedModel,VLChatProcessor:()=>w.VLChatProcessor,VLMImageProcessor:()=>_.VLMImageProcessor,ViTFeatureExtractor:()=>_.ViTFeatureExtractor,ViTForImageClassification:()=>t.ViTForImageClassification,ViTImageProcessor:()=>_.ViTImageProcessor,ViTMAEModel:()=>t.ViTMAEModel,ViTMAEPreTrainedModel:()=>t.ViTMAEPreTrainedModel,ViTMSNForImageClassification:()=>t.ViTMSNForImageClassification,ViTMSNModel:()=>t.ViTMSNModel,ViTMSNPreTrainedModel:()=>t.ViTMSNPreTrainedModel,ViTModel:()=>t.ViTModel,ViTPreTrainedModel:()=>t.ViTPreTrainedModel,VisionEncoderDecoderModel:()=>t.VisionEncoderDecoderModel,VitMatteForImageMatting:()=>t.VitMatteForImageMatting,VitMatteImageProcessor:()=>_.VitMatteImageProcessor,VitMattePreTrainedModel:()=>t.VitMattePreTrainedModel,VitPoseForPoseEstimation:()=>t.VitPoseForPoseEstimation,VitPoseImageProcessor:()=>_.VitPoseImageProcessor,VitPosePreTrainedModel:()=>t.VitPosePreTrainedModel,VitsModel:()=>t.VitsModel,VitsModelOutput:()=>t.VitsModelOutput,VitsPreTrainedModel:()=>t.VitsPreTrainedModel,VitsTokenizer:()=>s.VitsTokenizer,Wav2Vec2BertForCTC:()=>t.Wav2Vec2BertForCTC,Wav2Vec2BertForSequenceClassification:()=>t.Wav2Vec2BertForSequenceClassification,Wav2Vec2BertModel:()=>t.Wav2Vec2BertModel,Wav2Vec2BertPreTrainedModel:()=>t.Wav2Vec2BertPreTrainedModel,Wav2Vec2CTCTokenizer:()=>s.Wav2Vec2CTCTokenizer,Wav2Vec2FeatureExtractor:()=>d.Wav2Vec2FeatureExtractor,Wav2Vec2ForAudioFrameClassification:()=>t.Wav2Vec2ForAudioFrameClassification,Wav2Vec2ForCTC:()=>t.Wav2Vec2ForCTC,Wav2Vec2ForSequenceClassification:()=>t.Wav2Vec2ForSequenceClassification,Wav2Vec2Model:()=>t.Wav2Vec2Model,Wav2Vec2PreTrainedModel:()=>t.Wav2Vec2PreTrainedModel,Wav2Vec2Processor:()=>w.Wav2Vec2Processor,Wav2Vec2ProcessorWithLM:()=>w.Wav2Vec2ProcessorWithLM,WavLMForAudioFrameClassification:()=>t.WavLMForAudioFrameClassification,WavLMForCTC:()=>t.WavLMForCTC,WavLMForSequenceClassification:()=>t.WavLMForSequenceClassification,WavLMForXVector:()=>t.WavLMForXVector,WavLMModel:()=>t.WavLMModel,WavLMPreTrainedModel:()=>t.WavLMPreTrainedModel,WeSpeakerFeatureExtractor:()=>d.WeSpeakerFeatureExtractor,WeSpeakerResNetModel:()=>t.WeSpeakerResNetModel,WeSpeakerResNetPreTrainedModel:()=>t.WeSpeakerResNetPreTrainedModel,WhisperFeatureExtractor:()=>d.WhisperFeatureExtractor,WhisperForConditionalGeneration:()=>t.WhisperForConditionalGeneration,WhisperModel:()=>t.WhisperModel,WhisperPreTrainedModel:()=>t.WhisperPreTrainedModel,WhisperProcessor:()=>w.WhisperProcessor,WhisperTextStreamer:()=>S.WhisperTextStreamer,WhisperTimeStampLogitsProcessor:()=>y.WhisperTimeStampLogitsProcessor,WhisperTokenizer:()=>s.WhisperTokenizer,XLMForQuestionAnswering:()=>t.XLMForQuestionAnswering,XLMForSequenceClassification:()=>t.XLMForSequenceClassification,XLMForTokenClassification:()=>t.XLMForTokenClassification,XLMModel:()=>t.XLMModel,XLMPreTrainedModel:()=>t.XLMPreTrainedModel,XLMRobertaForMaskedLM:()=>t.XLMRobertaForMaskedLM,XLMRobertaForQuestionAnswering:()=>t.XLMRobertaForQuestionAnswering,XLMRobertaForSequenceClassification:()=>t.XLMRobertaForSequenceClassification,XLMRobertaForTokenClassification:()=>t.XLMRobertaForTokenClassification,XLMRobertaModel:()=>t.XLMRobertaModel,XLMRobertaPreTrainedModel:()=>t.XLMRobertaPreTrainedModel,XLMRobertaTokenizer:()=>s.XLMRobertaTokenizer,XLMTokenizer:()=>s.XLMTokenizer,XLMWithLMHeadModel:()=>t.XLMWithLMHeadModel,XVectorOutput:()=>t.XVectorOutput,YolosFeatureExtractor:()=>_.YolosFeatureExtractor,YolosForObjectDetection:()=>t.YolosForObjectDetection,YolosImageProcessor:()=>_.YolosImageProcessor,YolosModel:()=>t.YolosModel,YolosObjectDetectionOutput:()=>t.YolosObjectDetectionOutput,YolosPreTrainedModel:()=>t.YolosPreTrainedModel,ZeroShotAudioClassificationPipeline:()=>r.ZeroShotAudioClassificationPipeline,ZeroShotClassificationPipeline:()=>r.ZeroShotClassificationPipeline,ZeroShotImageClassificationPipeline:()=>r.ZeroShotImageClassificationPipeline,ZeroShotObjectDetectionPipeline:()=>r.ZeroShotObjectDetectionPipeline,bankers_round:()=>u.bankers_round,cat:()=>l.cat,cos_sim:()=>u.cos_sim,dot:()=>u.dot,dynamic_time_warping:()=>u.dynamic_time_warping,env:()=>e.env,full:()=>l.full,full_like:()=>l.full_like,getKeyValueShapes:()=>o.getKeyValueShapes,hamming:()=>n.hamming,hanning:()=>n.hanning,interpolate:()=>l.interpolate,interpolate_4d:()=>l.interpolate_4d,interpolate_data:()=>u.interpolate_data,is_chinese_char:()=>s.is_chinese_char,layer_norm:()=>l.layer_norm,load_image:()=>i.load_image,load_video:()=>a.load_video,log_softmax:()=>u.log_softmax,magnitude:()=>u.magnitude,matmul:()=>l.matmul,max:()=>u.max,mean:()=>l.mean,mean_pooling:()=>l.mean_pooling,medianFilter:()=>u.medianFilter,mel_filter_bank:()=>n.mel_filter_bank,min:()=>u.min,ones:()=>l.ones,ones_like:()=>l.ones_like,permute:()=>l.permute,permute_data:()=>u.permute_data,pipeline:()=>r.pipeline,quantize_embeddings:()=>l.quantize_embeddings,rand:()=>l.rand,read_audio:()=>n.read_audio,rfft:()=>l.rfft,round:()=>u.round,slice:()=>l.slice,softmax:()=>u.softmax,spectrogram:()=>n.spectrogram,stack:()=>l.stack,std_mean:()=>l.std_mean,topk:()=>l.topk,window_function:()=>n.window_function,zeros:()=>l.zeros,zeros_like:()=>l.zeros_like});var e=$t("./src/env.js"),r=$t("./src/pipelines.js"),t=$t("./src/models.js"),s=$t("./src/tokenizers.js"),o=$t("./src/configs.js"),n=$t("./src/utils/audio.js"),i=$t("./src/utils/image.js"),a=$t("./src/utils/video.js"),l=$t("./src/utils/tensor.js"),u=$t("./src/utils/maths.js"),p=$t("./src/base/feature_extraction_utils.js"),d=$t("./src/models/feature_extractors.js"),c=$t("./src/models/auto/feature_extraction_auto.js"),f=$t("./src/base/image_processors_utils.js"),_=$t("./src/models/image_processors.js"),T=$t("./src/models/auto/image_processing_auto.js"),$=$t("./src/base/processing_utils.js"),w=$t("./src/models/processors.js"),g=$t("./src/models/auto/processing_auto.js"),S=$t("./src/generation/streamers.js"),E=$t("./src/generation/stopping_criteria.js"),y=$t("./src/generation/logits_process.js")})(),m.ASTFeatureExtractor,m.ASTForAudioClassification,m.ASTModel,m.ASTPreTrainedModel,m.AlbertForMaskedLM,m.AlbertForQuestionAnswering,m.AlbertForSequenceClassification,m.AlbertModel,m.AlbertPreTrainedModel,m.AlbertTokenizer,m.AudioClassificationPipeline,m.AutoConfig,m.AutoFeatureExtractor,m.AutoImageProcessor,m.AutoModel,m.AutoModelForAudioClassification,m.AutoModelForAudioFrameClassification,m.AutoModelForAudioTextToText,m.AutoModelForCTC;var