File size: 9,759 Bytes
35153f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import torch
import os
import json
import pandas as pd
from tqdm import tqdm
import shortuuid

from minigemini.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from minigemini.conversation import conv_templates, SeparatorStyle
from minigemini.model.builder import load_pretrained_model
from minigemini.utils import disable_torch_init
from minigemini.mm_utils import tokenizer_image_token, process_images, load_image_from_base64, get_model_name_from_path

from PIL import Image
import math


all_options = ['A', 'B', 'C', 'D']


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


def is_none(value):
    if value is None:
        return True
    if type(value) is float and math.isnan(value):
        return True
    if type(value) is str and value.lower() == 'nan':
        return True
    if type(value) is str and value.lower() == 'none':
        return True
    return False

def get_options(row, options):
    parsed_options = []
    for option in options:
        option_value = row[option]
        if is_none(option_value):
            break
        parsed_options.append(option_value)
    return parsed_options


def eval_model(args):
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)

    questions = pd.read_table(os.path.expanduser(args.question_file))
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")

    if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
        args.conv_mode = args.conv_mode + '_mmtag'
        print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')

    for index, row in tqdm(questions.iterrows(), total=len(questions)):
        options = get_options(row, all_options)
        cur_option_char = all_options[:len(options)]

        if args.all_rounds:
            num_rounds = len(options)
        else:
            num_rounds = 1

        for round_idx in range(num_rounds):
            idx = row['index']
            question = row['question']
            hint = row['hint']
            image = load_image_from_base64(row['image'])
            if not is_none(hint):
                question = hint + '\n' + question
            for option_char, option in zip(all_options[:len(options)], options):
                question = question + '\n' + option_char + '. ' + option
            qs = cur_prompt = question
            
            if hasattr(model, "update_prompt"):
                model.update_prompt([[cur_prompt]])
            
            if model.config.mm_use_im_start_end:
                qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
            else:
                qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

            if args.single_pred_prompt:
                if args.lang == 'cn':
                    qs = qs + '\n' + "请直接回答选项字母。"
                else:
                    qs = qs + '\n' + "Answer with the option's letter from the given choices directly."

            conv = conv_templates[args.conv_mode].copy()
            conv.append_message(conv.roles[0], qs)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()

            input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

            if hasattr(model.config, 'image_size_aux'):
                if not hasattr(image_processor, 'image_size_raw'):
                    image_processor.image_size_raw = image_processor.crop_size.copy()
                image_processor.crop_size['height'] = model.config.image_size_aux
                image_processor.crop_size['width'] = model.config.image_size_aux
                image_processor.size['shortest_edge'] = model.config.image_size_aux

            image_tensor = process_images([image], image_processor, model.config)[0]
            image_grid = getattr(model.config, 'image_grid', 1)
            if hasattr(model.config, 'image_size_aux'):
                raw_shape = [image_processor.image_size_raw['height'] * image_grid, 
                            image_processor.image_size_raw['width'] * image_grid]
                image_tensor_aux = image_tensor
                image_tensor = torch.nn.functional.interpolate(image_tensor[None], 
                                                            size=raw_shape, 
                                                            mode='bilinear', 
                                                            align_corners=False)[0]
            else:
                image_tensor_aux = []

            if image_grid >= 2:            
                raw_image = image_tensor.reshape(3, 
                                                image_grid,
                                                image_processor.image_size_raw['height'],
                                                image_grid,
                                                image_processor.image_size_raw['width'])
                raw_image = raw_image.permute(1, 3, 0, 2, 4)
                raw_image = raw_image.reshape(-1, 3,
                                            image_processor.image_size_raw['height'],
                                            image_processor.image_size_raw['width'])
                
                if getattr(model.config, 'image_global', False):
                    global_image = image_tensor
                    if len(global_image.shape) == 3:
                        global_image = global_image[None]
                    global_image = torch.nn.functional.interpolate(global_image, 
                                                            size=[image_processor.image_size_raw['height'],
                                                                image_processor.image_size_raw['width']], 
                                                            mode='bilinear', 
                                                            align_corners=False)
                    # [image_crops, image_global]
                    raw_image = torch.cat([raw_image, global_image], dim=0)
                image_tensor = raw_image.contiguous()
            
            images = image_tensor[None].to(dtype=model.dtype, device='cuda', non_blocking=True)
            images_aux = image_tensor_aux[None].to(dtype=model.dtype, device='cuda', non_blocking=True) if len(image_tensor_aux)>0 else None

            with torch.inference_mode():
                output_ids = model.generate(
                    input_ids,
                    images=images,
                    images_aux=images_aux,
                    do_sample=True if args.temperature > 0 else False,
                    temperature=args.temperature,
                    top_p=args.top_p,
                    num_beams=args.num_beams,
                    # no_repeat_ngram_size=3,
                    max_new_tokens=1024,
                    bos_token_id=tokenizer.bos_token_id,  # Begin of sequence token
                    eos_token_id=tokenizer.eos_token_id,  # End of sequence token
                    pad_token_id=tokenizer.pad_token_id,  # Pad token
                    use_cache=True)

            outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()

            ans_id = shortuuid.uuid()
            ans_file.write(json.dumps({"question_id": idx,
                                    "round_id": round_idx,
                                    "prompt": cur_prompt,
                                    "text": outputs,
                                    "options": options,
                                    "option_char": cur_option_char,
                                    "answer_id": ans_id,
                                    "model_id": model_name,
                                    "metadata": {}}) + "\n")
            ans_file.flush()

            # rotate options
            options = options[1:] + options[:1]
            cur_option_char = cur_option_char[1:] + cur_option_char[:1]
    ans_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="llava_v1")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--all-rounds", action="store_true")
    parser.add_argument("--single-pred-prompt", action="store_true")
    parser.add_argument("--lang", type=str, default="en")
    args = parser.parse_args()

    eval_model(args)