Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoTokenizer,VitsModel | |
| import os | |
| import numpy as np | |
| token=os.environ.get("key_") | |
| #tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vtk",token=token) | |
| models= {} | |
| import noisereduce as nr | |
| import torch | |
| from typing import Any, Callable, Optional, Tuple, Union,Iterator | |
| import torch.nn as nn # Import the missing module | |
| def remove_noise_nr(audio_data,sr=16000): | |
| reduced_noise = nr.reduce_noise(y=audio_data,hop_length=256, sr=sr) | |
| return reduced_noise | |
| def _inference_forward_stream( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| speaker_embeddings: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| padding_mask: Optional[torch.Tensor] = None, | |
| chunk_size: int = 32, # Chunk size for streaming output | |
| is_streaming: bool = True, | |
| ) -> Iterator[torch.Tensor]: | |
| """Generates speech waveforms in a streaming fashion.""" | |
| if attention_mask is not None: | |
| padding_mask = attention_mask.unsqueeze(-1).float() | |
| else: | |
| padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() | |
| text_encoder_output = self.text_encoder( | |
| input_ids=input_ids, | |
| padding_mask=padding_mask, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state | |
| hidden_states = hidden_states.transpose(1, 2) | |
| input_padding_mask = padding_mask.transpose(1, 2) | |
| prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means | |
| prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances | |
| if self.config.use_stochastic_duration_prediction: | |
| log_duration = self.duration_predictor( | |
| hidden_states, | |
| input_padding_mask, | |
| speaker_embeddings, | |
| reverse=True, | |
| noise_scale=self.noise_scale_duration, | |
| ) | |
| else: | |
| log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
| length_scale = 1.0 / self.speaking_rate | |
| duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) | |
| predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() | |
| # Create a padding mask for the output lengths of shape (batch, 1, max_output_length) | |
| indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) | |
| output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) | |
| output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) | |
| # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length) | |
| attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) | |
| batch_size, _, output_length, input_length = attn_mask.shape | |
| cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) | |
| indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) | |
| valid_indices = indices.unsqueeze(0) < cum_duration | |
| valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) | |
| padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] | |
| attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask | |
| # Expand prior distribution | |
| prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) | |
| prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) | |
| prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale | |
| latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) | |
| spectrogram = latents * output_padding_mask | |
| if is_streaming: | |
| for i in range(0, spectrogram.size(-1), chunk_size): | |
| with torch.no_grad(): | |
| wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings) | |
| yield wav.squeeze().cpu().numpy() | |
| else: | |
| wav=self.decoder(spectrogram,speaker_embeddings) | |
| yield wav.squeeze().cpu().numpy() | |
| def get_model(name_model): | |
| global models | |
| if name_model in models: | |
| if name_model=='wasmdashai/vits-en-v1': | |
| tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-en-v1",token=token) | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vtk",token=token) | |
| return models[name_model],tokenizer | |
| models[name_model]=VitsModel.from_pretrained(name_model,token=token).cuda() | |
| models[name_model].decoder.apply_weight_norm() | |
| # torch.nn.utils.weight_norm(self.decoder.conv_pre) | |
| # torch.nn.utils.weight_norm(self.decoder.conv_post) | |
| for flow in models[name_model].flow.flows: | |
| torch.nn.utils.weight_norm(flow.conv_pre) | |
| torch.nn.utils.weight_norm(flow.conv_post) | |
| if name_model=='wasmdashai/vits-en-v1': | |
| tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-en-v1",token=token) | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vtk",token=token) | |
| return models[name_model],tokenizer | |
| zero = torch.Tensor([0]).cuda() | |
| print(zero.device) # <-- 'cpu' 🤔 | |
| import torch | |
| TXT="""السلام عليكم ورحمة الله وبركاتة يا هلا وسهلا ومراحب بالغالي اخباركم طيبين ان شاء الله ارحبوا على العين والراس """ | |
| def modelspeech(text=TXT,name_model="wasmdashai/vits-ar-sa-huba-v2",speaking_rate=16000): | |
| model,tokenizer=get_model(name_model) | |
| inputs = tokenizer(text, return_tensors="pt") | |
| model.speaking_rate=speaking_rate | |
| with torch.no_grad(): | |
| wav=list(_inference_forward_stream(model,input_ids=inputs.input_ids.cuda(),attention_mask=inputs.attention_mask.cuda(),speaker_embeddings= None,is_streaming=False))[0] | |
| # with torch.no_grad(): | |
| # wav = model(input_ids=inputs["input_ids"].cuda()).waveform.cpu().numpy().reshape(-1)#.detach() | |
| return (model.config.sampling_rate,wav) | |
| model_choices = gr.Dropdown( | |
| choices=[ | |
| "wasmdashai/vits-ar-sa-huba-v1", | |
| "wasmdashai/vits-ar-sa-huba-v2", | |
| "wasmdashai/vits-ar-sa-A", | |
| "wasmdashai/vits-ar-ye-sa", | |
| "wasmdashai/vits-ar-sa-M-v1", | |
| 'wasmdashai/vits-en-v1' | |
| ], | |
| label="اختر النموذج", | |
| value="wasmdashai/vits-ar-sa-huba-v2", | |
| ) | |
| demo = gr.Interface(fn=modelspeech, inputs=["text",model_choices,gr.Slider(0.1, 1, step=0.1,value=0.8)], outputs=["audio"]) | |
| demo.queue() | |
| demo.launch() | |