import streamlit as st from PIL import Image import requests from transformers import BlipProcessor, BlipForConditionalGeneration # Load the model and processor outside the main function to avoid reloading on every run processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def generate_caption(img_url): raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # Conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt") out = model.generate(**inputs) conditional_caption = processor.decode(out[0], skip_special_tokens=True) # Unconditional image captioning inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) unconditional_caption = processor.decode(out[0], skip_special_tokens=True) return conditional_caption, unconditional_caption def main(): st.title("Image Captioning App") img_url = st.text_input("Enter the image URL:") if img_url: try: # Display the image image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') st.image(image, caption='Input Image', use_column_width=True) # Generate captions conditional_caption, unconditional_caption = generate_caption(img_url) # Display captions st.subheader("Conditional Image Caption") st.write(conditional_caption) st.subheader("Unconditional Image Caption") st.write(unconditional_caption) except Exception as e: st.error(f"Error processing the image: {e}") if __name__ == "__main__": main()