wasmdashai commited on
Commit
30d6349
·
verified ·
1 Parent(s): 6b4466a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +493 -0
app.py ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ from df.enhance import enhance, init_df, load_audio, save_audio
5
+ import time
6
+ import os
7
+ import gradio as gr
8
+ import re
9
+ from gradio.themes.base import Base
10
+ from datasets import load_dataset
11
+ from datasets import Dataset,DatasetDict
12
+ import librosa
13
+ import torch
14
+
15
+ model_enhance, df_state, _ = init_df()
16
+ def Read_DataSet(link):
17
+ dataset = load_dataset(link,token=os.environ.get("auth_acess_data"))
18
+ df = dataset["train"].to_pandas()
19
+ return df
20
+
21
+
22
+
23
+
24
+ def remove_nn(wav, sample_rate=16000):
25
+
26
+ audio=librosa.resample(wav,orig_sr=sample_rate,target_sr=df_state.sr(),)
27
+
28
+ audio=torch.tensor([audio])
29
+ # audio, _ = load_audio('full_generation.wav', sr=df_state.sr())
30
+ print(audio)
31
+
32
+ enhanced = enhance(model_enhance, df_state, audio)
33
+ print(enhanced)
34
+ # save_audio("enhanced.wav", enhanced, df_state.sr())
35
+ audiodata=librosa.resample(enhanced[0].numpy(),orig_sr=df_state.sr(),target_sr=sample_rate)
36
+
37
+ return 16000, audiodata/np.max(audiodata)
38
+
39
+
40
+
41
+
42
+ class DataViewerApp:
43
+ def __init__(self,df):
44
+ #df=Read_DataSet(link)
45
+ self.df=df
46
+ # self.df1=df
47
+ self.data =self.df[['text','speaker_id','secs','flag']]
48
+ self.dataa =self.df[['text','speaker_id','secs','flag']]
49
+ self.sdata =self.df['audio'].to_list() # Separate audio data storage
50
+ self.current_page = 0
51
+ self.current_selected = -1
52
+ self.speaker_id= -1
53
+ class Seafoam(Base):
54
+ pass
55
+ self.seafoam = Seafoam()
56
+
57
+ #self.data =df[['text','speaker_id']]
58
+ #self.sdata = df['audio'].to_list() # Separate audio data storage
59
+ #self.current_page = 0
60
+ #self.current_selected = -1
61
+ def set1(self,df):
62
+ self.data =df[['text','speaker_id','secs','flag']]
63
+ self.sdata =df['audio'].to_list()
64
+ return self.get_page_data(self.current_page)
65
+ def settt(self,df):
66
+ self.df=pd.DataFrame()
67
+ self.data =pd.DataFrame()
68
+ self.sdata =[]
69
+ self.df=df
70
+ self.data =df[['text','speaker_id','secs','flag']]
71
+ self.dataa =df[['text','speaker_id','secs','flag']]
72
+ self.sdata =df['audio'].to_list()
73
+ self.current_page = 0
74
+ self.current_selected =1
75
+ self.speaker_id= -1
76
+ return self.data
77
+ def clear(self,text):
78
+ text=re.sub(r'[a-zA-Z]', '', text)
79
+ return text
80
+ def clearenglish(self):
81
+ for i in range(len(self.df)):
82
+ x=self.clear(self.df['text'][i])
83
+ x1=self.df['text'][i]
84
+ if x!=x1:
85
+ self.df.drop(i, inplace=True)
86
+
87
+ self.df.reset_index(drop=True, inplace=True)
88
+ return self.settt(self.df)
89
+ def splitt(self,link,num):
90
+ df=download_youtube_video(link,num)
91
+ v=self.settt(df)
92
+ return self.get_page_data(self.current_page),len(v)
93
+ def getdataset(self,link):
94
+ self.link_dataset=link
95
+ df=Read_DataSet(link)
96
+ v=self.settt(df)
97
+ return self.get_page_data(self.current_page),len(v),self.link_dataset
98
+ def remove_hamza_from_alif_and_symbols(self,text):
99
+ text = re.sub(r"[أإآ]", "ا", text)
