Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import numpy as np | |
| import torch | |
| from torch import nn | |
| import math | |
| from typing import Any, Callable, Optional, Tuple, Union | |
| from torch.cuda.amp import autocast, GradScaler | |
| from .vits_config import VitsConfig,VitsPreTrainedModel | |
| from .flow import VitsResidualCouplingBlock | |
| from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor | |
| from .encoder import VitsTextEncoder | |
| from .decoder import VitsHifiGan | |
| from .posterior_encoder import VitsPosteriorEncoder | |
| from .discriminator import VitsDiscriminator | |
| from .vits_output import VitsModelOutput, VitsTrainingOutput | |
| from .dataset_features_collector import FeaturesCollectionDataset | |
| from .feature_extraction import VitsFeatureExtractor | |
| import os | |
| import sys | |
| from typing import Optional | |
| import tempfile | |
| from torch.cuda.amp import autocast, GradScaler | |
| from IPython.display import clear_output | |
| from transformers import set_seed | |
| import wandb | |
| import logging | |
| import copy | |
| Lst=['input_ids', | |
| 'attention_mask', | |
| 'waveform', | |
| 'labels', | |
| 'labels_attention_mask', | |
| 'mel_scaled_input_features'] | |
| def covert_cuda_batch(d): | |
| #return d | |
| for key in Lst: | |
| d[key]=d[key].cuda(non_blocking=True) | |
| # for key in d['text_encoder_output']: | |
| # d['text_encoder_output'][key]=d['text_encoder_output'][key].cuda(non_blocking=True) | |
| for key in d['posterior_encode_output']: | |
| d['posterior_encode_output'][key]=d['posterior_encode_output'][key].cuda(non_blocking=True) | |
| return d | |
| def generator_loss(disc_outputs): | |
| total_loss = 0 | |
| gen_losses = [] | |
| for disc_output in disc_outputs: | |
| disc_output = disc_output | |
| loss = torch.mean((1 - disc_output) ** 2) | |
| gen_losses.append(loss) | |
| total_loss += loss | |
| return total_loss, gen_losses | |
| def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
| loss = 0 | |
| real_losses = 0 | |
| generated_losses = 0 | |
| for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs): | |
| real_loss = torch.mean((1 - disc_real) ** 2) | |
| generated_loss = torch.mean(disc_generated**2) | |
| loss += real_loss + generated_loss | |
| real_losses += real_loss | |
| generated_losses += generated_loss | |
| return loss, real_losses, generated_losses | |
| def feature_loss(feature_maps_real, feature_maps_generated): | |
| loss = 0 | |
| for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated): | |
| for real, generated in zip(feature_map_real, feature_map_generated): | |
| real = real.detach() | |
| loss += torch.mean(torch.abs(real - generated)) | |
| return loss * 2 | |
| def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | |
| """ | |
| z_p, logs_q: [b, h, t_t] | |
| m_p, logs_p: [b, h, t_t] | |
| """ | |
| z_p = z_p.float() | |
| logs_q = logs_q.float() | |
| m_p = m_p.float() | |
| logs_p = logs_p.float() | |
| z_mask = z_mask.float() | |
| kl = logs_p - logs_q - 0.5 | |
| kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p) | |
| kl = torch.sum(kl * z_mask) | |
| l = kl / torch.sum(z_mask) | |
| return l | |
| #............................................. | |
| # def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask): | |
| # kl = prior_log_variance - posterior_log_variance - 0.5 | |
| # kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance) | |
| # kl = torch.sum(kl * labels_mask) | |
| # loss = kl / torch.sum(labels_mask) | |
| # return loss | |
| def get_state_grad_loss(k1=True, | |
| mel=True, | |
| duration=True, | |
| generator=True, | |
| discriminator=True): | |
| return {'k1':k1,'mel':mel,'duration':duration,'generator':generator,'discriminator':discriminator} | |
| def clip_grad_value_(parameters, clip_value, norm_type=2): | |
| if isinstance(parameters, torch.Tensor): | |
| parameters = [parameters] | |
| parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
| norm_type = float(norm_type) | |
| if clip_value is not None: | |
| clip_value = float(clip_value) | |
| total_norm = 0 | |
| for p in parameters: | |
| param_norm = p.grad.data.norm(norm_type) | |
| total_norm += param_norm.item() ** norm_type | |
| if clip_value is not None: | |
| p.grad.data.clamp_(min=-clip_value, max=clip_value) | |
| total_norm = total_norm ** (1. / norm_type) | |
| return total_norm | |
| class VitsModel(VitsPreTrainedModel): | |
| def __init__(self, config: VitsConfig): | |
| super().__init__(config) | |
| self.config = config | |
| self.text_encoder = VitsTextEncoder(config) | |
| self.flow = VitsResidualCouplingBlock(config) | |
| self.decoder = VitsHifiGan(config) | |
| if config.use_stochastic_duration_prediction: | |
| self.duration_predictor = VitsStochasticDurationPredictor(config) | |
| else: | |
| self.duration_predictor = VitsDurationPredictor(config) | |
| if config.num_speakers > 1: | |
| self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size) | |
| # This is used only for training. | |
| self.posterior_encoder = VitsPosteriorEncoder(config) | |
| self.discriminator = VitsDiscriminator(config) | |
| # These parameters control the synthesised speech properties | |
| self.speaking_rate = config.speaking_rate | |
| self.noise_scale = config.noise_scale | |
| self.noise_scale_duration = config.noise_scale_duration | |
| self.segment_size = self.config.segment_size // self.config.hop_length | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| self.monotonic_alignment_function=self.monotonic_align_max_path | |
| #.................................... | |
| def setMfA(self,fn): | |
| self.monotonic_alignment_function=fn | |
| def monotonic_align_max_path(self,log_likelihoods, mask): | |
| # used for training - awfully slow | |
| # an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py | |
| path = torch.zeros_like(log_likelihoods) | |
| text_length_maxs = mask.sum(1)[:, 0] | |
| latent_length_maxs = mask.sum(2)[:, 0] | |
| indexes = latent_length_maxs - 1 | |
| max_neg_val = -1e9 | |
| for batch_id in range(len(path)): | |
| index = int(indexes[batch_id].item()) | |
| text_length_max = int(text_length_maxs[batch_id].item()) | |
| latent_length_max = int(latent_length_maxs[batch_id].item()) | |
| for y in range(text_length_max): | |
| for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)): | |
| if x == y: | |
| v_cur = max_neg_val | |
| else: | |
| v_cur = log_likelihoods[batch_id, y - 1, x] | |
| if x == 0: | |
| if y == 0: | |
| v_prev = 0.0 | |
| else: | |
| v_prev = max_neg_val | |
| else: | |
| v_prev = log_likelihoods[batch_id, y - 1, x - 1] | |
| log_likelihoods[batch_id, y, x] += max(v_prev, v_cur) | |
| for y in range(text_length_max - 1, -1, -1): | |
| path[batch_id, y, index] = 1 | |
| if index != 0 and ( | |
| index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1] | |
| ): | |
| index = index - 1 | |
| return path | |
| #.................................... | |
| def slice_segments(self,hidden_states, ids_str, segment_size=4): | |
| batch_size, channels, _ = hidden_states.shape | |
| # 1d tensor containing the indices to keep | |
| indices = torch.arange(segment_size).to(ids_str.device) | |
| # extend the indices to match the shape of hidden_states | |
| indices = indices.view(1, 1, -1).expand(batch_size, channels, -1) | |
| # offset indices with ids_str | |
| indices = indices + ids_str.view(-1, 1, 1) | |
| # gather indices | |
| output = torch.gather(hidden_states, dim=2, index=indices) | |
| return output | |
| #.................................... | |
| def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4): | |
| batch_size, _, seq_len = hidden_states.size() | |
| if sample_lengths is None: | |
| sample_lengths = seq_len | |
| ids_str_max = sample_lengths - segment_size + 1 | |
| ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long) | |
| ret = self.slice_segments(hidden_states, ids_str, segment_size) | |
| return ret, ids_str | |
| #.................................... | |
| def resize_speaker_embeddings( | |
| self, | |
| new_num_speakers: int, | |
| speaker_embedding_size: Optional[int] = None, | |
| pad_to_multiple_of: Optional[int] = 2, | |
| ): | |
| if pad_to_multiple_of is not None: | |
| new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of | |
| # first, take care of embed_speaker | |
| if self.config.num_speakers <= 1: | |
| if speaker_embedding_size is None: | |
| raise ValueError( | |
| "The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method." | |
| ) | |
| # create new embedding layer | |
| new_embeddings = nn.Embedding( | |
| new_num_speakers, | |
| speaker_embedding_size, | |
| device=self.device, | |
| ) | |
| # initialize all new embeddings | |
| self._init_weights(new_embeddings) | |
| else: | |
| new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers) | |
| self.embed_speaker = new_embeddings | |
| # then take care of sub-models | |
