wannaphong commited on
Commit
c549cf7
·
verified ·
1 Parent(s): 29653b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -3
app.py CHANGED
@@ -1,7 +1,46 @@
 
 
1
  import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
  demo.launch()
 
1
+ import torch
2
+ import transformers
3
  import gradio as gr
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+ from threading import Thread
6
+ from transformers import TextIteratorStreamer
7
 
8
+ model_name = "numfa/numfa_v2-3b"
9
+ model = AutoModelForCasualLM.from_pretrained(model_name)
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ if tokenizer.pad_token_id is None:
12
+ tokenizer.pad_token_id = tokenizer.eos_token_id
13
+
14
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens = True)
15
+
16
+ def generate_text(prompt, max_length, top_p, top_k):
17
+ inputs = tokenizer([prompt], return_tensors="pt")
18
+
19
+ generate_kwargs = dict(
20
+ inputs,
21
+ max_length=int(max_length),top_p=float(top_p), do_sample=True, top_k=int(top_k), streamer=streamer
22
+ )
23
+
24
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
25
+ t.start()
26
+
27
+ generated_text=[]
28
+
29
+ for text in streamer:
30
+ generated_text.append(text)
31
+ yield "".join(generated_text)
32
+
33
+ description = """
34
+ # Deploy your first ML app using Gradio
35
+ """
36
+ inputs = [
37
+ gr.Textbox(label="Prompt text"),
38
+ gr.Textbox(label="max-lenth generation", value=100),
39
+ gr.Slider(0.0, 1.0, label="top-p value", value=0.95),
40
+ gr.Textbox(label="top-k", value=50,),
41
+ ]
42
+ outputs = [gr.Textbox(label="Generated Text")]
43
+
44
+ demo = gr.Interface(fn=generate_text, inputs=inputs, outputs=outputs, allow_flagging=False, description=description)
45
 
 
46
  demo.launch()