#!/usr/bin/env python #patch 0.04 #Func() Dalle Collage Moved Midjourney Space #Pruned DalleCollage Space import os import random import uuid import json import torch print(f"Is CUDA available: {torch.cuda.is_available()}") # True print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") # Tesla T4 import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import DiffusionPipeline from typing import Tuple #BaseConditions-- bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) default_negative = os.getenv("default_negative","") def check_text(prompt, negative=""): for i in bad_words: if i in prompt: return True for i in bad_words_negative: if i in negative: return True return False style_list = [ { "name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "Style Zero", "prompt": "{prompt}", "negative_prompt": "", }, ] collage_style_list = [ { "name": "Hi-Res", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "B & W", "prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast", "negative_prompt": "colorful, vibrant, bright, flashy", }, { "name": "Polaroid", "prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic", "negative_prompt": "digital, modern, low quality, blurry", }, { "name": "Watercolor", "prompt": "watercolor collage of {prompt}. soft edges, translucent colors, painterly effects", "negative_prompt": "digital, sharp lines, solid colors", }, { "name": "Cinematic", "prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting", "negative_prompt": "static, lifeless, mundane", }, { "name": "Nostalgic", "prompt": "nostalgic collage of {prompt}. retro imagery, vintage objects, sentimental journey", "negative_prompt": "contemporary, futuristic, forward-looking", }, { "name": "Vintage", "prompt": "vintage collage of {prompt}. aged paper, sepia tones, retro imagery, antique vibes", "negative_prompt": "modern, contemporary, futuristic, high-tech", }, { "name": "Scrapbook", "prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles", "negative_prompt": "clean, digital, modern, low quality", }, { "name": "NeoNGlow", "prompt": "neon glow collage of {prompt}. vibrant colors, glowing effects, futuristic vibes", "negative_prompt": "dull, muted colors, vintage, retro", }, { "name": "Geometric", "prompt": "geometric collage of {prompt}. abstract shapes, colorful, sharp edges, modern design, high quality", "negative_prompt": "blurry, low quality, traditional, dull", }, { "name": "Thematic", "prompt": "thematic collage of {prompt}. cohesive theme, well-organized, matching colors, creative layout", "negative_prompt": "random, messy, unorganized, clashing colors", }, { "name": "No Style", "prompt": "{prompt}", "negative_prompt": "", }, ] filters = { "Vivid": { "prompt": "extra vivid {prompt}", "negative_prompt": "washed out, dull" }, "Playa": { "prompt": "{prompt} set in a vast playa", "negative_prompt": "forest, mountains" }, "Desert": { "prompt": "{prompt} set in a desert landscape", "negative_prompt": "ocean, city" }, "West": { "prompt": "{prompt} with a western theme", "negative_prompt": "eastern, modern" }, "Blush": { "prompt": "{prompt} with a soft blush color palette", "negative_prompt": "harsh colors, neon" }, "Minimalist": { "prompt": "{prompt} with a minimalist design", "negative_prompt": "cluttered, ornate" }, "Zero filter": { "prompt": "{prompt}", "negative_prompt": "" }, } styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} collage_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in collage_style_list} filter_styles = {k: (v["prompt"], v["negative_prompt"]) for k, v in filters.items()} STYLE_NAMES = list(styles.keys()) COLLAGE_STYLE_NAMES = list(collage_styles.keys()) FILTER_NAMES = list(filters.keys()) DEFAULT_STYLE_NAME = "3840 x 2160" DEFAULT_COLLAGE_STYLE_NAME = "Hi-Res" DEFAULT_FILTER_NAME = "Vivid" def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: if style_name in styles: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) elif style_name in collage_styles: p, n = collage_styles.get(style_name, collage_styles[DEFAULT_COLLAGE_STYLE_NAME]) elif style_name in filter_styles: p, n = filter_styles.get(style_name, filter_styles[DEFAULT_FILTER_NAME]) else: p, n = styles[DEFAULT_STYLE_NAME] if not negative: negative = "" return p.replace("{prompt}", positive), n + negative DESCRIPTION = """## MidJourney Drop your best results in the community: [rb.gy/klkbs7](http://rb.gy/klkbs7), Have you tried the stable hamster space? [rb.gy/hfrm2f](http://rb.gy/hfrm2f) """ if not torch.cuda.is_available(): DESCRIPTION += "\n