100
+ text = re.sub(r"ٱ", "ا", text)
101
+ text = re.sub(r"[_\-\+\,\(\)]", " ", text)
102
+ text = re.sub(r"\d", " ", text)
103
+ return text
104
+ def save_row(self, text,data_oudio):
105
+ if text!="" :
106
+ row = self.data.iloc[self.current_selected]
107
+ row['text'] = text
108
+ row['flag']=1
109
+ self.data.iloc[self.current_selected] = row
110
+ sr,audio=data_oudio
111
+ if sr!=16000:
112
+ audio=audio.astype(np.float32)
113
+ audio/=np.max(np.abs(audio))
114
+ audio=librosa.resample(audio,orig_sr=sr,target_sr=16000)
115
+
116
+
117
+
118
+
119
+
120
+ self.sdata[self.current_selected] = audio
121
+ self.df['text'][self.current_selected] =text
122
+ self.df['audio'][self.current_selected] = audio
123
+ self.df['flag'][self.current_selected] =1
124
+ return self.get_page_data(self.current_page),None,""
125
+ def GetDataset_2(self,filename,ds=1.5):
126
+ audios_data = []
127
+ audios_samplerate = []
128
+ num_specker=[]
129
+ texts=[]
130
+ secs=[]
131
+
132
+ audiodata,samplerate = librosa.load(filename, sr=16000) # Removed extra indent here
133
+ audios_data.append(audiodata*ds)
134
+ audios_samplerate.append(samplerate)
135
+ texts.append(filename.replace('.wav',''))
136
+ secs.append(round(len(audiodata)/samplerate,2))
137
+ df = pd.DataFrame()
138
+ df['secs'] = secs
139
+ df['audio'] = audios_data
140
+ df['samplerate'] = audios_samplerate
141
+ df['text'] =os.path.splitext(os.path.basename(filename))[0]
142
+ df['speaker_id'] =self.speaker_id
143
+ df['_speaker_id'] =self.speaker_id
144
+ df['flag']=1
145
+ df = df[['text','audio','samplerate','secs','speaker_id','_speaker_id','flag']]
146
+ self.df = pd.concat([self.df, df], axis=0, ignore_index=True)
147
+ self.data =self.df[['text','speaker_id','secs','flag']]
148
+ self.sdata =self.df['audio'].to_list()
149
+
150
+ return self.get_page_data(self.current_page)
151
+ def trim_audio(self, text,data_oudio):
152
+ if text!="" :
153
+ audios_data = []
154
+ audios_samplerate = []
155
+ sr,audio=data_oudio
156
+ audio=audio.astype(np.float32)
157
+ audio/=np.max(np.abs(audio))
158
+ audio=librosa.resample(audio,orig_sr=sr,target_sr=16000)
159
+ audios_data.append(audio)
160
+ secs=round(len(audios_data)/16000,2)
161
+ audios_samplerate.append(16000)
162
+ df = pd.DataFrame()
163
+ df['secs'] = secs
164
+ df['audio'] =[ audio]
165
+ df['samplerate'] = 16000
166
+ df['text'] =text
167
+ df['speaker_id'] =self.speaker_id
168
+ df['_speaker_id'] =self.speaker_id
169
+ df['flag']=1
170
+ df = df[['text','audio','samplerate','secs','speaker_id','_speaker_id','flag']]
171
+ self.df = pd.concat([self.df, df], axis=0, ignore_index=True)
172
+ self.data =self.df[['text','speaker_id','secs','flag']]
173
+ self.sdata =self.df['audio'].to_list()
174
+ return self.get_page_data(self.current_page),None,""
175
+ def order_data(self):
176
+ self.df[['text','speaker_id','secs','flag']]=self.data
177
+ self.df=self.df.sort_values(by=['flag'], ascending=False)
178
+ vv=self.settt(self.df)
179
+ return vv
180
+ def connect_drive(self):
181
+ from google.colab import drive
182
+ drive.mount('/content/drive')
183
+ def get_page_data(self, page_number):
184
+ start_index = page_number * 10
185
+ end_index = start_index + 10
186