| self.flow.resize_speaker_embeddings(speaker_embedding_size) | |
| for flow in self.flow.flows: | |
| self._init_weights(flow.wavenet.cond_layer) | |
| self.decoder.resize_speaker_embedding(speaker_embedding_size) | |
| self._init_weights(self.decoder.cond) | |
| self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size) | |
| self._init_weights(self.duration_predictor.cond) | |
| self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size) | |
| self._init_weights(self.posterior_encoder.wavenet.cond_layer) | |
| self.config.num_speakers = new_num_speakers | |
| self.config.speaker_embedding_size = speaker_embedding_size | |
| #.................................... | |
| def get_input_embeddings(self): | |
| return self.text_encoder.get_input_embeddings() | |
| #.................................... | |
| def set_input_embeddings(self, value): | |
| self.text_encoder.set_input_embeddings(value) | |
| #.................................... | |
| def apply_weight_norm(self): | |
| self.decoder.apply_weight_norm() | |
| self.flow.apply_weight_norm() | |
| self.posterior_encoder.apply_weight_norm() | |
| #.................................... | |
| def remove_weight_norm(self): | |
| self.decoder.remove_weight_norm() | |
| self.flow.remove_weight_norm() | |
| self.posterior_encoder.remove_weight_norm() | |
| #.................................... | |
| def discriminate(self, hidden_states): | |
| return self.discriminator(hidden_states) | |
| #.................................... | |
| def get_encoder(self): | |
| return self.text_encoder | |
| #.................................... | |
| def _inference_forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| speaker_embeddings: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| padding_mask: Optional[torch.Tensor] = None, | |
| ): | |
| text_encoder_output = self.text_encoder( | |
| input_ids=input_ids, | |
| padding_mask=padding_mask, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state | |
| hidden_states = hidden_states.transpose(1, 2) | |
| input_padding_mask = padding_mask.transpose(1, 2) | |
| prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means | |
| prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances | |
| if self.config.use_stochastic_duration_prediction: | |
| log_duration = self.duration_predictor( | |
| hidden_states, | |
| input_padding_mask, | |
| speaker_embeddings, | |
| reverse=True, | |
| noise_scale=self.noise_scale_duration, | |
| ) | |
| else: | |
| log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
| length_scale = 1.0 / self.speaking_rate | |
| duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) | |
| predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() | |
| # Create a padding mask for the output lengths of shape (batch, 1, max_output_length) | |
| indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) | |
| output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) | |
| output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) | |
| # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length) | |
| attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) | |
| batch_size, _, output_length, input_length = attn_mask.shape | |
| cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) | |
| indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) | |
| valid_indices = indices.unsqueeze(0) < cum_duration | |
| valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) | |
| padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] | |
| attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask | |
| # Expand prior distribution | |
| prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) | |
| prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) | |
| prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale | |
| latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) | |
| spectrogram = latents * output_padding_mask | |
| waveform = self.decoder(spectrogram, speaker_embeddings) | |
| waveform = waveform.squeeze(1) | |
| sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates) | |
| if not return_dict: | |
| outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:] | |
| return outputs | |
| return VitsModelOutput( | |
| waveform=waveform, | |
| sequence_lengths=sequence_lengths, | |
| spectrogram=spectrogram, | |
| hidden_states=text_encoder_output.hidden_states, | |
| attentions=text_encoder_output.attentions, | |
| ) | |
| #.................................... | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| speaker_id: Optional[int] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| labels: Optional[torch.FloatTensor] = None, | |
| labels_attention_mask: Optional[torch.Tensor] = None, | |
| monotonic_alignment_function: Optional[Callable] = None, | |
| ) -> Union[Tuple[Any], VitsModelOutput]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| monotonic_alignment_function = ( | |
| self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function | |
| ) | |
| if attention_mask is not None: | |
| input_padding_mask = attention_mask.unsqueeze(-1).float() | |
| else: | |
| input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() | |
| if self.config.num_speakers > 1 and speaker_id is not None: | |
| if isinstance(speaker_id, int): | |
| speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) | |
| elif isinstance(speaker_id, (list, tuple, np.ndarray)): | |
| speaker_id = torch.tensor(speaker_id, device=self.device) | |
| if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item(): | |
| raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") | |
| if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))): | |
| raise ValueError( | |
| f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`." | |
| ) | |
| speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) | |
| else: | |
| speaker_embeddings = None | |
| # if inference, return inference forward of VitsModel | |
| if labels is None: | |
| return self._inference_forward( | |
| input_ids, | |
| attention_mask, | |
| speaker_embeddings, | |
| output_attentions, | |
| output_hidden_states, | |
| return_dict, | |
| input_padding_mask, | |
| ) | |
| if labels_attention_mask is not None: | |
| labels_padding_mask = labels_attention_mask.unsqueeze(1).float() | |
| else: | |
| labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device) | |
| labels_padding_mask = labels_attention_mask.unsqueeze(1) | |
| text_encoder_output = self.text_encoder( | |
| input_ids=input_ids, | |
| padding_mask=input_padding_mask, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state | |
| hidden_states = hidden_states.transpose(1, 2) | |
| input_padding_mask = input_padding_mask.transpose(1, 2) | |
| prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means | |
| prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances | |
| latents, posterior_means, posterior_log_variances = self.posterior_encoder( | |
| labels, labels_padding_mask, speaker_embeddings | |
| ) | |
| prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False) | |
| prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2) | |
| with torch.no_grad(): | |
| # negative cross-entropy | |
| # [batch_size, d, latent_length] | |
| prior_variances = torch.exp(-2 * prior_log_variances) | |
| # [batch_size, 1, latent_length] | |
| neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True) | |
| # [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
| neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances) | |
| # [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
| neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances)) | |
| # [batch_size, 1, latent_length] | |
| neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True) | |
| # [batch_size, text_length, latent_length] | |
| neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 | |
| attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1) | |
| attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() | |
| durations = attn.sum(2) | |
| if self.config.use_stochastic_duration_prediction: | |
| log_duration = self.duration_predictor( | |
| hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False | |
| ) | |
| log_duration = log_duration / torch.sum(input_padding_mask) | |
| else: | |
| log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask | |
| log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
| log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask) | |
| # expand priors | |
| prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2) | |
| prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2) | |
| label_lengths = labels_attention_mask.sum(dim=1) | |
| latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size) | |
| waveform = self.decoder(latents_slice, speaker_embeddings) | |
| if not return_dict: | |
| outputs = ( | |
| waveform, | |
| log_duration, | |
| attn, | |
| ids_slice, | |
| input_padding_mask, | |