yx=m.AutoModelForCausalLM;m.AutoModelForDepthEstimation,m.AutoModelForDocumentQuestionAnswering,m.AutoModelForImageClassification,m.AutoModelForImageFeatureExtraction,m.AutoModelForImageMatting,m.AutoModelForImageSegmentation,m.AutoModelForImageTextToText,m.AutoModelForImageToImage,m.AutoModelForMaskGeneration,m.AutoModelForMaskedLM,m.AutoModelForNormalEstimation,m.AutoModelForObjectDetection,m.AutoModelForPoseEstimation,m.AutoModelForQuestionAnswering,m.AutoModelForSemanticSegmentation,m.AutoModelForSeq2SeqLM,m.AutoModelForSequenceClassification,m.AutoModelForSpeechSeq2Seq,m.AutoModelForTextToSpectrogram,m.AutoModelForTextToWaveform,m.AutoModelForTokenClassification,m.AutoModelForUniversalSegmentation,m.AutoModelForVision2Seq,m.AutoModelForXVector,m.AutoModelForZeroShotObjectDetection,m.AutoProcessor;var vx=m.AutoTokenizer;m.AutomaticSpeechRecognitionPipeline,m.BackgroundRemovalPipeline,m.BartForConditionalGeneration,m.BartForSequenceClassification,m.BartModel,m.BartPretrainedModel,m.BartTokenizer,m.BaseModelOutput,m.BaseStreamer,m.BeitFeatureExtractor,m.BeitForImageClassification,m.BeitModel,m.BeitPreTrainedModel,m.BertForMaskedLM,m.BertForQuestionAnswering,m.BertForSequenceClassification,m.BertForTokenClassification,m.BertModel,m.BertPreTrainedModel,m.BertTokenizer,m.BitImageProcessor,m.BlenderbotForConditionalGeneration,m.BlenderbotModel,m.BlenderbotPreTrainedModel,m.BlenderbotSmallForConditionalGeneration,m.BlenderbotSmallModel,m.BlenderbotSmallPreTrainedModel,m.BlenderbotSmallTokenizer,m.BlenderbotTokenizer,m.BloomForCausalLM,m.BloomModel,m.BloomPreTrainedModel,m.BloomTokenizer,m.CLIPFeatureExtractor,m.CLIPImageProcessor,m.CLIPModel,m.CLIPPreTrainedModel,m.CLIPSegForImageSegmentation,m.CLIPSegModel,m.CLIPSegPreTrainedModel,m.CLIPTextModel,m.CLIPTextModelWithProjection,m.CLIPTokenizer,m.CLIPVisionModel,m.CLIPVisionModelWithProjection,m.CamembertForMaskedLM,m.CamembertForQuestionAnswering,m.CamembertForSequenceClassification,m.CamembertForTokenClassification,m.CamembertModel,m.CamembertPreTrainedModel,m.CamembertTokenizer,m.CausalLMOutput,m.CausalLMOutputWithPast,m.ChineseCLIPFeatureExtractor,m.ChineseCLIPModel,m.ChineseCLIPPreTrainedModel,m.ClapAudioModelWithProjection,m.ClapFeatureExtractor,m.ClapModel,m.ClapPreTrainedModel,m.ClapTextModelWithProjection,m.ClassifierFreeGuidanceLogitsProcessor,m.CodeGenForCausalLM,m.CodeGenModel,m.CodeGenPreTrainedModel,m.CodeGenTokenizer,m.CodeLlamaTokenizer,m.CohereForCausalLM,m.CohereModel,m.CoherePreTrainedModel,m.CohereTokenizer,m.ConvBertForMaskedLM,m.ConvBertForQuestionAnswering,m.ConvBertForSequenceClassification,m.ConvBertForTokenClassification,m.ConvBertModel,m.ConvBertPreTrainedModel,m.ConvBertTokenizer,m.ConvNextFeatureExtractor,m.ConvNextForImageClassification,m.ConvNextImageProcessor,m.ConvNextModel,m.ConvNextPreTrainedModel,m.ConvNextV2ForImageClassification,m.ConvNextV2Model,m.ConvNextV2PreTrainedModel,m.DPTFeatureExtractor,m.DPTForDepthEstimation,m.DPTImageProcessor,m.DPTModel,m.DPTPreTrainedModel,m.DacDecoderModel,m.DacDecoderOutput,m.DacEncoderModel,m.DacEncoderOutput,m.DacFeatureExtractor,m.DacModel,m.DacPreTrainedModel,m.DataTypeMap,m.DebertaForMaskedLM,m.DebertaForQuestionAnswering,m.DebertaForSequenceClassification,m.DebertaForTokenClassification,m.DebertaModel,m.DebertaPreTrainedModel,m.DebertaTokenizer