+ return self.data.iloc[start_index:end_index]
187
+ def update_page(self, new_page):
188
+ self.current_page = new_page
189
+ return (
190
+ self.get_page_data(self.current_page),
191
+ self.current_page > 0,
192
+ self.current_page < len(self.data) // 10 - 1,
193
+ self.current_page
194
+ )
195
+ def clear_txt(self):
196
+ self.data['text'] =self.data['text'].apply(self.remove_hamza_from_alif_and_symbols)
197
+ return self.get_page_data(self.current_page)
198
+ def get_text_from_audio(self,audio):
199
+ if len(audio)!=0:
200
+ sf.write("temp.wav", audio, 16000,format='WAV')
201
+
202
+ client = Client("MohamedRashad/Arabic-Whisper-CodeSwitching-Edition")
203
+ result = client.predict(
204
+ inputs=handle_file('temp.wav'),
205
+ api_name="/predict_1"
206
+ )
207
+ return result
208
+ else:
209
+ return ""
210
+
211
+ def on_column_dropdown_change_operater(self,selected_column,selected_column1):
212
+ if selected_column1==">":
213
+ return self.data[self.data['secs'] > selected_column ]
214
+ elif selected_column1=="<":
215
+ return self.data[self.data['secs'] < selected_column]
216
+ elif selected_column1=="=":
217
+ return self.data[self.data['secs'] == selected_column]
218
+ else:
219
+ return self.data
220
+ # Perform actions based on the selected column
221
+
222
+ def on_column_dropdown_change(self,selected_column):
223
+ data=self.df
224
+ if selected_column=="all":
225
+
226
+ return self.set1(data),len(data)
227
+ elif selected_column=="0":
228
+ data=data[data['flag'] ==0]
229
+ return self.set1(data),len(data)
230
+ else :
231
+ data=data[data['flag'] ==1]
232
+ return self.set1(data),len(data)
233
+
234
+ def on_select(self,evt:gr.SelectData):
235
+ index_now = evt.index[0]
236
+ self.current_selected = (self.current_page * 10) + index_now
237
+ row = self.data.iloc[self.current_selected]
238
+ row_audio = self.sdata[self.current_selected]
239
+ self.speaker_id=row['speaker_id']
240
+ return (16000, row_audio), row['text']
241
+ def finsh_data(self):
242
+ self.df['audio'] = self.sdata
243
+ self.df[['text','speaker_id','secs','flag']]=self.data
244
+
245
+ return self.df
246
+ def All_enhance(self):
247
+ for i in range(0,len(self.sdata)):
248
+ _,y=remove_nn(self.sdata[i])
249
+ self.sdata[i]=y
250
+ return self.data
251
+
252
+ return self.get_page_data(self.current_page)
253
+ def get_output_audio(self):
254
+ return self.sdata[self.current_selected] if self.current_selected >= 0 else None
255
+ def Convert_DataFreme_To_DataSet(self,namedata):
256
+ df=self.df
257
+
258
+ df['audio'] = df['audio'].apply(lambda x: np.array(x, dtype=np.float32))
259
+ if "__index_level_0__" in df.columns:
260
+ df =df.drop(columns=["__index_level_0__"])
261
+ train_df =df
262
+
263
+
264
+
265
+ ds = {
266
+ "train": Dataset.from_pandas(train_df)
267
+
268
+ }
269
+
270
+ dataset = DatasetDict(ds)
271
+ dataset.push_to_hub(namedata,token=os.environ.get("auth_acess_data"),private=True)
272
+ return namedata
273
+
274
+ def delete_row(self):
275
+ if len(self.data)!=0 or self.current_selected != -1 :
276
+ self.data.drop(self.current_selected, inplace=True)
277
+ self.data.reset_index(drop=True, inplace=True)
278
+ self.df.drop(self.current_selected, inplace=True)
279
+ self.df.reset_index(drop=True, inplace=True)
