Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- README.md +3 -1
- app.py +45 -21
- gallery_history.py +121 -0
- requirements.txt +2 -1
README.md
CHANGED
|
@@ -4,10 +4,12 @@ emoji: 🌍
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.44.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
duplicated_from: warp-ai/Wuerstchen
|
| 12 |
+
hf_oauth: true
|
| 13 |
---
|
| 14 |
|
| 15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -9,7 +9,10 @@ from diffusers.utils import numpy_to_pil
|
|
| 9 |
from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
|
| 10 |
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
| 11 |
from previewer.modules import Previewer
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
DESCRIPTION = "# Würstchen"
|
| 15 |
DESCRIPTION += "\n<p style=\"text-align: center\"><a href='https://huggingface.co/warp-ai/wuerstchen' target='_blank'>Würstchen</a> is a new fast and efficient high resolution text-to-image architecture and model</p>"
|
|
@@ -26,8 +29,12 @@ PREVIEW_IMAGES = True
|
|
| 26 |
dtype = torch.float16
|
| 27 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 28 |
if torch.cuda.is_available():
|
| 29 |
-
prior_pipeline = WuerstchenPriorPipeline.from_pretrained(
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
if ENABLE_CPU_OFFLOAD:
|
| 32 |
prior_pipeline.enable_model_cpu_offload()
|
| 33 |
decoder_pipeline.enable_model_cpu_offload()
|
|
@@ -36,18 +43,27 @@ if torch.cuda.is_available():
|
|
| 36 |
decoder_pipeline.to(device)
|
| 37 |
|
| 38 |
if USE_TORCH_COMPILE:
|
| 39 |
-
prior_pipeline.prior = torch.compile(
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
if PREVIEW_IMAGES:
|
| 43 |
previewer = Previewer()
|
| 44 |
-
previewer.load_state_dict(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
previewer.eval().requires_grad_(False).to(device).to(dtype)
|
| 46 |
|
| 47 |
def callback_prior(i, t, latents):
|
| 48 |
output = previewer(latents)
|
| 49 |
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).cpu().numpy())
|
| 50 |
return output
|
|
|
|
| 51 |
else:
|
| 52 |
previewer = None
|
| 53 |
callback_prior = None
|
|
@@ -96,7 +112,7 @@ def generate(
|
|
| 96 |
if isinstance(r, list):
|
| 97 |
yield r
|
| 98 |
prior_output = r
|
| 99 |
-
|
| 100 |
decoder_output = decoder_pipeline(
|
| 101 |
image_embeddings=prior_output.image_embeddings,
|
| 102 |
prompt=prompt,
|
|
@@ -209,19 +225,21 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 209 |
cache_examples=CACHE_EXAMPLES,
|
| 210 |
)
|
| 211 |
|
|
|
|
|
|
|
| 212 |
inputs = [
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
]
|
| 226 |
prompt.submit(
|
| 227 |
fn=randomize_seed_fn,
|
|
@@ -234,6 +252,8 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 234 |
inputs=inputs,
|
| 235 |
outputs=result,
|
| 236 |
api_name="run",
|
|
|
|
|
|
|
| 237 |
)
|
| 238 |
negative_prompt.submit(
|
| 239 |
fn=randomize_seed_fn,
|
|
@@ -246,6 +266,8 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 246 |