⚠️Running on CPU, This may not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): pipe = DiffusionPipeline.from_pretrained( "----you model goes here-----", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False, variant="fp16" ).to(device) if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() else: pipe.to(device) print("Loaded on Device!") if USE_TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) print("Model Compiled!") def save_image(img, path): img.save(path) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU(enable_queue=True) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, style: str = DEFAULT_STYLE_NAME, collage_style: str = DEFAULT_COLLAGE_STYLE_NAME, filter_name: str = DEFAULT_FILTER_NAME, grid_size: str = "2x2", seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, randomize_seed: bool = False, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): if check_text(prompt, negative_prompt): raise ValueError("Prompt contains restricted words.") if collage_style != "No Style": prompt, negative_prompt = apply_style(collage_style, prompt, negative_prompt) elif filter_name != "No Filter": prompt, negative_prompt = apply_style(filter_name, prompt, negative_prompt) else: prompt, negative_prompt = apply_style(style, prompt, negative_prompt) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = "" # type: ignore negative_prompt += default_negative grid_sizes = { "2x1": (2, 1), "1x2": (1, 2), "2x2": (2, 2), "2x3": (2, 3), "3x2": (3, 2), "1x1": (1, 1) } grid_size_x, grid_size_y = grid_sizes.get(grid_size, (2, 2)) num_images = grid_size_x * grid_size_y options = { "prompt": prompt, "negative_prompt": negative_prompt, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": 20, "generator": generator, "num_images_per_prompt": num_images, "use_resolution_binning": use_resolution_binning, "output_type": "pil", } torch.cuda.empty_cache() # Clear GPU memory images = pipe(**options).images grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y)) for i, img in enumerate(images[:num_images]): grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height)) unique_name = str(uuid.uuid4()) + ".png" save_image(grid_img, unique_name) return [unique_name], seed examples = [ "Portrait of a beautiful woman in a hat, summer outfit, with freckles on her face, in a close up shot, with sunlight, outdoors, in soft light, with a beach background, looking at the camera, with high resolution photography, in the style of Hasselblad X2D50c --ar 85:128 --v 6.0 --style raw", "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)", "Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic", "Closeup of blonde woman depth of field, bokeh, shallow focus, minimalism, fujifilm xh2s with Canon EF lens, cinematic --ar 85:128 --v 6.0 --style raw" ] css = ''' .gradio-container{max-width: 670px !important} h1{text-align:center} ''' with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run") result = gr.Gallery(label="Grid", columns=1, preview=True) with gr.Row(visible=True): filter_selection = gr.Radio( show_label=True, container=True, interactive=True, choices=FILTER_NAMES, value=DEFAULT_FILTER_NAME, label="Filter Type", ) with gr.Row(visible=True): style_selection = gr.Radio( show_label=True, container=True, interactive=True, choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Quality Style", ) with gr.Row(visible=True): collage_style_selection = gr.Radio( show_label=True, container=True, interactive=True, choices=COLLAGE_STYLE_NAMES, value=DEFAULT_COLLAGE_STYLE_NAME, label="Collage Template", ) with gr.Row(visible=True): grid_size_selection = gr.Dropdown( choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"], value="2x2", label="Grid Size" ) with gr.Accordion("Advanced options", open=False): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", visible=True, ) with gr.Row(): num_inference_steps = gr.Slider( label="Steps", minimum=10, maximum=30, step=1, value=15, ) with gr.Row(): num_images_per_prompt = gr.Slider( label="Images", minimum=1, maximum=5, step=1, value=2, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, visible=True ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=512, maximum=2048, step=8, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=2048, step=8, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=6, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, #cache_examples=True, cache_examples=CACHE_EXAMPLES, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, style_selection, collage_style_selection, filter_selection, grid_size_selection, seed, width, height, guidance_scale, randomize_seed, ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()