280
+ self.sdata.pop(self.current_selected)
281
+ self.current_selected = -1
282
+ # self.audio_player.update(None) # Clear audio player
283
+ # self.txt_audio.update("") # Clear text input
284
+
285
+ return self.get_page_data(self.current_page),None,""
286
+ def login(self, token):
287
+ # Your actual login logic here (e.g., database check)
288
+ if token == os.environ.get("token_login") :
289
+ return gr.update(visible=False),gr.update(visible=True),True
290
+ else:
291
+ return gr.update(visible=True), gr.update(visible=False),None
292
+ def load_demo(self,sesion):
293
+ if sesion:
294
+ return gr.update(visible=False),gr.update(visible=True)
295
+
296
+ return gr.update(visible=True), gr.update(visible=False)
297
+ def start_tab1(self):
298
+ with gr.Blocks(theme=self.seafoam, css="""
299
+ table.svelte-82jkx.svelte-82jkx{
300
+ font-size: x-small;
301
+ }
302
+ .checkbox-group label {
303
+ background-color: #f0f0f5; /* لون خلفية فاتح */
304
+ padding: 10px;
305
+ border-radius: 5px; /* زوايا دائرية */
306
+ }
307
+ const textbox = document.querySelector('.txt_audio'); // تحديد المكون النصي
308
+ textbox.style.direction = 'ltr';
309
+ .checkbox-group input:checked + label {
310
+ background-color: #e0f0ff; /* لون خلفية عند التحديد */
311
+ font-weight: bold;
312
+ }
313
+ """) as demo:
314
+ sesion_state = gr.State()
315
+
316
+ with gr.Column(scale=1, min_width=200,visible=True) as login_panal: # Login panel
317
+ gr.Markdown("## auth acess page")
318
+ token_login = gr.Textbox(label="token")
319
+
320
+ login_button = gr.Button("Login")
321
+ with gr.Column(scale=1, visible=False) as main_panel:
322
+ with gr.Row(equal_height=False):
323
+ with gr.Tabs():
324
+ with gr.TabItem("Processing Data "):
325
+ self.data_Processing()
326
+ login_button.click(self.login, inputs=[token_login], outputs=[login_panal,main_panel,sesion_state])
327
+ demo.load(self.load_demo, [sesion_state], [login_panal,main_panel])
328
+
329
+
330
+ return demo
331
+ def create_Tabs(self): # fix: method was missing
332
+ #with gr.Blocks() as interface:
333
+ with gr.Tabs():
334
+ with gr.TabItem("Excel"):
335
+ with gr.Row():
336
+ txt_filepath_excel=gr.Text("NameFile")
337
+ txt_text_excel=gr.Text("Text" )
338
+ but_send_excel=gr.Button("Send",size="sm")
339
+
340
+ with gr.TabItem("CVC"):
341
+ with gr.Row():
342
+ txt_filepath_cvc=gr.Text("File")
343
+ txt_text_cvc=gr.Text("Text" )
344
+ but_send_cvc=gr.Button("Send",size="sm")
345
+ with gr.TabItem("DateSet"):
346
+ self.txt_filepath_dir=gr.Text(placeholder="link dir",interactive=True)
347
+ #self.txt_text=gr.Text("Text" )
348
+ self.but_send_dir=gr.Button("Send",size="sm")
349
+ with gr.TabItem("Dir"):
350
+ txt_filepath_dateSet=gr.Text("link DateSet")
351
+ #self.txt_text=gr.Text("Text" )
352
+ but_send_dateSet=gr.Button("Send",size="sm")
353
+ with gr.TabItem("Cut Video"):
354
+ self.txt_filepath_dateSet=gr.Text("رابط الفيديو",interactive=True)
355
+ self.num = gr.Number(label=" ادخل رقم طبيعي")
356
+
357
+ self.but_send_dateSet_cut=gr.Button("Send",size="sm")
358
+
359
+ def Convert_DataFrame_to_Bitch(self):
360
+ with gr.Row():
361
+ self.txt_output_dir=gr.Text("output Name dir",interactive=True)
362