inputs=inputs,
|
| 247 |
outputs=result,
|
| 248 |
api_name=False,
|
|
|
|
|
|
|
| 249 |
)
|
| 250 |
run_button.click(
|
| 251 |
fn=randomize_seed_fn,
|
|
@@ -258,7 +280,9 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 258 |
inputs=inputs,
|
| 259 |
outputs=result,
|
| 260 |
api_name=False,
|
|
|
|
|
|
|
| 261 |
)
|
| 262 |
|
| 263 |
if __name__ == "__main__":
|
| 264 |
-
demo.queue(max_size=20).launch()
|
|
|
|
| 9 |
from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
|
| 10 |
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
| 11 |
from previewer.modules import Previewer
|
| 12 |
+
|
| 13 |
+
from gallery_history import fetch_gallery_history, show_gallery_history
|
| 14 |
+
|
| 15 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 16 |
|
| 17 |
DESCRIPTION = "# Würstchen"
|
| 18 |
DESCRIPTION += "\n<p style=\"text-align: center\"><a href='https://huggingface.co/warp-ai/wuerstchen' target='_blank'>Würstchen</a> is a new fast and efficient high resolution text-to-image architecture and model</p>"
|
|
|
|
| 29 |
dtype = torch.float16
|
| 30 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 31 |
if torch.cuda.is_available():
|
| 32 |
+
prior_pipeline = WuerstchenPriorPipeline.from_pretrained(
|
| 33 |
+
"warp-ai/wuerstchen-prior", torch_dtype=dtype
|
| 34 |
+
)
|
| 35 |
+
decoder_pipeline = WuerstchenDecoderPipeline.from_pretrained(
|
| 36 |
+
"warp-ai/wuerstchen", torch_dtype=dtype
|
| 37 |
+
)
|
| 38 |
if ENABLE_CPU_OFFLOAD:
|
| 39 |
prior_pipeline.enable_model_cpu_offload()
|
| 40 |
decoder_pipeline.enable_model_cpu_offload()
|
|
|
|
| 43 |
decoder_pipeline.to(device)
|
| 44 |
|
| 45 |
if USE_TORCH_COMPILE:
|
| 46 |
+
prior_pipeline.prior = torch.compile(
|
| 47 |
+
prior_pipeline.prior, mode="reduce-overhead", fullgraph=True
|
| 48 |
+
)
|
| 49 |
+
decoder_pipeline.decoder = torch.compile(
|
| 50 |
+
decoder_pipeline.decoder, mode="reduce-overhead", fullgraph=True
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
if PREVIEW_IMAGES:
|
| 54 |
previewer = Previewer()
|
| 55 |
+
previewer.load_state_dict(
|
| 56 |
+
torch.load("previewer/text2img_wurstchen_b_v1_previewer_100k.pt")[
|
| 57 |
+
"state_dict"
|
| 58 |
+
]
|
| 59 |
+
)
|
| 60 |
previewer.eval().requires_grad_(False).to(device).to(dtype)
|
| 61 |
|
| 62 |
def callback_prior(i, t, latents):
|
| 63 |
output = previewer(latents)
|
| 64 |
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).cpu().numpy())
|
| 65 |
return output
|
| 66 |
+
|
| 67 |
else:
|
| 68 |
previewer = None
|
| 69 |
callback_prior = None
|
|
|
|
| 112 |
if isinstance(r, list):
|
| 113 |
yield r
|
| 114 |
prior_output = r
|
| 115 |
+
|
| 116 |
decoder_output = decoder_pipeline(
|
| 117 |
image_embeddings=prior_output.image_embeddings,
|
| 118 |
prompt=prompt,
|
|
|
|
| 225 |
cache_examples=CACHE_EXAMPLES,
|
| 226 |
)
|
| 227 |
|
| 228 |
+
history = show_gallery_history()
|
| 229 |
+
|
| 230 |
inputs = [
|
| 231 |
+
prompt,
|
| 232 |
+
negative_prompt,
|
