Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,46 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
demo.launch()
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import transformers
|
| 3 |
import gradio as gr
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
from threading import Thread
|
| 6 |
+
from transformers import TextIteratorStreamer
|
| 7 |
|
| 8 |
+
model_name = "numfa/numfa_v2-3b"
|
| 9 |
+
model = AutoModelForCasualLM.from_pretrained(model_name)
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
if tokenizer.pad_token_id is None:
|
| 12 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 13 |
+
|
| 14 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens = True)
|
| 15 |
+
|
| 16 |
+
def generate_text(prompt, max_length, top_p, top_k):
|
| 17 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
| 18 |
+
|
| 19 |
+
generate_kwargs = dict(
|
| 20 |
+
inputs,
|
| 21 |
+
max_length=int(max_length),top_p=float(top_p), do_sample=True, top_k=int(top_k), streamer=streamer
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 25 |
+
t.start()
|
| 26 |
+
|
| 27 |
+
generated_text=[]
|
| 28 |
+
|
| 29 |
+
for text in streamer:
|
| 30 |
+
generated_text.append(text)
|
| 31 |
+
yield "".join(generated_text)
|
| 32 |
+
|
| 33 |
+
description = """
|
| 34 |
+
# Deploy your first ML app using Gradio
|
| 35 |
+
"""
|
| 36 |
+
inputs = [
|
| 37 |
+
gr.Textbox(label="Prompt text"),
|
| 38 |
+
gr.Textbox(label="max-lenth generation", value=100),
|
| 39 |
+
gr.Slider(0.0, 1.0, label="top-p value", value=0.95),
|
| 40 |
+
gr.Textbox(label="top-k", value=50,),
|
| 41 |
+
]
|
| 42 |
+
outputs = [gr.Textbox(label="Generated Text")]
|
| 43 |
+
|
| 44 |
+
demo = gr.Interface(fn=generate_text, inputs=inputs, outputs=outputs, allow_flagging=False, description=description)
|
| 45 |
|
|
|
|
| 46 |
demo.launch()
|