+ self.txt_train_batch_size=gr.Text("train_batch_size",interactive=True)
363
+ self.txt_eval_batch_size=gr.Text("eval_batch_size",interactive=True )
364
+ self.but_convert_bitch=gr.Button("Convert Bitch",size="sm")
365
+ with gr.Row():
366
+ self.label_Bitch=gr.Label("Dir Output Bitch :")
367
+
368
+
369
+ def data_Processing(self):
370
+
371
+ #with gr.Column(scale=2,min_width=40):
372
+
373
+ #with gr.Row():
374
+ #with gr.Accordion("Open Data", open=False):
375
+ #with gr.Row():
376
+ # self.txt_filepath_dateSet=gr.Text("link DateSet",interactive=True)
377
+ #self.txt_text=gr.Text("Text" )
378
+ #self.but_send_dateSet=gr.Button("Send",size="sm")
379
+
380
+
381
+ with gr.Accordion("Install Data", open=False):
382
+ with gr.Row():
383
+ self.create_Tabs()
384
+ with gr.Row():
385
+ columns = []
386
+ columns1 = []
387
+
388
+ columns =["all","0","1"]
389
+ columns.append("all")
390
+ self.labell=gr.Label("count:")
391
+ self.column_dropdown = gr.Dropdown(choices=columns, label="speaker_id")
392
+ with gr.Row():
393
+
394
+ columns1=unique_speaker_ids =self.df['secs'].unique().tolist()
395
+ columns1.append("all")
396
+ self.column_dropdown1 = gr.Dropdown(choices=columns1 , label="secs")
397
+
398
+ self.column_dropdown11 = gr.Dropdown(choices=["all","<",">","="], label="operater")
399
+
400
+
401
+ with gr.Row():
402
+
403
+
404
+ with gr.Column(scale=5):
405
+ gr.Markdown("## Data Viewer")
406
+ #d=self.get_page_data(self.current_page)
407
+ # Correct the indentation here:
408
+ self.data_table = gr.DataFrame( # Notice 'self.' here
409
+ value=self.get_page_data(self.current_page),
410
+ headers=["Text","speaker_id"])
411
+
412
+ # interactive=True
413
+
414
+ #self.data_table1 = gr.DataFrame(headers=[ "Text","Id_spiker"])
415
+ with gr.Row(equal_height=False):
416
+ self.prev_button = gr.Button("<",scale=1, size="sm",min_width=30)
417
+
418
+ self.page_number = gr.Number(value=self.current_page + 1, label="Page",scale=1,min_width=100)
419
+ self.next_button = gr.Button(">",scale=1, size="sm",min_width=30)
420
+
421
+ with gr.Row(equal_height=False):
422
+
423
+ #inputs=gr.CheckboxGroup(["John", "Mary", "Peter", "Susan"])
424
+ self.but_cleartxt=gr.Button("clear Text",variant="primary",size="sm",min_width=30)
425
+ self.btn_all_enhance=gr.Button("All enhance",size="sm",variant="primary",min_width=30)
426
+ self.btn_ClearEnglish=gr.Button("ClearEnglish",size="sm",variant="primary",min_width=30)
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+ with gr.Column(scale=4):
438
+ gr.Markdown("## Row Data")
439
+ self.txt_audio = gr.Textbox(label="Text", interactive=True,rtl=True)
440
+ with gr.Row(equal_height=False):
441
+ self.audio_player = gr.Audio(label="Audio")
442
+ with gr.Row(equal_height=False):
443
+ self.btn_del = gr.Button("Delete ", size="sm",variant="primary",min_width=50)
444
+ self.btn_save = gr.Button("Save", size="sm",variant="primary",min_width=50)
445
+ self.totext=gr.Button("to text",size="sm" ,variant="primary",min_width=50)
446
+
447
+ # with gr.Row(equal_height=False):
448
+
449
+
450
+ with gr.Row(equal_height=False):
451
+ self.btn_newsave=gr.Button("New Save Cut",size="sm",variant="primary",min_width=50)
452
+ self.btn_enhance = gr.Button("enhance ", size="sm",variant="primary",min_width=50)