| labels_padding_mask, | |
| latents, | |
| prior_latents, | |
| prior_means, | |
| prior_log_variances, | |
| posterior_means, | |
| posterior_log_variances, | |
| ) | |
| return outputs | |
| return VitsTrainingOutput( | |
| waveform=waveform, | |
| log_duration=log_duration, | |
| attn=attn, | |
| ids_slice=ids_slice, | |
| input_padding_mask=input_padding_mask, | |
| labels_padding_mask=labels_padding_mask, | |
| latents=latents, | |
| prior_latents=prior_latents, | |
| prior_means=prior_means, | |
| prior_log_variances=prior_log_variances, | |
| posterior_means=posterior_means, | |
| posterior_log_variances=posterior_log_variances, | |
| ) | |
| def slice_segments(self,hidden_states, ids_str, segment_size=4): | |
| batch_size, channels, _ = hidden_states.shape | |
| # 1d tensor containing the indices to keep | |
| indices = torch.arange(segment_size).to(ids_str.device) | |
| # extend the indices to match the shape of hidden_states | |
| indices = indices.view(1, 1, -1).expand(batch_size, channels, -1) | |
| # offset indices with ids_str | |
| indices = indices + ids_str.view(-1, 1, 1) | |
| # gather indices | |
| output = torch.gather(hidden_states, dim=2, index=indices) | |
| return output | |
| #.................................... | |
| def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4): | |
| batch_size, _, seq_len = hidden_states.size() | |
| if sample_lengths is None: | |
| sample_lengths = seq_len | |
| ids_str_max = sample_lengths - segment_size + 1 | |
| ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long) | |
| ret = self.slice_segments(hidden_states, ids_str, segment_size) | |
| return ret, ids_str | |
| def forward_k( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| speaker_id: Optional[int] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| labels: Optional[torch.FloatTensor] = None, | |
| labels_attention_mask: Optional[torch.Tensor] = None, | |
| text_encoder_output=None, | |
| posterior_encode_output=None, | |
| monotonic_alignment_function: Optional[Callable] = None, | |
| ) -> Union[Tuple[Any], VitsModelOutput]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| monotonic_alignment_function = ( | |
| self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function | |
| ) | |
| if attention_mask is not None: | |
| input_padding_mask = attention_mask.unsqueeze(-1).float() | |
| else: | |
| input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() | |
| if self.config.num_speakers > 1 and speaker_id is not None: | |
| if isinstance(speaker_id, int): | |
| speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) | |
| elif isinstance(speaker_id, (list, tuple, np.ndarray)): | |
| speaker_id = torch.tensor(speaker_id, device=self.device) | |
| if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item(): | |
| raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") | |
| if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))): | |
| raise ValueError( | |
| f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`." | |
| ) | |
| speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) | |
| else: | |
| speaker_embeddings = None | |
| # if inference, return inference forward of VitsModel | |
| if labels is None: | |
| return self._inference_forward( | |
| input_ids, | |
| attention_mask, | |
| speaker_embeddings, | |
| output_attentions, | |
| output_hidden_states, | |
| return_dict, | |
| input_padding_mask, | |
| ) | |
| if labels_attention_mask is not None: | |
| labels_padding_mask = labels_attention_mask.unsqueeze(1).float() | |
| else: | |
| labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device) | |
| labels_padding_mask = labels_attention_mask.unsqueeze(1) | |
| if text_encoder_output is None: | |
| text_encoder_output = self.text_encoder( | |
| input_ids=input_ids, | |
| padding_mask=input_padding_mask, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state | |
| hidden_states = hidden_states.transpose(1, 2) | |
| input_padding_mask = input_padding_mask.transpose(1, 2) | |
| prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means | |
| prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances | |
| if posterior_encode_output is None: | |
| latents, posterior_means, posterior_log_variances = self.posterior_encoder( | |
| labels, labels_padding_mask, speaker_embeddings | |
| ) | |
| else: | |
| latents=posterior_encode_output['posterior_latents'] | |
| posterior_means=posterior_encode_output['posterior_means'] | |
| posterior_log_variances=posterior_encode_output['posterior_log_variances'] | |
| prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False) | |
| prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2) | |
| with torch.no_grad(): | |
| # negative cross-entropy | |
| # [batch_size, d, latent_length] | |
| prior_variances = torch.exp(-2 * prior_log_variances) | |
| # [batch_size, 1, latent_length] | |
| neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True) | |
| # [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
| neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances) | |
| # [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
| neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances)) | |
| # [batch_size, 1, latent_length] | |
| neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True) | |
| # [batch_size, text_length, latent_length] | |
| neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 | |
| attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1) | |
| attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() | |
| durations = attn.sum(2) | |
| if self.config.use_stochastic_duration_prediction: | |
| log_duration = self.duration_predictor( | |
| hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False | |
| ) | |
| log_duration = log_duration / torch.sum(input_padding_mask) | |
| else: | |
| log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask | |
| log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
| log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask) | |
| # expand priors | |
| prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2) | |
| prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2) | |
| label_lengths = labels_attention_mask.sum(dim=1) | |
| latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size) | |
| waveform = self.decoder(latents_slice, speaker_embeddings) | |
| if not return_dict: | |
| outputs = ( | |
| waveform, | |
| log_duration, | |
| attn, | |
| ids_slice, | |
| input_padding_mask, | |
| labels_padding_mask, | |
| latents, | |
| prior_latents, | |
| prior_means, | |
| prior_log_variances, | |
| posterior_means, | |
| posterior_log_variances, | |
| ) | |
| return outputs | |
| return VitsTrainingOutput( | |
| waveform=waveform, | |
| log_duration=log_duration, | |
| attn=attn, | |
| ids_slice=ids_slice, | |
| input_padding_mask=input_padding_mask, | |
| labels_padding_mask=labels_padding_mask, | |
| latents=latents, | |
| prior_latents=prior_latents, | |
| prior_means=prior_means, | |
| prior_log_variances=prior_log_variances, | |
| posterior_means=posterior_means, | |
| posterior_log_variances=posterior_log_variances, | |
| ) | |
| def trainer(self, | |
| train_dataset_dir = None, | |
| eval_dataset_dir = None, | |
| full_generation_dir = None, | |
| feature_extractor = VitsFeatureExtractor(), | |
| training_args = None, | |
| full_generation_sample_index= 0, | |
| project_name = "Posterior_Decoder_Finetuning", | |
| wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79", | |
| is_used_text_encoder=True, | |
| is_used_posterior_encode=True, | |
| dict_state_grad_loss=None, | |
| nk=1, | |
| path_save_model='./', | |
| maf=None | |
| ): | |
| os.makedirs(training_args.output_dir,exist_ok=True) | |
| logger = logging.getLogger(f"{__name__} Training") | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| wandb.login(key= wandbKey) | |
| wandb.init(project= project_name,config = training_args.to_dict()) | |
| if dict_state_grad_loss is None: | |
| dict_state_grad_loss=get_state_grad_loss() | |
| set_seed(training_args.seed) | |
| # Apply Weight Norm Decoder | |
| # self.apply_weight_norm() | |
| # Save Config | |
| self.config.save_pretrained(training_args.output_dir) | |
| train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir, | |
| device = self.device | |
| ) | |
| eval_dataset = None | |
| if training_args.do_eval: | |
| eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir, | |
| device = self.device | |
| ) | |
| full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir, | |
| device = self.device | |
| ) | |
| self.full_generation_sample = full_generation_dataset[full_generation_sample_index] | |
| # init optimizer, lr_scheduler | |
| optimizer = torch.optim.AdamW( | |
| self.parameters(), | |
| training_args.learning_rate, | |
| betas=[training_args.adam_beta1, training_args.adam_beta2], | |
| eps=training_args.adam_epsilon, | |
| ) | |