,m.DebertaV2ForMaskedLM,m.DebertaV2ForQuestionAnswering,m.DebertaV2ForSequenceClassification,m.DebertaV2ForTokenClassification,m.DebertaV2Model,m.DebertaV2PreTrainedModel,m.DebertaV2Tokenizer,m.DecisionTransformerModel,m.DecisionTransformerPreTrainedModel,m.DeiTFeatureExtractor,m.DeiTForImageClassification,m.DeiTImageProcessor,m.DeiTModel,m.DeiTPreTrainedModel,m.DepthAnythingForDepthEstimation,m.DepthAnythingPreTrainedModel,m.DepthEstimationPipeline,m.DepthProForDepthEstimation,m.DepthProPreTrainedModel,m.DetrFeatureExtractor,m.DetrForObjectDetection,m.DetrForSegmentation,m.DetrImageProcessor,m.DetrModel,m.DetrObjectDetectionOutput,m.DetrPreTrainedModel,m.DetrSegmentationOutput,m.Dinov2ForImageClassification,m.Dinov2Model,m.Dinov2PreTrainedModel,m.Dinov2WithRegistersForImageClassification,m.Dinov2WithRegistersModel,m.Dinov2WithRegistersPreTrainedModel,m.DistilBertForMaskedLM,m.DistilBertForQuestionAnswering,m.DistilBertForSequenceClassification,m.DistilBertForTokenClassification,m.DistilBertModel,m.DistilBertPreTrainedModel,m.DistilBertTokenizer,m.DocumentQuestionAnsweringPipeline,m.DonutFeatureExtractor,m.DonutImageProcessor,m.DonutSwinModel,m.DonutSwinPreTrainedModel,m.EfficientNetForImageClassification,m.EfficientNetImageProcessor,m.EfficientNetModel,m.EfficientNetPreTrainedModel,m.ElectraForMaskedLM,m.ElectraForQuestionAnswering,m.ElectraForSequenceClassification,m.ElectraForTokenClassification,m.ElectraModel,m.ElectraPreTrainedModel,m.ElectraTokenizer,m.EncodecFeatureExtractor,m.EosTokenCriteria,m.EsmForMaskedLM,m.EsmForSequenceClassification,m.EsmForTokenClassification,m.EsmModel,m.EsmPreTrainedModel,m.EsmTokenizer,m.ExaoneForCausalLM,m.ExaoneModel,m.ExaonePreTrainedModel,m.FFT,m.FalconForCausalLM,m.FalconModel,m.FalconPreTrainedModel,m.FalconTokenizer,m.FastViTForImageClassification,m.FastViTModel,m.FastViTPreTrainedModel,m.FeatureExtractionPipeline,m.FeatureExtractor,m.FillMaskPipeline,m.Florence2ForConditionalGeneration,m.Florence2PreTrainedModel,m.Florence2Processor,m.ForcedBOSTokenLogitsProcessor,m.ForcedEOSTokenLogitsProcessor,m.GLPNFeatureExtractor,m.GLPNForDepthEstimation,m.GLPNModel,m.GLPNPreTrainedModel,m.GPT2LMHeadModel,m.GPT2Model,m.GPT2PreTrainedModel,m.GPT2Tokenizer,m.GPTBigCodeForCausalLM,m.GPTBigCodeModel,m.GPTBigCodePreTrainedModel,m.GPTJForCausalLM,m.GPTJModel,m.GPTJPreTrainedModel,m.GPTNeoForCausalLM,m.GPTNeoModel,m.GPTNeoPreTrainedModel,m.GPTNeoXForCausalLM,m.GPTNeoXModel,m.GPTNeoXPreTrainedModel,m.GPTNeoXTokenizer,m.Gemma2ForCausalLM,m.Gemma2Model,m.Gemma2PreTrainedModel,m.Gemma3ForCausalLM,m.Gemma3Model,m.Gemma3PreTrainedModel,m.GemmaForCausalLM,m.GemmaModel,m.GemmaPreTrainedModel,m.GemmaTokenizer,m.GlmForCausalLM,m.GlmModel,m.GlmPreTrainedModel,m.GraniteForCausalLM,m.GraniteModel,m.GranitePreTrainedModel,m.Grok1Tokenizer,m.GroundingDinoForObjectDetection,m.GroundingDinoImageProcessor,m.GroundingDinoPreTrainedModel,m.GroundingDinoProcessor,m.GroupViTModel,m.GroupViTPreTrainedModel,m.HeliumForCausalLM,m.HeliumModel,m.HeliumPreTrainedModel,m.HerbertTokenizer,m.HieraForImageClassification,m.HieraModel,m.HieraPreTrainedModel,m.HubertForCTC,m.HubertForSequenceClassification,m.HubertModel,m.HubertPreTrainedModel,m.IJepaForImageClassification,m.IJepaModel,m.IJepaPreTrainedModel,m.Idefics3ForConditionalGeneration,m.Idefics3ImageProcessor,m.Idefics3PreTrainedModel,m.Idefics3Processor,m.ImageClassificationPipeline,m.ImageFeatureExtractionPipeline,m.ImageFeatureExtractor,m.ImageMattingOutput,m.ImageProcessor,m.ImageSegmentationPipeline,m.ImageToImagePipeline,m.ImageToTextPipeline;var