453
+ self.order= gr.Button("order ", size="sm",variant="primary",min_width=50)
454
+
455
+
456
+ with gr.Row(equal_height=False,variant="heading-1"):
457
+ with gr.Accordion("Save Bitch", open=False):
458
+
459
+ self.txt_dataset=gr.Text("save dataset",interactive=True)
460
+ self.btn_convertDataset=gr.Button("Dir Output Bitch :",variant="primary")
461
+ self.label_dataset=gr.Label("count:")
462
+ self.order.click(self.order_data,[],[self.data_table])
463
+ self.btn_ClearEnglish.click(self.clearenglish,[],[self.data_table])
464
+ self.but_send_dir.click(self.getdataset, [self.txt_filepath_dir],[self.data_table,self.labell,self.txt_dataset])
465
+ #self.but_send_dateSet_cut.click(self.splitt, [self.txt_filepath_dateSet,self.num],[self.data_table,self.labell])
466
+ #self.txt_audio.Style(container=False, css=".txt_audio { direction: rtl; }")
467
+ #self.but_send_dateSet.click(self.Read_DataSet, [self.txt_filepath_dateSet],[self.data_table ])
468
+ self.data_table.select(self.on_select, None, [self.audio_player, self.txt_audio])
469
+ self.prev_button.click(lambda page: self.update_page(page - 1), [self.page_number], [self.data_table, self.prev_button, self.next_button, self.page_number])
470
+ #self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
471
+ self.next_button.click(lambda page: self.update_page(page + 1), [self.page_number], [self.data_table, self.prev_button, self.next_button, self.page_number])
472
+ self.column_dropdown.change(self.on_column_dropdown_change,[self.column_dropdown], [self.data_table,self.labell])
473
+ self.column_dropdown11.change(self.on_column_dropdown_change_operater,[self.column_dropdown1,self.column_dropdown11], [self.data_table])
474
+ self.btn_convertDataset.click(self.Convert_DataFreme_To_DataSet,[self.txt_dataset],[self.label_dataset])
475
+ self.totext.click(lambda:self.get_text_from_audio(self.get_output_audio()), [], self.txt_audio)
476
+ self.btn_newsave.click(self.trim_audio,[self.txt_audio,self.audio_player],[self.data_table,self.audio_player,self.txt_audio])
477
+ self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table,self.audio_player,self.txt_audio])
478
+ #self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
479
+ self.btn_all_enhance.click(self.All_enhance,[],[self.data_table])
480
+ #self.btn_enhance.click(remove_nn, [self.audio_player], [self.audio_player])
481
+ self.but_cleartxt.click(self.clear_txt,[],[self.data_table])
482
+ self.btn_del.click(self.delete_row,[], [self.data_table,self.audio_player,self.txt_audio])
483
+ self.btn_enhance.click(lambda: remove_nn(self.get_output_audio()), [], self.audio_player)
484
+ #self.column_dropdown.change(lambda selected_column:self.settt(self.on_column_dropdown_change(selected_column)), [self.column_dropdown], [self.data_table])
485
+ #self.column_dropdown.change(lambda selected_column:self.settt(x.on_column_dropdown_change(selected_column)), [x.column_dropdown], [self.data_table])
486
+ #self.btn_denoise.click(self.remove_nn, [self.audio_player], [self.audio_player])
487
+
488
+
489
+
490
+ dff=pd.DataFrame(columns=['text', 'audio', 'samplerate', 'secs', 'speaker_id', '_speaker_id','flag'])
491
+ app=DataViewerApp(dff)
492
+ s=app.start_tab1()
493
+ s.launch()