| # hack to be able to train on multiple device | |
| # disc_optimizer = torch.optim.AdamW( | |
| # self.discriminator.parameters(), | |
| # training_args.learning_rate, | |
| # betas=[training_args.adam_beta1, training_args.adam_beta2], | |
| # eps=training_args.adam_epsilon, | |
| # ) | |
| lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
| ) | |
| # disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| # disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
| #.......................loop training............................ | |
| global_step = 0 | |
| for epoch in range(training_args.num_train_epochs): | |
| train_losses_sum = 0 | |
| lr_scheduler.step() | |
| # disc_lr_scheduler.step() | |
| print(f" Num Epochs = {epoch}") | |
| if epoch%nk==0: | |
| print('Save checkpoints Model :',int(epoch/nk)) | |
| self.save_pretrained(path_save_model) | |
| for step, batch in enumerate(train_dataset): | |
| # forward through model | |
| # outputs = self.forward( | |
| # labels=batch["labels"], | |
| # labels_attention_mask=batch["labels_attention_mask"], | |
| # speaker_id=batch["speaker_id"] | |
| # ) | |
| #if step==10:break | |
| model_outputs = self.forward_k( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| text_encoder_output =None if is_used_text_encoder else batch['text_encoder_output'], | |
| posterior_encode_output=None if is_used_posterior_encode else batch['posterior_encode_output'], | |
| return_dict=True, | |
| monotonic_alignment_function=maf, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
| target_waveform = batch["waveform"].transpose(1, 2) | |
| target_waveform = self.slice_segments( | |
| target_waveform, | |
| model_outputs.ids_slice * feature_extractor.hop_length, | |
| self.config.segment_size | |
| ) | |
| optimizer.zero_grad() | |
| displayloss={} | |
| # backpropagate | |
| if dict_state_grad_loss['k1']: | |
| loss_kl = kl_loss( | |
| model_outputs.prior_latents, | |
| model_outputs.posterior_log_variances, | |
| model_outputs.prior_means, | |
| model_outputs.prior_log_variances, | |
| model_outputs.labels_padding_mask, | |
| ) | |
| loss_kl=loss_kl*training_args.weight_kl | |
| displayloss['loss_kl']=loss_kl.detach().item() | |
| #if displayloss['loss_kl']>=0: | |
| # loss_kl.backward() | |
| if dict_state_grad_loss['mel']: | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| displayloss['loss_mel'] = loss_mel.detach().item() | |
| train_losses_sum = train_losses_sum + displayloss['loss_mel'] | |
| # if displayloss['loss_mel']>=0: | |
| # loss_mel.backward() | |
| if dict_state_grad_loss['duration']: | |
| loss_duration=torch.sum(model_outputs.log_duration)*training_args.weight_duration | |
| displayloss['loss_duration'] = loss_duration.detach().item() | |
| # if displayloss['loss_duration']>=0: | |
| # loss_duration.backward() | |
| discriminator_target, fmaps_target = self.discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = self.discriminator(model_outputs.waveform.detach()) | |
| if dict_state_grad_loss['discriminator']: | |
| loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss( | |
| discriminator_target, discriminator_candidate | |
| ) | |
| dk={"step_loss_disc": loss_disc.detach().item(), | |
| "step_loss_real_disc": loss_real_disc.detach().item(), | |
| "step_loss_fake_disc": loss_fake_disc.detach().item()} | |
| displayloss['dict_loss_discriminator']=dk | |
| loss_dd = loss_disc# + loss_real_disc + loss_fake_disc | |
| loss_dd.backward() | |
| discriminator_target, fmaps_target = self.discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = self.discriminator(model_outputs.waveform.detach()) | |
| if dict_state_grad_loss['generator']: | |
| loss_fmaps = feature_loss(fmaps_target, fmaps_candidate) | |
| loss_gen, losses_gen = generator_loss(discriminator_candidate) | |
| loss_gen=loss_gen * training_args.weight_gen | |
| displayloss['loss_gen'] = loss_gen.detach().item() | |
| # loss_gen.backward(retain_graph=True) | |
| loss_fmaps=loss_fmaps * training_args.weight_fmaps | |
| displayloss['loss_fmaps'] = loss_fmaps.detach().item() | |
| # loss_fmaps.backward(retain_graph=True) | |
| total_generator_loss = ( | |
| loss_duration | |
| + loss_mel | |
| + loss_kl | |
| + loss_fmaps | |
| + loss_gen | |
| ) | |
| total_generator_loss.backward() | |
| optimizer.step() | |
| print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, lr {lr_scheduler.get_last_lr()[0]}... ") | |
| print(f"display loss function enable :{displayloss}") | |
| global_step +=1 | |
| # validation | |
| do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0) | |
| if do_eval: | |
| logger.info("Running validation... ") | |
| eval_losses_sum = 0 | |
| cc=0; | |
| for step, batch in enumerate(eval_dataset): | |
| break | |
| if cc>2: break | |
| cc+=1 | |
| with torch.no_grad(): | |
| model_outputs = self.forward( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| return_dict=True, | |
| monotonic_alignment_function=None, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
| loss = loss_mel.detach().item() | |
| eval_losses_sum +=loss | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation =self.forward( | |
| input_ids =full_generation_sample["input_ids"], | |
| attention_mask=full_generation_sample["attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({ | |
| "eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000) | |
| for w in full_generation_waveform],}) | |
| wandb.log({"train_losses":train_losses_sum}) | |
| # add weight norms | |
| # self.remove_weight_norm() | |
| try: | |
| torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt")) | |
| torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt")) | |
| except:pass | |
| logger.info("Running final full generations samples... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation = self.forward( | |
| input_ids=full_generation_sample["labels"], | |
| attention_mask=full_generation_sample["labels_attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({"eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", | |
| sample_rate=16000) for w in full_generation_waveform], | |
| }) | |
| logger.info("***** Training / Inference Done *****") | |
| #.................................... | |
| def trainer_to_cuda(self, | |
| train_dataset_dir = None, | |
| eval_dataset_dir = None, | |
| full_generation_dir = None, | |
| feature_extractor = VitsFeatureExtractor(), | |
| training_args = None, | |
| full_generation_sample_index= 0, | |
| project_name = "Posterior_Decoder_Finetuning", | |
| wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79", | |
| is_used_text_encoder=True, | |
| is_used_posterior_encode=True, | |
| dict_state_grad_loss=None, | |
| nk=1, | |
| path_save_model='./', | |
| maf=None | |
| ): | |
| os.makedirs(training_args.output_dir,exist_ok=True) | |
| logger = logging.getLogger(f"{__name__} Training") | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| wandb.login(key= wandbKey) | |
| wandb.init(project= project_name,config = training_args.to_dict()) | |
| if dict_state_grad_loss is None: | |
| dict_state_grad_loss=get_state_grad_loss() | |
| set_seed(training_args.seed) | |
| scaler = GradScaler(enabled=training_args.fp16) | |
| # Apply Weight Norm Decoder | |
| # self.apply_weight_norm() | |
| # Save Config | |
| self.config.save_pretrained(training_args.output_dir) | |
| train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir, | |
| device = self.device | |
| ) | |
| eval_dataset = None | |
| if training_args.do_eval: | |
| eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir, | |
| device = self.device | |
| ) | |
| full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir, | |
| device = self.device | |
| ) | |
| self.full_generation_sample = full_generation_dataset[full_generation_sample_index] | |
| # init optimizer, lr_scheduler | |
| discriminator=self.discriminator | |
| self.discriminator=None | |
| optimizer = torch.optim.AdamW( | |
| self.parameters(), | |
| training_args.learning_rate, | |
| betas=[training_args.adam_beta1, training_args.adam_beta2], | |
| eps=training_args.adam_epsilon, | |
| ) | |
| # hack to be able to train on multiple device | |
| disc_optimizer = torch.optim.AdamW( | |
| discriminator.parameters(), | |
| training_args.d_learning_rate, | |
| betas=[training_args.d_adam_beta1, training_args.d_adam_beta2], | |
| eps=training_args.adam_epsilon, | |
| ) | |
| lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
| ) | |
| disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
| #.......................loop training............................ | |
| global_step = 0 | |
| for epoch in range(training_args.num_train_epochs): | |
| train_losses_sum = 0 | |
| lr_scheduler.step() | |
| disc_lr_scheduler.step() | |
| print(f" Num Epochs = {epoch}") | |
| if (epoch+1)%nk==0: | |
| clear_output() | |
| print('Save checkpoints Model :',int(epoch/nk)) | |
| self.discriminator=discriminator | |
| self.save_pretrained(path_save_model) | |