xx=m.InterruptableStoppingCriteria;m.JAISLMHeadModel,m.JAISModel,m.JAISPreTrainedModel,m.JinaCLIPImageProcessor,m.JinaCLIPModel,m.JinaCLIPPreTrainedModel,m.JinaCLIPProcessor,m.JinaCLIPTextModel,m.JinaCLIPVisionModel,m.LiteWhisperForConditionalGeneration,m.LlamaForCausalLM,m.LlamaModel,m.LlamaPreTrainedModel,m.LlamaTokenizer,m.LlavaForConditionalGeneration,m.LlavaOnevisionForConditionalGeneration,m.LlavaOnevisionImageProcessor,m.LlavaPreTrainedModel,m.LogitsProcessor,m.LogitsProcessorList,m.LogitsWarper,m.LongT5ForConditionalGeneration,m.LongT5Model,m.LongT5PreTrainedModel,m.M2M100ForConditionalGeneration,m.M2M100Model,m.M2M100PreTrainedModel,m.M2M100Tokenizer,m.MBart50Tokenizer,m.MBartForCausalLM,m.MBartForConditionalGeneration,m.MBartForSequenceClassification,m.MBartModel,m.MBartPreTrainedModel,m.MBartTokenizer,m.MPNetForMaskedLM,m.MPNetForQuestionAnswering,m.MPNetForSequenceClassification,m.MPNetForTokenClassification,m.MPNetModel,m.MPNetPreTrainedModel,m.MPNetTokenizer,m.MT5ForConditionalGeneration,m.MT5Model,m.MT5PreTrainedModel,m.MarianMTModel,m.MarianModel,m.MarianPreTrainedModel,m.MarianTokenizer,m.Mask2FormerImageProcessor,m.MaskFormerFeatureExtractor,m.MaskFormerForInstanceSegmentation,m.MaskFormerImageProcessor,m.MaskFormerModel,m.MaskFormerPreTrainedModel,m.MaskedLMOutput,m.MaxLengthCriteria,m.Metric3DForDepthEstimation,m.Metric3DPreTrainedModel,m.Metric3Dv2ForDepthEstimation,m.Metric3Dv2PreTrainedModel,m.MgpstrForSceneTextRecognition,m.MgpstrModelOutput,m.MgpstrPreTrainedModel,m.MgpstrProcessor,m.MgpstrTokenizer,m.MimiDecoderModel,m.MimiDecoderOutput,m.MimiEncoderModel,m.MimiEncoderOutput,m.MimiModel,m.MimiPreTrainedModel,m.MinLengthLogitsProcessor,m.MinNewTokensLengthLogitsProcessor,m.MistralForCausalLM,m.MistralModel,m.MistralPreTrainedModel,m.MobileBertForMaskedLM,m.MobileBertForQuestionAnswering,m.MobileBertForSequenceClassification,m.MobileBertModel,m.MobileBertPreTrainedModel,m.MobileBertTokenizer,m.MobileLLMForCausalLM,m.MobileLLMModel,m.MobileLLMPreTrainedModel,m.MobileNetV1FeatureExtractor,m.MobileNetV1ForImageClassification,m.MobileNetV1ForSemanticSegmentation,m.MobileNetV1ImageProcessor,m.MobileNetV1Model,m.MobileNetV1PreTrainedModel,m.MobileNetV2FeatureExtractor,m.MobileNetV2ForImageClassification,m.MobileNetV2ForSemanticSegmentation,m.MobileNetV2ImageProcessor,m.MobileNetV2Model,m.MobileNetV2PreTrainedModel,m.MobileNetV3FeatureExtractor,m.MobileNetV3ForImageClassification,m.MobileNetV3ForSemanticSegmentation,m.MobileNetV3ImageProcessor,m.MobileNetV3Model,m.MobileNetV3PreTrainedModel,m.MobileNetV4FeatureExtractor,m.MobileNetV4ForImageClassification,m.MobileNetV4ForSemanticSegmentation,m.MobileNetV4ImageProcessor,m.MobileNetV4Model,m.MobileNetV4PreTrainedModel,m.MobileViTFeatureExtractor,m.MobileViTForImageClassification,m.MobileViTImageProcessor,m.MobileViTModel,m.MobileViTPreTrainedModel,m.MobileViTV2ForImageClassification,m.MobileViTV2Model,m.MobileViTV2PreTrainedModel,m.ModelOutput,m.ModernBertForMaskedLM,m.ModernBertForSequenceClassification,m.ModernBertForTokenClassification,m.ModernBertModel,m.ModernBertPreTrainedModel,m.Moondream1ForConditionalGeneration,m.MoonshineFeatureExtractor,m.MoonshineForConditionalGeneration,m.MoonshineModel,m.MoonshinePreTrainedModel,m.MoonshineProcessor,m.MptForCausalLM,m.MptModel,m.MptPreTrainedModel,m.MultiModalityCausalLM,m.MultiModalityPreTrainedModel,m.MusicgenForCausalLM,m.MusicgenForConditionalGeneration,m.MusicgenModel,m.MusicgenPreTrainedModel,m.NllbTokenizer,m.NoBadWordsLogitsProcessor,m.NoRepeatNGramLogitsProcessor,m.NomicBertModel,m.NomicBertPreTrainedModel,m.NougatImageProcessor,m.NougatTokenizer,m.OPTForCausalLM,m.OPTModel,m.OPTPreTrainedModel,m.ObjectDetectionPipeline,m.Olmo2ForCausalLM,m.Olmo2Model,m.Olmo2PreTrainedModel,m.OlmoForCausalLM,m.OlmoModel,m.OlmoPreTrainedModel,m.OpenELMForCausalLM,m.OpenELMModel,m.OpenELMPreTrainedModel,m.OwlViTFeatureExtractor,m.OwlViTForObjectDetection,m.OwlViTImageProcessor,m.OwlViTModel,m.OwlViTPreTrainedModel,m.OwlViTProcessor,m.Owlv2ForObjectDetection,m.Owlv2ImageProcessor,m.Owlv2Model,m.Owlv2PreTrainedModel,m.PaliGemmaForConditionalGeneration,m.PaliGemmaPreTrainedModel,m.PaliGemmaProcessor,m.PatchTSMixerForPrediction,m.PatchTSMixerModel,m.PatchTSMixerPreTrainedModel,m.PatchTSTForPrediction,m.PatchTSTModel,m.PatchTSTPreTrainedModel,m.Phi3ForCausalLM,m.Phi3Model,m.Phi3PreTrainedModel,m.Phi3VForCausalLM,m.Phi3VImageProcessor,m.Phi3VPreTrainedModel,m.Phi3VProcessor,m.PhiForCausalLM,m.PhiModel,m.PhiPreTrainedModel,m.Pipeline,m.PreTrainedModel,m.PreTrainedTokenizer,m.PretrainedConfig,m.PretrainedMixin,m.Processor,m.PvtForImageClassification,m.PvtImageProcessor,m.PvtModel,m.PvtPreTrainedModel,m.PyAnnoteFeatureExtractor,m.PyAnnoteForAudioFrameClassification,m.PyAnnoteModel,m.PyAnnotePreTrainedModel,m.PyAnnoteProcessor,m.QuestionAnsweringModelOutput,m.QuestionAnsweringPipeline,m.Qwen2ForCausalLM,m.Qwen2Model,m.Qwen2PreTrainedModel,m.Qwen2Tokenizer,m.Qwen2VLForConditionalGeneration,m.Qwen2VLImageProcessor,m.Qwen2VLPreTrainedModel,m.Qwen2VLProcessor,m.RFDetrForObjectDetection,m.RFDetrModel,m.RFDetrObjectDetectionOutput,m.RFDetrPreTrainedModel,m.RTDetrForObjectDetection,m.RTDetrImageProcessor,m.RTDetrModel,m.RTDetrObjectDetectionOutput,m.RTDetrPreTrainedModel,m.RTDetrV2ForObjectDetection,m.RTDetrV2Model,m.RTDetrV2ObjectDetectionOutput,m.RTDetrV2PreTrainedModel,m.RawAudio,m.RawImage,m.RawVideo,m.RawVideoFrame,m.RepetitionPenaltyLogitsProcessor,m.ResNetForImageClassification,m.ResNetModel,m.ResNetPreTrainedModel,m.RoFormerForMaskedLM,m.RoFormerForQuestionAnswering,m.RoFormerForSequenceClassification,m.RoFormerForTokenClassification,m.RoFormerModel,m.RoFormerPreTrainedModel,m.RoFormerTokenizer,m.RobertaForMaskedLM,m.RobertaForQuestionAnswering,m.RobertaForSequenceClassification,m.RobertaForTokenClassification,m.RobertaModel,m.RobertaPreTrainedModel,m.RobertaTokenizer,m.SamImageProcessor,m.SamImageSegmentationOutput,m.SamModel,m.SamPreTrainedModel,m.SamProcessor,m.SapiensForDepthEstimation,m.SapiensForNormalEstimation,m.SapiensForSemanticSegmentation,m.SapiensPreTrainedModel,m.SeamlessM4TFeatureExtractor,m.SegformerFeatureExtractor,m.SegformerForImageClassification,m.SegformerForSemanticSegmentation,m.SegformerImageProcessor,m.SegformerModel,m.SegformerPreTrainedModel,m.Seq2SeqLMOutput,m.SequenceClassifierOutput,m.SiglipImageProcessor,m.SiglipModel,m.SiglipPreTrainedModel,m.SiglipTextModel,m.SiglipTokenizer,m.SiglipVisionModel,m.SmolVLMForConditionalGeneration,m.SmolVLMImageProcessor,m.SmolVLMProcessor,m.SnacDecoderModel,m.SnacEncoderModel,m.SnacFeatureExtractor,m.SnacModel,m.SnacPreTrainedModel,m.SpeechT5FeatureExtractor,m.SpeechT5ForSpeechToText,m.SpeechT5ForTextToSpeech,m.SpeechT5HifiGan,m.SpeechT5Model,m.SpeechT5PreTrainedModel,m.SpeechT5Processor,m.SpeechT5Tokenizer,m.SqueezeBertForMaskedLM,m.SqueezeBertForQuestionAnswering,m.SqueezeBertForSequenceClassification,m.SqueezeBertModel,m.SqueezeBertPreTrainedModel,m.SqueezeBertTokenizer,m.StableLmForCausalLM,m.StableLmModel,m.StableLmPreTrainedModel,m.Starcoder2ForCausalLM,m.Starcoder2Model,m.Starcoder2PreTrainedModel,m.StoppingCriteria,m.StoppingCriteriaList,m.StyleTextToSpeech2Model,m.StyleTextToSpeech2PreTrainedModel,m.SummarizationPipeline,m.SuppressTokensAtBeginLogitsProcessor,m.Swin2SRForImageSuperResolution,m.Swin2SRImageProcessor,m.Swin2SRModel,m.Swin2SRPreTrainedModel,m.SwinForImageClassification,m.SwinForSemanticSegmentation,m.SwinModel,m.SwinPreTrainedModel,m.T5ForConditionalGeneration,m.T5Model,m.T5PreTrainedModel,m.T5Tokenizer,m.TableTransformerForObjectDetection,m.TableTransformerModel,m.TableTransformerObjectDetectionOutput,m.TableTransformerPreTrainedModel,m.TemperatureLogitsWarper,m.Tensor,m.Text2TextGenerationPipeline,m.TextClassificationPipeline,m.TextGenerationPipeline;var Tx=m.TextStreamer;m.TextToAudioPipeline,m.TokenClassificationPipeline,m.TokenClassifierOutput,m.TokenizerModel,m.TopKLogitsWarper,m.TopPLogitsWarper,m.TrOCRForCausalLM,m.TrOCRPreTrainedModel,m.TranslationPipeline,m.UltravoxModel,m.UltravoxPreTrainedModel,m.UltravoxProcessor,m.UniSpeechForCTC,m.UniSpeechForSequenceClassification,m.UniSpeechModel,m.UniSpeechPreTrainedModel,m.UniSpeechSatForAudioFrameClassification,m.UniSpeechSatForCTC,m.UniSpeechSatForSequenceClassification,m.UniSpeechSatModel,m.UniSpeechSatPreTrainedModel,m.VLChatProcessor,m.VLMImageProcessor,m.ViTFeatureExtractor,m.ViTForImageClassification,m.ViTImageProcessor,m.ViTMAEModel,m.ViTMAEPreTrainedModel,m.ViTMSNForImageClassification,m.ViTMSNModel,m.ViTMSNPreTrainedModel,m.ViTModel,m.ViTPreTrainedModel,m.VisionEncoderDecoderModel,m.VitMatteForImageMatting,m.VitMatteImageProcessor,m.VitMattePreTrainedModel,m.VitPoseForPoseEstimation,m.VitPoseImageProcessor,m.VitPosePreTrainedModel,m.VitsModel,m.VitsModelOutput,m.VitsPreTrainedModel,m.VitsTokenizer,m.Wav2Vec2BertForCTC,m.Wav2Vec2BertForSequenceClassification,m.Wav2Vec2BertModel,m.Wav2Vec2BertPreTrainedModel,m.Wav2Vec2CTCTokenizer,m.Wav2Vec2FeatureExtractor,m.Wav2Vec2ForAudioFrameClassification,m.Wav2Vec2ForCTC,m.Wav2Vec2ForSequenceClassification,m.Wav2Vec2Model,m.Wav2Vec2PreTrainedModel,m.Wav2Vec2Processor,m.Wav2Vec2ProcessorWithLM,m.WavLMForAudioFrameClassification,m.WavLMForCTC,m.WavLMForSequenceClassification,m.WavLMForXVector,m.WavLMModel,m.WavLMPreTrainedModel,m.WeSpeakerFeatureExtractor,m.WeSpeakerResNetModel,m.WeSpeakerResNetPreTrainedModel,m.WhisperFeatureExtractor,m.WhisperForConditionalGeneration,m.WhisperModel,m.WhisperPreTrainedModel,m.WhisperProcessor,m.WhisperTextStreamer,m.WhisperTimeStampLogitsProcessor,m.WhisperTokenizer,m.XLMForQuestionAnswering,m.XLMForSequenceClassification,m.XLMForTokenClassification,m.XLMModel,m.XLMPreTrainedModel,m.XLMRobertaForMaskedLM,m.XLMRobertaForQuestionAnswering,m.XLMRobertaForSequenceClassification,m.XLMRobertaForTokenClassification,m.XLMRobertaModel,m.XLMRobertaPreTrainedModel,m.XLMRobertaTokenizer,m.XLMTokenizer,m.XLMWithLMHeadModel,m.XVectorOutput,m.YolosFeatureExtractor,m.YolosForObjectDetection,m.YolosImageProcessor,m.YolosModel,m.YolosObjectDetectionOutput,m.YolosPreTrainedModel,m.ZeroShotAudioClassificationPipeline,m.ZeroShotClassificationPipeline,m.ZeroShotImageClassificationPipeline,m.ZeroShotObjectDetectionPipeline,m.bankers_round,m.cat,m.cos_sim,m.dot,m.dynamic_time_warping,m.env,m.full,m.full_like,m.getKeyValueShapes,m.hamming,m.hanning,m.interpolate,m.interpolate_4d,m.interpolate_data,m.is_chinese_char,m.layer_norm,m.load_image,m.load_video,m.log_softmax,m.magnitude,m.matmul,m.max,m.mean,m.mean_pooling,m.medianFilter,m.mel_filter_bank,m.min,m.ones,m.ones_like,m.permute,m.permute_data,m.pipeline,m.quantize_embeddings,m.rand,m.read_audio,m.rfft,m.round,m.slice,m.softmax,m.spectrogram,m.stack,m.std_mean,m.topk,m.window_function,m.zeros,m.zeros_like;async function Ex(){try{if(!await navigator.gpu.requestAdapter())throw new Error("WebGPU is not supported (no adapter found)")}catch(e){self.postMessage({status:"error",data:e.toString()})}}class cu{static async getInstance(r=null){return this.tokenizer??(this.tokenizer=vx.from_pretrained(this.model_id,{progress_callback:r})),this.model??(this.model=yx.from_pretrained(this.model_id,{dtype:"q4f16",device:"webgpu",progress_callback:r})),Promise.all([this.tokenizer,this.model])}}te(cu,"model_id","onnx-community/DeepSeek-R1-Distill-Qwen-1.5B-ONNX");const yi=new xx;async function Px(e){const[r,t]=await cu.getInstance(),s=r.apply_chat_template(e,{add_generation_prompt:!0,return_dict:!0}),[o,n]=r.encode("",{add_special_tokens:!1});let i="thinking",a,l=0,u;const p=$=>{a??(a=performance.now()),l++>0&&(u=l/(performance.now()-a)*1e3),$[0]==n&&(i="answering")},d=$=>{self.postMessage({status:"update",output:$,tps:u,numTokens:l,state:i})},c=new Tx(r,{skip_prompt:!0,skip_special_tokens:!0,callback_function:d,token_callback_function:p});self.postMessage({status:"start"});const{past_key_values:f,sequences:_}=await t.generate({...s,do_sample:!1,max_new_tokens:2048,streamer:c,stopping_criteria:yi,return_dict_in_generate:!0}),T=r.batch_decode(_,{skip_special_tokens:!0});self.postMessage({status:"complete",output:T})}async function Cx(){self.postMessage({status:"loading",data:"Loading model..."});const[e,r]=await cu.getInstance(s=>{self.postMessage(s)});self.postMessage({status:"loading",data:"Compiling shaders and warming up model..."});const t=e("a");await r.generate({...t,max_new_tokens:1}),self.postMessage({status:"ready"})}self.addEventListener("message",async e=>{const{type:r,data:t}=e.data;switch(r){case"check":Ex();break;case"load":Cx();break;case"generate":yi.reset(),Px(t);break;case"interrupt":yi.interrupt();break;case"reset":yi.reset();break}})})();