wavesoumen commited on
Commit
5d63cd1
·
verified ·
1 Parent(s): f0a9279

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -22
app.py CHANGED
@@ -1,28 +1,49 @@
1
  import streamlit as st
2
- from transformers import pipeline
 
 
3
 
4
- # Initialize the image captioning pipeline
5
- captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
 
6
 
7
- # Streamlit app title
8
- st.title("Image to Text Captioning")
9
 
10
- # Input for image URL
11
- image_url = st.text_input("Enter the URL of the image:")
 
 
 
12
 
13
- # If an image URL is provided
14
- if image_url:
15
- try:
16
- # Display the image
17
- st.image(image_url, caption="Provided Image", use_column_width=True)
18
-
19
- # Generate the caption
20
- caption = captioner(image_url)
21
-
22
- # Display the caption
23
- st.write("**Generated Caption:**")
24
- st.write(caption[0]['generated_text'])
25
- except Exception as e:
26
- st.error(f"An error occurred: {e}")
27
 
28
- # To run this app, save this code to a file (e.g., `app.py`) and run `streamlit run app.py` in your terminal.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from PIL import Image
3
+ import requests
4
+ from transformers import BlipProcessor, BlipForConditionalGeneration
5
 
6
+ # Load the model and processor outside the main function to avoid reloading on every run
7
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
8
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
9
 
10
+ def generate_caption(img_url):
11
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
12
 
13
+ # Conditional image captioning
14
+ text = "a photography of"
15
+ inputs = processor(raw_image, text, return_tensors="pt")
16
+ out = model.generate(**inputs)
17
+ conditional_caption = processor.decode(out[0], skip_special_tokens=True)
18
 
19
+ # Unconditional image captioning
20
+ inputs = processor(raw_image, return_tensors="pt")
21
+ out = model.generate(**inputs)
22
+ unconditional_caption = processor.decode(out[0], skip_special_tokens=True)
 
 
 
 
 
 
 
 
 
 
23
 
24
+ return conditional_caption, unconditional_caption
25
+
26
+ def main():
27
+ st.title("Image Captioning App")
28
+
29
+ img_url = st.text_input("Enter the image URL:")
30
+ if img_url:
31
+ try:
32
+ # Display the image
33
+ image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
34
+ st.image(image, caption='Input Image', use_column_width=True)
35
+
36
+ # Generate captions
37
+ conditional_caption, unconditional_caption = generate_caption(img_url)
38
+
39
+ # Display captions
40
+ st.subheader("Conditional Image Caption")
41
+ st.write(conditional_caption)
42
+
43
+ st.subheader("Unconditional Image Caption")
44
+ st.write(unconditional_caption)
45
+ except Exception as e:
46
+ st.error(f"Error processing the image: {e}")
47
+
48
+ if __name__ == "__main__":
49
+ main()