| self.discriminator=None | |
| for step, batch in enumerate(train_dataset): | |
| # forward through model | |
| # outputs = self.forward( | |
| # labels=batch["labels"], | |
| # labels_attention_mask=batch["labels_attention_mask"], | |
| # speaker_id=batch["speaker_id"] | |
| # ) | |
| #if step==10:break | |
| batch=covert_cuda_batch(batch) | |
| with autocast(enabled=training_args.fp16): | |
| model_outputs = self.forward_k( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| text_encoder_output =None if is_used_text_encoder else batch['text_encoder_output'], | |
| posterior_encode_output=None if is_used_posterior_encode else batch['posterior_encode_output'], | |
| return_dict=True, | |
| monotonic_alignment_function= maf, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
| target_waveform = batch["waveform"].transpose(1, 2) | |
| target_waveform = self.slice_segments( | |
| target_waveform, | |
| model_outputs.ids_slice * feature_extractor.hop_length, | |
| self.config.segment_size | |
| ) | |
| discriminator_target, fmaps_target = discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = discriminator(model_outputs.waveform.detach()) | |
| #with autocast(enabled=False): | |
| if dict_state_grad_loss['discriminator']: | |
| loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss( | |
| discriminator_target, discriminator_candidate | |
| ) | |
| dk={"step_loss_disc": loss_disc.detach().item(), | |
| "step_loss_real_disc": loss_real_disc.detach().item(), | |
| "step_loss_fake_disc": loss_fake_disc.detach().item()} | |
| displayloss['dict_loss_discriminator']=dk | |
| loss_dd = loss_disc# + loss_real_disc + loss_fake_disc | |
| # loss_dd.backward() | |
| disc_optimizer.zero_grad() | |
| scaler.scale(loss_dd).backward() | |
| scaler.unscale_(disc_optimizer ) | |
| grad_norm_d = clip_grad_value_(discriminator.parameters(), None) | |
| scaler.step(disc_optimizer) | |
| with autocast(enabled=training_args.fp16): | |
| displayloss={} | |
| # backpropagate | |
| if dict_state_grad_loss['k1']: | |
| loss_kl = kl_loss( | |
| model_outputs.prior_latents, | |
| model_outputs.posterior_log_variances, | |
| model_outputs.prior_means, | |
| model_outputs.prior_log_variances, | |
| model_outputs.labels_padding_mask, | |
| ) | |
| loss_kl=loss_kl*training_args.weight_kl | |
| displayloss['loss_kl']=loss_kl.detach().item() | |
| #if displayloss['loss_kl']>=0: | |
| # loss_kl.backward() | |
| if dict_state_grad_loss['mel']: | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| displayloss['loss_mel'] = loss_mel.detach().item() | |
| train_losses_sum = train_losses_sum + displayloss['loss_mel'] | |
| # if displayloss['loss_mel']>=0: | |
| # loss_mel.backward() | |
| if dict_state_grad_loss['duration']: | |
| loss_duration=torch.sum(model_outputs.log_duration)*training_args.weight_duration | |
| displayloss['loss_duration'] = loss_duration.detach().item() | |
| # if displayloss['loss_duration']>=0: | |
| # loss_duration.backward() | |
| discriminator_target, fmaps_target = discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = discriminator(model_outputs.waveform.detach()) | |
| if dict_state_grad_loss['generator']: | |
| loss_fmaps = feature_loss(fmaps_target, fmaps_candidate) | |
| loss_gen, losses_gen = generator_loss(discriminator_candidate) | |
| loss_gen=loss_gen * training_args.weight_gen | |
| displayloss['loss_gen'] = loss_gen.detach().item() | |
| # loss_gen.backward(retain_graph=True) | |
| loss_fmaps=loss_fmaps * training_args.weight_fmaps | |
| displayloss['loss_fmaps'] = loss_fmaps.detach().item() | |
| # loss_fmaps.backward(retain_graph=True) | |
| total_generator_loss = ( | |
| loss_duration | |
| + loss_mel | |
| + loss_kl | |
| + loss_fmaps | |
| + loss_gen | |
| ) | |
| # total_generator_loss.backward() | |
| optimizer.zero_grad() | |
| scaler.scale(total_generator_loss).backward() | |
| scaler.unscale_(optimizer) | |
| grad_norm_g = clip_grad_value_(self.parameters(), None) | |
| scaler.step(optimizer) | |
| scaler.update() | |
| # optimizer.step() | |
| print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, lr {lr_scheduler.get_last_lr()[0]}... ") | |
| print(f"display loss function enable :{displayloss}") | |
| global_step +=1 | |
| # validation | |
| do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0) | |
| if do_eval: | |
| logger.info("Running validation... ") | |
| eval_losses_sum = 0 | |
| cc=0; | |
| for step, batch in enumerate(eval_dataset): | |
| break | |
| if cc>2: break | |
| cc+=1 | |
| with torch.no_grad(): | |
| model_outputs = self.forward( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| return_dict=True, | |
| monotonic_alignment_function=None, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
| loss = loss_mel.detach().item() | |
| eval_losses_sum +=loss | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation =self.forward( | |
| input_ids =full_generation_sample["input_ids"], | |
| attention_mask=full_generation_sample["attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({ | |
| "eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000) | |
| for w in full_generation_waveform],}) | |
| wandb.log({"train_losses":train_losses_sum}) | |
| # add weight norms | |
| # self.remove_weight_norm() | |
| try: | |
| torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt")) | |
| torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt")) | |
| except:pass | |
| logger.info("Running final full generations samples... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation = self.forward( | |
| input_ids=full_generation_sample["labels"], | |
| attention_mask=full_generation_sample["labels_attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({"eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", | |
| sample_rate=16000) for w in full_generation_waveform], | |
| }) | |
| logger.info("***** Training / Inference Done *****") | |
| #.................................... | |
| def trainer_to_cuda(self, | |
| train_dataset_dir = None, | |
| eval_dataset_dir = None, | |
| full_generation_dir = None, | |
| feature_extractor = VitsFeatureExtractor(), | |
| training_args = None, | |
| full_generation_sample_index= 0, | |
| project_name = "Posterior_Decoder_Finetuning", | |
| wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79", | |
| is_used_text_encoder=True, | |
| is_used_posterior_encode=True, | |
| dict_state_grad_loss=None, | |
| nk=1, | |
| path_save_model='./', | |
| maf=None | |
| ): | |
| os.makedirs(training_args.output_dir,exist_ok=True) | |
| logger = logging.getLogger(f"{__name__} Training") | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| wandb.login(key= wandbKey) | |
| wandb.init(project= project_name,config = training_args.to_dict()) | |
| if dict_state_grad_loss is None: | |
| dict_state_grad_loss=get_state_grad_loss() | |
| set_seed(training_args.seed) | |
| scaler = GradScaler(enabled=training_args.fp16) | |
| # Apply Weight Norm Decoder | |
| # self.apply_weight_norm() | |
| # Save Config | |
| self.config.save_pretrained(training_args.output_dir) | |
| train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir, | |
| device = self.device | |
| ) | |
| eval_dataset = None | |
| if training_args.do_eval: | |
| eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir, | |
| device = self.device | |
| ) | |
| full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir, | |
| device = self.device | |
| ) | |
| self.full_generation_sample = full_generation_dataset[full_generation_sample_index] | |
| # init optimizer, lr_scheduler | |
| optimizer = torch.optim.AdamW( | |
| self.parameters(), | |
| training_args.learning_rate, | |
| betas=[training_args.adam_beta1, training_args.adam_beta2], | |
| eps=training_args.adam_epsilon, | |
| ) | |
| # hack to be able to train on multiple device | |
| # disc_optimizer = torch.optim.AdamW( | |
| # self.discriminator.parameters(), | |
| # training_args.d_learning_rate, | |
| # betas=[training_args.d_adam_beta1, training_args.d_adam_beta2], | |
| # eps=training_args.adam_epsilon, | |
| # ) | |
| lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
| ) | |
| # disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| # disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
| #.......................loop training............................ | |
| global_step = 0 | |
| for epoch in range(training_args.num_train_epochs): | |
| train_losses_sum = 0 | |
| lr_scheduler.step() | |
| # disc_lr_scheduler.step() | |
| print(f" Num Epochs = {epoch}") | |
| if (epoch+1)%nk==0: | |
| clear_output() | |
| print('Save checkpoints Model :',int(epoch/nk)) | |
| self.save_pretrained(path_save_model) | |
| for step, batch in enumerate(train_dataset): | |
| # forward through model | |
| # outputs = self.forward( | |
| # labels=batch["labels"], | |
| # labels_attention_mask=batch["labels_attention_mask"], | |
| # speaker_id=batch["speaker_id"] | |
