waqasali1707 commited on
Commit
da29c5c
·
verified ·
1 Parent(s): 698191a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +165 -0
app.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ from langchain.document_loaders import PDFMinerLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain.embeddings import HuggingFaceEmbeddings
7
+ from langchain.vectorstores import Chroma
8
+ import os
9
+
10
+ # Initialize session state for storing the vector database
11
+ if 'vectordb' not in st.session_state:
12
+ st.session_state.vectordb = None
13
+ if 'model' not in st.session_state:
14
+ st.session_state.model = None
15
+ if 'tokenizer' not in st.session_state:
16
+ st.session_state.tokenizer = None
17
+
18
+ st.title("PDF Question Answering System")
19
+
20
+ # File uploader for PDFs
21
+ def load_pdfs():
22
+ uploaded_files = st.file_uploader("Upload your PDF files", type=['pdf'], accept_multiple_files=True)
23
+ if uploaded_files and st.button("Process PDFs"):
24
+ with st.spinner("Processing PDFs..."):
25
+ # Save uploaded files temporarily
26
+ temp_paths = []
27
+ for file in uploaded_files:
28
+ temp_path = f"temp_{file.name}"
29
+ with open(temp_path, "wb") as f:
30
+ f.write(file.getbuffer())
31
+ temp_paths.append(temp_path)
32
+
33
+ # Load PDFs
34
+ documents = []
35
+ for pdf_path in temp_paths:
36
+ loader = PDFMinerLoader(pdf_path)
37
+ doc = loader.load()
38
+ for d in doc:
39
+ d.metadata["source"] = pdf_path
40
+ documents.extend(doc)
41
+
42
+ # Clean up temporary files
43
+ for path in temp_paths:
44
+ os.remove(path)
45
+
46
+ # Split documents
47
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
48
+ splits = text_splitter.split_documents(documents)
49
+
50
+ # Create embeddings and vector store
51
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
52
+ st.session_state.vectordb = Chroma.from_documents(documents=splits, embedding=embeddings)
53
+
54
+ st.success("PDFs processed successfully!")
55
+ return True
56
+ return False
57
+
58
+ # Load model and tokenizer
59
+ @st.cache_resource
60
+ def load_model(model_path):
61
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
62
+ model = AutoModelForCausalLM.from_pretrained(
63
+ model_path,
64
+ torch_dtype=torch.float16,
65
+ low_cpu_mem_usage=True,
66
+ )
67
+ model.eval()
68
+ return model, tokenizer
69
+
70
+ def generate_response(prompt, model, tokenizer, max_new_tokens=256):
71
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
72
+ with torch.no_grad():
73
+ outputs = model.generate(
74
+ **inputs,
75
+ max_new_tokens=max_new_tokens,
76
+ temperature=0.1,
77
+ top_p=0.95,
78
+ repetition_penalty=1.15
79
+ )
80
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
81
+ return response[len(prompt):].strip()
82
+
83
+ def combine_documents_and_answer(retrieved_docs, question, model, tokenizer):
84
+ context = "\n".join(doc.page_content for doc in retrieved_docs)
85
+ prompt = f"""You are an assistant tasked with answering questions based SOLELY on the provided context.
86
+ Do not use any external knowledge or information not present in the given context.
87
+ If the question is of any other field and irrelevant to the context provided, repond just with "I can't tell you this, ask something from the provided context." DO NOT INCLUDE YOUR OWN OPINION.
88
+
89
+ IMPORTANT: Your answer should be well structured and meaningful. It should stop generating when it is done. Do not generate or repeat absurd sentences.
90
+ Your answer should elaborate every tiny detail mentioned in the context.
91
+ So, answer the following question within the context in detail:
92
+
93
+ Question: {question}
94
+
95
+ Context:
96
+ {context}
97
+
98
+ Answer:"""
99
+ return generate_response(prompt, model, tokenizer)
100
+
101
+ # Main app logic
102
+ def main():
103
+ if torch.cuda.is_available():
104
+ st.sidebar.success("GPU is available!")
105
+ else:
106
+ st.sidebar.warning("GPU is not available. This app may run slowly on CPU.")
107
+
108
+ # Model path input
109
+ model_path = st.sidebar.text_input("Enter the path to your model:",
110
+ placeholder="waqasali1707/llama_3.2_3B_4_bit_Quan")
111
+
112
+ # Load PDFs first
113
+ if st.session_state.vectordb is None:
114
+ pdfs_processed = load_pdfs()
115
+ if not pdfs_processed:
116
+ st.info("Please upload PDF files and click 'Process PDFs' to continue.")
117
+ return
118
+
119
+ # Load model if path is provided and model isn't loaded
120
+ if model_path and st.session_state.model is None:
121
+ with st.spinner("Loading model..."):
122
+ try:
123
+ st.session_state.model, st.session_state.tokenizer = load_model(model_path)
124
+ st.success("Model loaded successfully!")
125
+ except Exception as e:
126
+ st.error(f"Error loading model: {str(e)}")
127
+ return
128
+
129
+ # Question answering interface
130
+ if st.session_state.vectordb is not None and st.session_state.model is not None:
131
+ question = st.text_area("Enter your question:", height=100)
132
+
133
+ if st.button("Get Answer"):
134
+ if question:
135
+ with st.spinner("Generating answer..."):
136
+ try:
137
+ # Get relevant documents
138
+ retriever = st.session_state.vectordb.as_retriever(search_kwargs={"k": 4})
139
+ retrieved_docs = retriever.get_relevant_documents(question)
140
+
141
+ # Generate answer
142
+ answer = combine_documents_and_answer(
143
+ retrieved_docs,
144
+ question,
145
+ st.session_state.model,
146
+ st.session_state.tokenizer
147
+ )
148
+
149
+ # Display answer
150
+ st.subheader("Answer:")
151
+ st.write(answer)
152
+
153
+ # Display sources
154
+ st.subheader("Sources:")
155
+ sources = set(doc.metadata["source"] for doc in retrieved_docs)
156
+ for source in sources:
157
+ st.write(f"- {os.path.basename(source)}")
158
+
159
+ except Exception as e:
160
+ st.error(f"Error generating answer: {str(e)}")
161
+ else:
162
+ st.warning("Please enter a question.")
163
+
164
+ if __name__ == "__main__":
165
+ main()