Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import pickle
|
4 |
+
from transformers import MarianMTModel, MarianTokenizer
|
5 |
+
|
6 |
+
# Load the trained model
|
7 |
+
with open("nmt_model.pkl", "rb") as f:
|
8 |
+
model = pickle.load(f)
|
9 |
+
|
10 |
+
tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
11 |
+
|
12 |
+
# Streamlit UI
|
13 |
+
st.title("Arabic to English Translator")
|
14 |
+
st.write("Enter Arabic text and get the English translation.")
|
15 |
+
|
16 |
+
arabic_text = st.text_area("Enter Arabic Text:")
|
17 |
+
|
18 |
+
if st.button("Translate"):
|
19 |
+
if arabic_text:
|
20 |
+
# Tokenize and translate
|
21 |
+
inputs = tokenizer(arabic_text, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
22 |
+
with torch.no_grad():
|
23 |
+
translated_ids = model.generate(**inputs)
|
24 |
+
translated_text = tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0]
|
25 |
+
|
26 |
+
st.subheader("Translated English Text:")
|
27 |
+
st.write(translated_text)
|
28 |
+
else:
|
29 |
+
st.warning("Please enter Arabic text.")
|