| 233 |
+
seed,
|
| 234 |
+
width,
|
| 235 |
+
height,
|
| 236 |
+
prior_num_inference_steps,
|
| 237 |
+
# prior_timesteps,
|
| 238 |
+
prior_guidance_scale,
|
| 239 |
+
decoder_num_inference_steps,
|
| 240 |
+
# decoder_timesteps,
|
| 241 |
+
decoder_guidance_scale,
|
| 242 |
+
num_images_per_prompt,
|
| 243 |
]
|
| 244 |
prompt.submit(
|
| 245 |
fn=randomize_seed_fn,
|
|
|
|
| 252 |
inputs=inputs,
|
| 253 |
outputs=result,
|
| 254 |
api_name="run",
|
| 255 |
+
).then(
|
| 256 |
+
fn=fetch_gallery_history, inputs=[prompt, result], outputs=history
|
| 257 |
)
|
| 258 |
negative_prompt.submit(
|
| 259 |
fn=randomize_seed_fn,
|
|
|
|
| 266 |
inputs=inputs,
|
| 267 |
outputs=result,
|
| 268 |
api_name=False,
|
| 269 |
+
).then(
|
| 270 |
+
fn=fetch_gallery_history, inputs=[prompt, result], outputs=history
|
| 271 |
)
|
| 272 |
run_button.click(
|
| 273 |
fn=randomize_seed_fn,
|
|
|
|
| 280 |
inputs=inputs,
|
| 281 |
outputs=result,
|
| 282 |
api_name=False,
|
| 283 |
+
).then(
|
| 284 |
+
fn=fetch_gallery_history, inputs=[prompt, result], outputs=history
|
| 285 |
)
|
| 286 |
|
| 287 |
if __name__ == "__main__":
|
| 288 |
+
demo.queue(max_size=20).launch()
|
gallery_history.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
How to use:
|
| 3 |
+
1. Create a Space with a Persistent Storage attached. Filesystem will be available under `/data`.
|
| 4 |
+
2. Add `hf_oauth: true` to the Space metadata (README.md). Make sure to have Gradio>=3.41.0 configured.
|
| 5 |
+
3. Add `HISTORY_FOLDER` as a Space variable (example. `"/data/history"`).
|
| 6 |
+
4. Add `filelock` as dependency in `requirements.txt`.
|
| 7 |
+
5. Add history gallery to your Gradio app:
|
| 8 |
+
a. Add imports: `from gallery_history import fetch_gallery_history, show_gallery_history`
|
| 9 |
+
a. Add `history = show_gallery_history()` within `gr.Blocks` context.
|
| 10 |
+
b. Add `.then(fn=fetch_gallery_history, inputs=[prompt, result], outputs=history)` on the generate event.
|
| 11 |
+
"""
|
| 12 |
+
import json
|
| 13 |
+
import os
|
| 14 |
+
import shutil
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from typing import Dict, List, Optional, Tuple
|
| 17 |
+
from uuid import uuid4
|
| 18 |
+
|
| 19 |
+
import gradio as gr
|
| 20 |
+
from filelock import FileLock
|
| 21 |
+
|
| 22 |
+
_folder = os.environ.get("HISTORY_FOLDER")
|
| 23 |
+
if _folder is None:
|
| 24 |
+
print(
|
| 25 |
+
"'HISTORY_FOLDER' environment variable not set. User history will be saved "
|
| 26 |
+
"locally and will be lost when the Space instance is restarted."
|
| 27 |
+
)
|
| 28 |
+
_folder = Path(__file__).parent / "history"
|
| 29 |
+
HISTORY_FOLDER_PATH = Path(_folder)
|
| 30 |
+
|
| 31 |
+
IMAGES_FOLDER_PATH = HISTORY_FOLDER_PATH / "images"
|
| 32 |
+
IMAGES_FOLDER_PATH.mkdir(parents=True, exist_ok=True)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def show_gallery_history():
|
| 36 |
+
gr.Markdown("## Past images\n\nYou must be logged in to activate it.")
