Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,49 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
st.image(image_url, caption="Provided Image", use_column_width=True)
|
18 |
-
|
19 |
-
# Generate the caption
|
20 |
-
caption = captioner(image_url)
|
21 |
-
|
22 |
-
# Display the caption
|
23 |
-
st.write("**Generated Caption:**")
|
24 |
-
st.write(caption[0]['generated_text'])
|
25 |
-
except Exception as e:
|
26 |
-
st.error(f"An error occurred: {e}")
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import requests
|
4 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
5 |
|
6 |
+
# Load the model and processor outside the main function to avoid reloading on every run
|
7 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
8 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
9 |
|
10 |
+
def generate_caption(img_url):
|
11 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
12 |
|
13 |
+
# Conditional image captioning
|
14 |
+
text = "a photography of"
|
15 |
+
inputs = processor(raw_image, text, return_tensors="pt")
|
16 |
+
out = model.generate(**inputs)
|
17 |
+
conditional_caption = processor.decode(out[0], skip_special_tokens=True)
|
18 |
|
19 |
+
# Unconditional image captioning
|
20 |
+
inputs = processor(raw_image, return_tensors="pt")
|
21 |
+
out = model.generate(**inputs)
|
22 |
+
unconditional_caption = processor.decode(out[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
return conditional_caption, unconditional_caption
|
25 |
+
|
26 |
+
def main():
|
27 |
+
st.title("Image Captioning App")
|
28 |
+
|
29 |
+
img_url = st.text_input("Enter the image URL:")
|
30 |
+
if img_url:
|
31 |
+
try:
|
32 |
+
# Display the image
|
33 |
+
image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
34 |
+
st.image(image, caption='Input Image', use_column_width=True)
|
35 |
+
|
36 |
+
# Generate captions
|
37 |
+
conditional_caption, unconditional_caption = generate_caption(img_url)
|
38 |
+
|
39 |
+
# Display captions
|
40 |
+
st.subheader("Conditional Image Caption")
|
41 |
+
st.write(conditional_caption)
|
42 |
+
|
43 |
+
st.subheader("Unconditional Image Caption")
|
44 |
+
st.write(unconditional_caption)
|
45 |
+
except Exception as e:
|
46 |
+
st.error(f"Error processing the image: {e}")
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
main()
|