| # ) | |
| #if step==10:break | |
| batch=covert_cuda_batch(batch) | |
| displayloss={} | |
| with autocast(enabled=training_args.fp16): | |
| model_outputs = self.forward_k( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| text_encoder_output =None if is_used_text_encoder else batch['text_encoder_output'], | |
| posterior_encode_output=None if is_used_posterior_encode else batch['posterior_encode_output'], | |
| return_dict=True, | |
| monotonic_alignment_function=maf, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
| target_waveform = batch["waveform"].transpose(1, 2) | |
| target_waveform = self.slice_segments( | |
| target_waveform, | |
| model_outputs.ids_slice * feature_extractor.hop_length, | |
| self.config.segment_size | |
| ) | |
| discriminator_target, fmaps_target = self.discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = self.discriminator(model_outputs.waveform.detach()) | |
| with autocast(enabled=False): | |
| if dict_state_grad_loss['discriminator']: | |
| # disc_optimizer.zero_grad() | |
| loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss( | |
| discriminator_target, discriminator_candidate | |
| ) | |
| dk={"step_loss_disc": loss_disc.detach().item(), | |
| "step_loss_real_disc": loss_real_disc.detach().item(), | |
| "step_loss_fake_disc": loss_fake_disc.detach().item()} | |
| displayloss['dict_loss_discriminator']=dk | |
| loss_dd = loss_disc# + loss_real_disc + loss_fake_disc | |
| # loss_dd.backward() | |
| optimizer.zero_grad() | |
| # disc_optimizer.zero_grad() | |
| scaler.scale(loss_dd).backward() | |
| # scaler.unscale_(disc_optimizer) | |
| #grad_norm_d = clip_grad_value_(self.discriminator.parameters(), None) | |
| # scaler.step(disc_optimizer) | |
| with autocast(enabled=training_args.fp16): | |
| # backpropagate | |
| discriminator_target, fmaps_target = self.discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = self.discriminator(model_outputs.waveform.detach()) | |
| with autocast(enabled=False): | |
| if dict_state_grad_loss['k1']: | |
| loss_kl = kl_loss( | |
| model_outputs.prior_latents, | |
| model_outputs.posterior_log_variances, | |
| model_outputs.prior_means, | |
| model_outputs.prior_log_variances, | |
| model_outputs.labels_padding_mask, | |
| ) | |
| loss_kl=loss_kl*training_args.weight_kl | |
| displayloss['loss_kl']=loss_kl.detach().item() | |
| #if displayloss['loss_kl']>=0: | |
| # loss_kl.backward() | |
| if dict_state_grad_loss['mel']: | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| displayloss['loss_mel'] = loss_mel.detach().item() | |
| train_losses_sum = train_losses_sum + displayloss['loss_mel'] | |
| # if displayloss['loss_mel']>=0: | |
| # loss_mel.backward() | |
| if dict_state_grad_loss['duration']: | |
| loss_duration=torch.sum(model_outputs.log_duration)*training_args.weight_duration | |
| displayloss['loss_duration'] = loss_duration.detach().item() | |
| # if displayloss['loss_duration']>=0: | |
| # loss_duration.backward() | |
| if dict_state_grad_loss['generator']: | |
| loss_fmaps = feature_loss(fmaps_target, fmaps_candidate) | |
| loss_gen, losses_gen = generator_loss(discriminator_candidate) | |
| loss_gen=loss_gen * training_args.weight_gen | |
| displayloss['loss_gen'] = loss_gen.detach().item() | |
| # loss_gen.backward(retain_graph=True) | |
| loss_fmaps=loss_fmaps * training_args.weight_fmaps | |
| displayloss['loss_fmaps'] = loss_fmaps.detach().item() | |
| # loss_fmaps.backward(retain_graph=True) | |
| total_generator_loss = ( | |
| loss_duration | |
| + loss_mel | |
| + loss_kl | |
| + loss_fmaps | |
| + loss_gen | |
| ) | |
| # total_generator_loss.backward() | |
| scaler.scale(total_generator_loss).backward() | |
| scaler.unscale_(optimizer) | |
| grad_norm_g = clip_grad_value_(self.parameters(), None) | |
| scaler.step(optimizer) | |
| scaler.update() | |
| # optimizer.step() | |
| print(f"TRAINIG - batch {step},Grad G{grad_norm_g}, waveform {(batch['waveform'].shape)}, lr {lr_scheduler.get_last_lr()[0]}... ") | |
| print(f"display loss function enable :{displayloss}") | |
| global_step +=1 | |
| # validation | |
| do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0) | |
| if do_eval: | |
| logger.info("Running validation... ") | |
| eval_losses_sum = 0 | |
| cc=0; | |
| for step, batch in enumerate(eval_dataset): | |
| break | |
| if cc>2: break | |
| cc+=1 | |
| with torch.no_grad(): | |
| model_outputs = self.forward( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| return_dict=True, | |
| monotonic_alignment_function=None, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
| loss = loss_mel.detach().item() | |
| eval_losses_sum +=loss | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation =self.forward( | |
| input_ids =full_generation_sample["input_ids"], | |
| attention_mask=full_generation_sample["attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({ | |
| "eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000) | |
| for w in full_generation_waveform],}) | |
| wandb.log({"train_losses":train_losses_sum}) | |
| # add weight norms | |
| # self.remove_weight_norm() | |
| try: | |
| torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt")) | |
| torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt")) | |
| except:pass | |
| logger.info("Running final full generations samples... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation = self.forward( | |
| input_ids=full_generation_sample["labels"], | |
| attention_mask=full_generation_sample["labels_attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({"eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", | |
| sample_rate=16000) for w in full_generation_waveform], | |
| }) | |
| logger.info("***** Training / Inference Done *****") | |
| #.................................... | |
| def trainer_to(self, | |
| train_dataset_dir = None, | |
| eval_dataset_dir = None, | |
| full_generation_dir = None, | |
| feature_extractor = VitsFeatureExtractor(), | |
| training_args = None, | |
| full_generation_sample_index= 0, | |
| project_name = "Posterior_Decoder_Finetuning", | |
| wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79", | |
| is_used_text_encoder=True, | |
| is_used_posterior_encode=True, | |
| dict_state_grad_loss=None, | |
| nk=1, | |
| path_save_model='./', | |
| maf=None | |
| ): | |
| os.makedirs(training_args.output_dir,exist_ok=True) | |
| logger = logging.getLogger(f"{__name__} Training") | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| wandb.login(key= wandbKey) | |
| wandb.init(project= project_name,config = training_args.to_dict()) | |
| if dict_state_grad_loss is None: | |
| dict_state_grad_loss=get_state_grad_loss() | |
| set_seed(training_args.seed) | |
| # Apply Weight Norm Decoder | |
| # self.apply_weight_norm() | |
| # Save Config | |
| self.config.save_pretrained(training_args.output_dir) | |
| train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir, | |
| device = self.device | |
| ) | |
| eval_dataset = None | |
| if training_args.do_eval: | |
| eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir, | |
| device = self.device | |
| ) | |
| full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir, | |
| device = self.device | |
| ) | |
| self.full_generation_sample = full_generation_dataset[full_generation_sample_index] | |
| # init optimizer, lr_scheduler | |
| optimizer = torch.optim.AdamW( | |
| self.parameters(), | |
| training_args.learning_rate, | |
| betas=[training_args.adam_beta1, training_args.adam_beta2], | |
| eps=training_args.adam_epsilon, | |
| ) | |
| # hack to be able to train on multiple device | |
| disc_optimizer = torch.optim.AdamW( | |
| self.discriminator.parameters(), | |
| training_args.d_learning_rate, | |
| betas=[training_args.d_adam_beta1, training_args.d_adam_beta2], | |
| eps=training_args.adam_epsilon, | |
| ) | |
| lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
| ) | |
| disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
| #.......................loop training............................ | |
| global_step = 0 | |
| for epoch in range(training_args.num_train_epochs): | |
| train_losses_sum = 0 | |
| lr_scheduler.step() | |
| disc_lr_scheduler.step() | |
| print(f" Num Epochs = {epoch}") | |
| if epoch%nk==0: | |
| clear_output() | |
| print('') | |
| print('Save checkpoints Model :',int(epoch/nk)) | |
| self.save_pretrained(path_save_model) | |
| for step, batch in enumerate(train_dataset): | |
| # forward through model | |
| # outputs = self.forward( | |
| # labels=batch["labels"], | |
| # labels_attention_mask=batch["labels_attention_mask"], | |
| # speaker_id=batch["speaker_id"] | |
| # ) | |
| #if step==10:break | |
| batch=covert_cuda_batch(batch) | |
| waveform,ids_slice,log_duration,prior_latents,posterior_log_variances,prior_means,prior_log_variances,labels_padding_mask=self.forward_train( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| text_encoder_output =None , #if is_used_text_encoder else batch['text_encoder_output'], | |