|
| 37 |
+
with gr.Column():
|
| 38 |
+
with gr.Row():
|
| 39 |
+
gr.LoginButton()
|
| 40 |
+
gr.LogoutButton()
|
| 41 |
+
gallery = gr.Gallery(
|
| 42 |
+
label="Past images",
|
| 43 |
+
show_label=True,
|
| 44 |
+
elem_id="gallery",
|
| 45 |
+
object_fit="contain",
|
| 46 |
+
height="auto",
|
| 47 |
+
preview=True,
|
| 48 |
+
show_share_button=True,
|
| 49 |
+
show_download_button=True,
|
| 50 |
+
)
|
| 51 |
+
gallery.attach_load_event(fetch_gallery_history, every=None)
|
| 52 |
+
return gallery
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def fetch_gallery_history(
|
| 56 |
+
prompt: Optional[str] = None,
|
| 57 |
+
result: Optional[Dict] = None,
|
| 58 |
+
user: Optional[gr.OAuthProfile] = None,
|
| 59 |
+
):
|
| 60 |
+
if user is None:
|
| 61 |
+
return []
|
| 62 |
+
try:
|
| 63 |
+
if prompt is not None and result is not None: # None values means no new images
|
| 64 |
+
return _update_user_history(
|
| 65 |
+
user["preferred_username"], [(item["name"], prompt) for item in result]
|
| 66 |
+
)
|
| 67 |
+
else:
|
| 68 |
+
return _read_user_history(user["preferred_username"])
|
| 69 |
+
except Exception as e:
|
| 70 |
+
raise gr.Error(f"Error while fetching history: {e}") from e
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
####################
|
| 74 |
+
# Internal helpers #
|
| 75 |
+
####################
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def _read_user_history(username: str) -> List[Tuple[str, str]]:
|
| 79 |
+
"""Return saved history for that user."""
|
| 80 |
+
with _user_lock(username):
|
| 81 |
+
path = _user_history_path(username)
|
| 82 |
+
if path.exists():
|
| 83 |
+
return json.loads(path.read_text())
|
| 84 |
+
return [] # No history yet
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _update_user_history(
|
| 88 |
+
username: str, new_images: List[Tuple[str, str]]
|
| 89 |
+
) -> List[Tuple[str, str]]:
|
| 90 |
+
"""Update history for that user and return it."""
|
| 91 |
+
with _user_lock(username):
|
| 92 |
+
# Read existing
|
| 93 |
+
path = _user_history_path(username)
|
| 94 |
+
if path.exists():
|
| 95 |
+
images = json.loads(path.read_text())
|
| 96 |
+
else:
|
| 97 |
+
images = [] # No history yet
|
| 98 |
+
|
| 99 |
+
# Copy images to persistent folder
|
| 100 |
+
for src_path, prompt in new_images:
|
| 101 |
+
images.append((_copy_image(src_path), prompt))
|
| 102 |
+
|
| 103 |
+
# Save and return
|
| 104 |
+
path.write_text(json.dumps(images))
|
| 105 |
+
return images
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def _user_history_path(username: str) -> Path:
|
| 109 |
+
return HISTORY_FOLDER_PATH / f"{username}.json"
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def _user_lock(username: str) -> FileLock:
|
| 113 |
+
"""Ensure history is not corrupted if concurrent calls."""
|
| 114 |
+
return FileLock(f"{_user_history_path(username)}.lock")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def _copy_image(src: str) -> str:
|
| 118 |
+
"""Copy image to the persistent storage."""
|
| 119 |
+
dst = IMAGES_FOLDER_PATH / f"{uuid4().hex}_{Path(src).name}" # keep file ext
|
| 120 |
+
shutil.copyfile(src, dst)
|
| 121 |
+
return str(dst)
|
requirements.txt
CHANGED
|
@@ -5,4 +5,5 @@ invisible-watermark==0.2.0
|
|
| 5 |
Pillow==10.0.0
|
| 6 |
torch==2.0.1
|
| 7 |
transformers==4.32.1
|
| 8 |
-
compel
|
|
|
|
|
|
| 5 |
Pillow==10.0.0
|
| 6 |
torch==2.0.1
|
| 7 |
transformers==4.32.1
|
| 8 |
+
compel
|
| 9 |
+
filelock
|