File size: 3,690 Bytes
8484b88
 
 
 
 
 
e356033
8484b88
 
 
 
 
 
 
 
 
 
 
f043058
 
 
 
8362db1
4beb684
8484b88
 
f043058
8484b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d673ffd
8484b88
 
 
 
 
 
c79b68a
8484b88
4fea8bc
4bcd4f5
c79b68a
8484b88
 
 
9adfcb4
 
 
 
 
 
 
8484b88
 
 
 
c14ffd8
8484b88
c79b68a
8484b88
 
 
c79b68a
8484b88
d360af7
8484b88
c79b68a
8484b88
 
4fea8bc
8484b88
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os

import gradio as gr
from transformers.utils import logging

from langchain_ollama import OllamaEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Neo4jVector

logging.set_verbosity_info()
logger = logging.get_logger("transformers")

# Neo4jへの接続情報
NEO4J_URL = os.environ['NEO4J_URL']
NEO4J_USERNAME = os.environ['NEO4J_USERNAME']
NEO4J_PASSWORD = os.environ['NEO4J_PASSWORD']
NEO4J_DATABASE = os.environ['NEO4J_DATABASE']

# EMBEDDINGS = OllamaEmbeddings(
#    model="mxbai-embed-large",
# )

EMBEDDINGS = HuggingFaceEmbeddings(
    model_name="mixedbread-ai/mxbai-embed-large-v1"
)


def hybrid_search(input_text, top_k):

    # グラフからノード検索用インデックスを取得
    index = Neo4jVector.from_existing_graph(
        embedding=EMBEDDINGS,
        url=NEO4J_URL,
        username=NEO4J_USERNAME,
        password=NEO4J_PASSWORD,
        database=NEO4J_DATABASE,
        node_label="Document", # 検索対象ノード
        text_node_properties=["id", "text"], # 検索対象プロパティ
        embedding_node_property="embedding", # ベクトルデータの保存先プロパティ
        index_name="vector_index", # ベクトル検索用のインデックス名
        keyword_index_name="fulltext_index", # 全文検索用のインデックス名
        search_type="hybrid" # 検索タイプに「ハイブリッド」を設定(デフォルトは「ベクター」)
    )

    all_answers = []
    # クエリを設定して検索を実行
    query = input_text
    docs_with_score = index.similarity_search_with_score(query, k=top_k)
    for i in docs_with_score:
        doc, score = i
        all_answers.append(doc.metadata["source"])

    return "\n\n************************************************************\n\n".join(all_answers)


CSS ="""
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#textbox { flex-grow: 1; overflow: auto; resize: vertical;}
.secondary {background-color: #6366f1; }
#full-width-button { width: 100%; }
#search-result { overflow-y: auto !important; font-size:18px !important; font-weight:500 !important; }
#question-box { font-size:18px !important; font-weight:500 !important; }
"""
#with gr.Blocks() as demo:
with gr.Blocks(theme=gr.themes.Monochrome(radius_size=gr.themes.sizes.radius_sm)) as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown(f"""
                    ### ・非公式サイトです  
                    ### ・デモでしかないので速度・精度・動作は保証しないし新しい裁定にも対応しません。突然消す可能性もあり
                    ### ・ですます調で質問をすると精度が上がるかも
                    """)
    with gr.Row():
        gr.Markdown("# 裁定検索")
    with gr.Row():
        output = gr.TextArea(
            elem_id="search-result",
            label="検索結果",
            text_size="lg",
        )
    with gr.Row():
        input = gr.Textbox(
            elem_id="question-box",
            label="質問",
            placeholder="カードを指定して破壊する能力でクリーチャーの下にあるカードを指定できますか",
            lines=3,
            text_size="lg",
        )
    with gr.Row():
        submit = gr.Button(value="検索", variant="secondary", elem_id="full-width-button")
        top_k = gr.Slider(1, 10, label="表示数", step=1, value=5, interactive=True)

    submit_click_event = submit.click(fn=hybrid_search, inputs=[input, top_k], outputs=output)

demo.launch()