Delete app.py
Browse files
app.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
-
import os
|
5 |
-
from zipfile import ZipFile
|
6 |
-
|
7 |
-
# Streamlit UI for uploading model
|
8 |
-
st.title("Text Summarizer")
|
9 |
-
uploaded_file = st.file_uploader("bart-base.zip", type="zip")
|
10 |
-
|
11 |
-
if uploaded_file is not None:
|
12 |
-
# Extract the uploaded zip file
|
13 |
-
with ZipFile(uploaded_file, 'r') as zip_ref:
|
14 |
-
zip_ref.extractall("model_directory")
|
15 |
-
|
16 |
-
# Load the model from the extracted directory
|
17 |
-
try:
|
18 |
-
model_path = "model_directory"
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
21 |
-
st.success("Model loaded successfully!")
|
22 |
-
except Exception as e:
|
23 |
-
st.error(f"Failed to load model: {e}")
|
24 |
-
|
25 |
-
# Text area for input
|
26 |
-
text = st.text_area("Enter the text to generate its Summary:")
|
27 |
-
|
28 |
-
# Configuration for generation
|
29 |
-
generation_config = {'max_length': 100, 'do_sample': True, 'temperature': 0.7}
|
30 |
-
|
31 |
-
if text:
|
32 |
-
try:
|
33 |
-
# Encode input
|
34 |
-
inputs_encoded = tokenizer(text, return_tensors='pt')
|
35 |
-
|
36 |
-
# Generate output
|
37 |
-
with torch.no_grad():
|
38 |
-
model_output = model.generate(inputs_encoded["input_ids"], **generation_config)[0]
|
39 |
-
|
40 |
-
# Decode output
|
41 |
-
output = tokenizer.decode(model_output, skip_special_tokens=True)
|
42 |
-
|
43 |
-
# Display results
|
44 |
-
with st.expander("Output", expanded=True):
|
45 |
-
st.write(output)
|
46 |
-
|
47 |
-
except Exception as e:
|
48 |
-
st.error(f"An error occurred during summarization: {e}")
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|