| posterior_encode_output=batch['posterior_encode_output'] ,# if is_used_posterior_encode else , | |
| return_dict=True, | |
| monotonic_alignment_function= maf, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(waveform.squeeze(1))[1] | |
| target_waveform = batch["waveform"].transpose(1, 2) | |
| target_waveform = self.slice_segments( | |
| target_waveform, | |
| ids_slice * feature_extractor.hop_length, | |
| self.config.segment_size | |
| ) | |
| displayloss={} | |
| # backpropagate | |
| #if dict_state_grad_loss['k1']: | |
| loss_kl = kl_loss( | |
| prior_latents, | |
| posterior_log_variances, | |
| prior_means, | |
| prior_log_variances, | |
| labels_padding_mask, | |
| ) | |
| loss_kl=loss_kl*training_args.weight_kl | |
| displayloss['loss_kl']=loss_kl.detach().item() | |
| #if displayloss['loss_kl']>=0: | |
| # loss_kl.backward() | |
| # if dict_state_grad_loss['mel']: | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| displayloss['loss_mel'] = loss_mel.detach().item() | |
| train_losses_sum = train_losses_sum + displayloss['loss_mel'] | |
| # if displayloss['loss_mel']>=0: | |
| # loss_mel.backward() | |
| #if dict_state_grad_loss['duration']: | |
| loss_duration=torch.sum(log_duration)*training_args.weight_duration | |
| displayloss['loss_duration'] = loss_duration.detach().item() | |
| # if displayloss['loss_duration']>=0: | |
| # loss_duration.backward() | |
| discriminator_target, fmaps_target = self.discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = self.discriminator(waveform.detach()) | |
| #if dict_state_grad_loss['discriminator']: | |
| disc_optimizer.zero_grad() | |
| loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss( | |
| discriminator_target, discriminator_candidate | |
| ) | |
| dk={"step_loss_disc": loss_disc.detach().item(), | |
| "step_loss_real_disc": loss_real_disc.detach().item(), | |
| "step_loss_fake_disc": loss_fake_disc.detach().item()} | |
| displayloss['dict_loss_discriminator']=dk | |
| loss_dd = loss_disc# + loss_real_disc + loss_fake_disc | |
| loss_dd.backward() | |
| disc_optimizer.step() | |
| discriminator_target, fmaps_target = self.discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = self.discriminator(waveform.detach()) | |
| optimizer.zero_grad() | |
| # if dict_state_grad_loss['generator']: | |
| loss_fmaps = feature_loss(fmaps_target, fmaps_candidate) | |
| loss_gen, losses_gen = generator_loss(discriminator_candidate) | |
| loss_gen=loss_gen * training_args.weight_gen | |
| displayloss['loss_gen'] = loss_gen.detach().item() | |
| # loss_gen.backward(retain_graph=True) | |
| loss_fmaps=loss_fmaps * training_args.weight_fmaps | |
| displayloss['loss_fmaps'] = loss_fmaps.detach().item() | |
| # loss_fmaps.backward(retain_graph=True) | |
| total_generator_loss = ( | |
| loss_duration | |
| + loss_mel | |
| + loss_kl | |
| + loss_fmaps | |
| + loss_gen | |
| ) | |
| total_generator_loss.backward() | |
| optimizer.step() | |
| print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, lr {lr_scheduler.get_last_lr()[0]}... ") | |
| print(f"display loss function enable :{displayloss}") | |
| global_step +=1 | |
| # validation | |
| do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0) | |
| if do_eval: | |
| logger.info("Running validation... ") | |
| eval_losses_sum = 0 | |
| cc=0; | |
| for step, batch in enumerate(eval_dataset): | |
| break | |
| if cc>2: break | |
| cc+=1 | |
| with torch.no_grad(): | |
| model_outputs = self.forward( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| return_dict=True, | |
| monotonic_alignment_function=None, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
| loss = loss_mel.detach().item() | |
| eval_losses_sum +=loss | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation =self.forward( | |
| input_ids =full_generation_sample["input_ids"], | |
| attention_mask=full_generation_sample["attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({ | |
| "eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000) | |
| for w in full_generation_waveform],}) | |
| wandb.log({"train_losses":train_losses_sum}) | |
| # add weight norms | |
| # self.remove_weight_norm() | |
| try: | |
| torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt")) | |
| torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt")) | |
| except:pass | |
| logger.info("Running final full generations samples... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation = self.forward( | |
| input_ids=full_generation_sample["labels"], | |
| attention_mask=full_generation_sample["labels_attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({"eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", | |
| sample_rate=16000) for w in full_generation_waveform], | |
| }) | |
| logger.info("***** Training / Inference Done *****") | |
| #.................................... | |
| def trainer_to_cuda1(self, | |
| train_dataset_dir = None, | |
| eval_dataset_dir = None, | |
| full_generation_dir = None, | |
| feature_extractor = VitsFeatureExtractor(), | |
| training_args = None, | |
| full_generation_sample_index= 0, | |
| project_name = "Posterior_Decoder_Finetuning", | |
| wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79", | |
| is_used_text_encoder=True, | |
| is_used_posterior_encode=True, | |
| dict_state_grad_loss=None, | |
| nk=1, | |
| path_save_model='./', | |
| maf=None | |
| ): | |
| os.makedirs(training_args.output_dir,exist_ok=True) | |
| logger = logging.getLogger(f"{__name__} Training") | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| wandb.login(key= wandbKey) | |
| wandb.init(project= project_name,config = training_args.to_dict()) | |
| if dict_state_grad_loss is None: | |
| dict_state_grad_loss=get_state_grad_loss() | |
| set_seed(training_args.seed) | |
| scaler = GradScaler(enabled=training_args.fp16) | |
| # Apply Weight Norm Decoder | |
| # self.apply_weight_norm() | |
| # Save Config | |
| self.config.save_pretrained(training_args.output_dir) | |
| train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir, | |
| device = self.device | |
| ) | |
| eval_dataset = None | |
| if training_args.do_eval: | |
| eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir, | |
| device = self.device | |
| ) | |
| full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir, | |
| device = self.device | |
| ) | |
| self.full_generation_sample = full_generation_dataset[full_generation_sample_index] | |
| # init optimizer, lr_scheduler | |
| discriminator=self.discriminator | |
| self.discriminator=None | |
| optimizer = torch.optim.AdamW( | |
| self.parameters(), | |
| training_args.learning_rate, | |
| betas=[training_args.adam_beta1, training_args.adam_beta2], | |
| eps=training_args.adam_epsilon, | |
| ) | |
| # hack to be able to train on multiple device | |
| disc_optimizer = torch.optim.AdamW( | |
| discriminator.parameters(), | |
| training_args.d_learning_rate, | |
| betas=[training_args.d_adam_beta1, training_args.d_adam_beta2], | |
| eps=training_args.adam_epsilon, | |
| ) | |
| lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
| ) | |
| disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
| #.......................loop training............................ | |
| global_step = 0 | |
| for epoch in range(training_args.num_train_epochs): | |
| train_losses_sum = 0 | |
| lr_scheduler.step() | |
| disc_lr_scheduler.step() | |
| print(f" Num Epochs = {epoch}") | |
| if epoch%nk==0: | |
| clear_output() | |
| print('Save checkpoints Model :',int(epoch/nk)) | |
| self.discriminator=discriminator | |
| self.save_pretrained(path_save_model) | |
| self.discriminator=None | |
| for step, batch in enumerate(train_dataset): | |
| # forward through model | |
| # outputs = self.forward( | |
| # labels=batch["labels"], | |
| # labels_attention_mask=batch["labels_attention_mask"], | |
| # speaker_id=batch["speaker_id"] | |
| # ) | |
| #if step==10:break | |
| batch=covert_cuda_batch(batch) | |
| displayloss={} | |
| with autocast(enabled=training_args.fp16): | |
| model_outputs = self.forward_k( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| text_encoder_output =None if is_used_text_encoder else batch['text_encoder_output'], | |
| posterior_encode_output=None if is_used_posterior_encode else batch['posterior_encode_output'], | |
| return_dict=True, | |
| monotonic_alignment_function= maf, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
| target_waveform = batch["waveform"].transpose(1, 2) | |
| target_waveform = self.slice_segments( | |
| target_waveform, | |
| model_outputs.ids_slice * feature_extractor.hop_length, | |
| self.config.segment_size | |
| ) | |
| discriminator_target, fmaps_target = discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = discriminator(model_outputs.waveform.detach()) | |
| #with autocast(enabled=False): | |
| if dict_state_grad_loss['discriminator']: | |
| loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss( | |
| discriminator_target, discriminator_candidate | |
| ) | |
| dk={"step_loss_disc": loss_disc.detach().item(), | |
| "step_loss_real_disc": loss_real_disc.detach().item(), | |
| "step_loss_fake_disc": loss_fake_disc.detach().item()} | |
| displayloss['dict_loss_discriminator']=dk | |
| loss_dd = loss_disc# + loss_real_disc + loss_fake_disc | |
| disc_optimizer.zero_grad() | |
| loss_dd.backward() | |
| # scaler.scale(loss_dd).backward() | |
| # scaler.unscale_(disc_optimizer ) | |
| grad_norm_d = clip_grad_value_(discriminator.parameters(), None) | |
| disc_optimizer.step() | |
| with autocast(enabled=training_args.fp16): | |
| # backpropagate | |
| if dict_state_grad_loss['k1']: | |
| loss_kl = kl_loss( | |
| model_outputs.prior_latents, | |
| model_outputs.posterior_log_variances, | |
| model_outputs.prior_means, | |
| model_outputs.prior_log_variances, | |
| model_outputs.labels_padding_mask, | |
| ) | |
| loss_kl=loss_kl*training_args.weight_kl | |
| displayloss['loss_kl']=loss_kl.detach().item() | |
| #if displayloss['loss_kl']>=0: | |
| # loss_kl.backward() | |
| if dict_state_grad_loss['mel']: | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| displayloss['loss_mel'] = loss_mel.detach().item() | |
| train_losses_sum = train_losses_sum + displayloss['loss_mel'] | |
| # if displayloss['loss_mel']>=0: | |
| # loss_mel.backward() | |
| if dict_state_grad_loss['duration']: | |
| loss_duration=torch.sum(model_outputs.log_duration)*training_args.weight_duration | |
| displayloss['loss_duration'] = loss_duration.detach().item() | |
| # if displayloss['loss_duration']>=0: | |
| # loss_duration.backward() | |
| discriminator_target, fmaps_target = discriminator(target_waveform) | |
| discriminator_candidate, fmaps_candidate = discriminator(model_outputs.waveform.detach()) | |
| if dict_state_grad_loss['generator']: | |
| loss_fmaps = feature_loss(fmaps_target, fmaps_candidate) | |
| loss_gen, losses_gen = generator_loss(discriminator_candidate) | |
| loss_gen=loss_gen * training_args.weight_gen | |
| displayloss['loss_gen'] = loss_gen.detach().item() | |
| # loss_gen.backward(retain_graph=True) | |
| loss_fmaps=loss_fmaps * training_args.weight_fmaps | |
| displayloss['loss_fmaps'] = loss_fmaps.detach().item() | |
| # loss_fmaps.backward(retain_graph=True) | |
| total_generator_loss = ( | |
| loss_duration | |
| + loss_mel | |
| + loss_kl | |
| + loss_fmaps | |
| + loss_gen | |
| ) | |
| optimizer.zero_grad() | |
| total_generator_loss.backward() | |
| # scaler.scale(total_generator_loss).backward() | |
| # scaler.unscale_(optimizer) | |
| grad_norm_g = clip_grad_value_(self.parameters(), None) | |
| optimizer.step() | |
| # scaler.update() | |
| # optimizer.step() | |
| print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, lr {lr_scheduler.get_last_lr()[0]}... ") | |
| print(f"display loss function enable :{displayloss}") | |
| global_step +=1 | |
| # validation | |
| do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0) | |
| if do_eval: | |
| logger.info("Running validation... ") | |
| eval_losses_sum = 0 | |
| cc=0; | |
| for step, batch in enumerate(eval_dataset): | |
| break | |
| if cc>2: break | |
| cc+=1 | |
| with torch.no_grad(): | |
| model_outputs = self.forward( | |
| input_ids=batch["input_ids"], | |
| attention_mask=batch["attention_mask"], | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"], | |
| return_dict=True, | |
| monotonic_alignment_function=None, | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
| loss = loss_mel.detach().item() | |
| eval_losses_sum +=loss | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation =self.forward( | |
| input_ids =full_generation_sample["input_ids"], | |
| attention_mask=full_generation_sample["attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({ | |
| "eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000) | |
| for w in full_generation_waveform],}) | |
| wandb.log({"train_losses":train_losses_sum}) | |
| # add weight norms | |
| # self.remove_weight_norm() | |
| try: | |
| torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt")) | |
| torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt")) | |
| except:pass | |
| logger.info("Running final full generations samples... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation = self.forward( | |
| input_ids=full_generation_sample["labels"], | |
| attention_mask=full_generation_sample["labels_attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({"eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", | |
| sample_rate=16000) for w in full_generation_waveform], | |
| }) | |
| logger.info("***** Training / Inference Done *****") | |
| def forward_train( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| speaker_id: Optional[int] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| labels: Optional[torch.FloatTensor] = None, | |
| labels_attention_mask: Optional[torch.Tensor] = None, | |
| text_encoder_output=None, | |
| posterior_encode_output=None, | |
| monotonic_alignment_function: Optional[Callable] = None, | |
| speaker_embeddings=None | |
| ) -> Union[Tuple[Any], VitsModelOutput]: | |
| #output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states# if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| # return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # if attention_mask is not None: | |
| input_padding_mask = attention_mask.unsqueeze(-1).float() | |
| #else: | |
| # input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() | |
| # speaker_embeddings=None | |
| # if labels_attention_mask is not None: | |
| labels_padding_mask = labels_attention_mask.unsqueeze(1).float() | |
| # else: | |
| # labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device) | |
| # labels_padding_mask = labels_attention_mask.unsqueeze(1) | |
| if text_encoder_output is None: | |
| text_encoder_output = self.text_encoder( | |
| input_ids=input_ids, | |
| padding_mask=input_padding_mask, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| #hidden_states = text_encoder_output[0] #if not return_dict else text_encoder_output.last_hidden_state | |
| hidden_states = text_encoder_output[0].transpose(1, 2) | |
| input_padding_mask = input_padding_mask.transpose(1, 2) | |
| prior_means = text_encoder_output[1].transpose(1, 2) #if not return_dict else text_encoder_output.prior_means | |
| prior_log_variances = text_encoder_output[2].transpose(1, 2) #if not return_dict else text_encoder_output.prior_log_variances | |
| if posterior_encode_output is None: | |
| latents, posterior_means, posterior_log_variances = self.posterior_encoder( | |
| labels, labels_padding_mask, speaker_embeddings | |
| ) | |
| else: | |
| latents=posterior_encode_output['posterior_latents'] | |
| posterior_means=posterior_encode_output['posterior_means'] | |
| posterior_log_variances=posterior_encode_output['posterior_log_variances'] | |
| prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False) | |
| # prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2) | |
| with torch.no_grad(): | |
| # negative cross-entropy | |
| # [batch_size, d, latent_length] | |
| prior_variances = torch.exp(-2 * prior_log_variances) | |
| # [batch_size, 1, latent_length] | |
| neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True) | |
| # [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
| neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances) | |
| # [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length] | |
| neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances)) | |
| # [batch_size, 1, latent_length] | |
| neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True) | |
| # [batch_size, text_length, latent_length] | |
| neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 | |
| attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1) | |
| attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() | |
| durations = attn.sum(2) | |
| #if self.config.use_stochastic_duration_prediction: | |
| log_duration = self.duration_predictor( | |
| hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False | |
| ) | |
| log_duration = log_duration / torch.sum(input_padding_mask) | |
| # else: | |
| # log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask | |
| # log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
| # log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask) | |
| # expand priors | |
| prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2) | |
| prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2) | |
| label_lengths = labels_attention_mask.sum(dim=1) | |
| latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size) | |
| waveform = self.decoder(latents_slice, speaker_embeddings) | |
| return waveform,ids_slice,log_duration,prior_latents,posterior_log_variances,prior_means,prior_log_variances,labels_padding_mask | |
