Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
import nltk | |
from youtube_transcript_api import YouTubeTranscriptApi | |
# Download NLTK data | |
nltk.download('punkt') | |
# Initialize the image captioning pipeline | |
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
# Load the tokenizer and model for tag generation | |
tokenizer = AutoTokenizer.from_pretrained("fabiochiu/t5-base-tag-generation") | |
model = AutoModelForSeq2SeqLM.from_pretrained("fabiochiu/t5-base-tag-generation") | |
# Function to fetch YouTube transcript | |
def fetch_transcript(url): | |
video_id = url.split('watch?v=')[-1] | |
try: | |
transcript = YouTubeTranscriptApi.get_transcript(video_id) | |
transcript_text = ' '.join([entry['text'] for entry in transcript]) | |
return transcript_text | |
except Exception as e: | |
return str(e) | |
# Streamlit app title | |
st.title("Multi-purpose Machine Learning App") | |
# Create tabs for different functionalities | |
tab1, tab2, tab3 = st.tabs(["Image Captioning", "Text Tag Generation", "YouTube Transcript"]) | |
# Image Captioning Tab | |
with tab1: | |
st.header("Image Captioning") | |
# Input for image URL | |
image_url = st.text_input("Enter the URL of the image:") | |
# If an image URL is provided | |
if image_url: | |
try: | |
# Display the image | |
st.image(image_url, caption="Provided Image", use_column_width=True) | |
# Generate the caption | |
caption = captioner(image_url) | |
# Display the caption | |
st.write("**Generated Caption:**") | |
st.write(caption[0]['generated_text']) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
# Text Tag Generation Tab | |
with tab2: | |
st.header("Text Tag Generation") | |
# Text area for user input | |
text = st.text_area("Enter the text for tag extraction:", height=200) | |
# Button to generate tags | |
if st.button("Generate Tags"): | |
if text: | |
try: | |
# Tokenize and encode the input text | |
inputs = tokenizer([text], max_length=512, truncation=True, return_tensors="pt") | |
# Generate tags | |
output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=64) | |
# Decode the output | |
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0] | |
# Extract unique tags | |
tags = list(set(decoded_output.strip().split(", "))) | |
# Display the tags | |
st.write("**Generated Tags:**") | |
st.write(tags) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
else: | |
st.warning("Please enter some text to generate tags.") | |
# YouTube Transcript Tab | |
with tab3: | |
st.header("YouTube Video Transcript Extractor") | |
# Input for YouTube URL | |
youtube_url = st.text_input("Enter YouTube URL:") | |
# Button to get transcript | |
if st.button("Get Transcript"): | |
if youtube_url: | |
transcript = fetch_transcript(youtube_url) | |
if "error" not in transcript.lower(): | |
st.success("Transcript successfully fetched!") | |
st.text_area("Transcript", transcript, height=300) | |
else: | |
st.error(f"An error occurred: {transcript}") | |
else: | |
st.warning("Please enter a URL.") | |