Spaces:
Running
Running
import yfinance as yf | |
from typing import Annotated, Callable, Any, Optional | |
from pandas import DataFrame | |
from functools import wraps | |
from ..utils import save_output, SavePathType, decorate_all_methods | |
def init_ticker(func: Callable) -> Callable: | |
"""Decorator to initialize yf.Ticker and pass it to the function.""" | |
def wrapper(symbol: Annotated[str, "ticker symbol"], *args, **kwargs) -> Any: | |
ticker = yf.Ticker(symbol) | |
return func(ticker, *args, **kwargs) | |
return wrapper | |
class YFinanceUtils: | |
def get_stock_data( | |
symbol: Annotated[str, "ticker symbol"], | |
start_date: Annotated[ | |
str, "start date for retrieving stock price data, YYYY-mm-dd" | |
], | |
end_date: Annotated[ | |
str, "end date for retrieving stock price data, YYYY-mm-dd" | |
], | |
save_path: SavePathType = None, | |
) -> DataFrame: | |
ticker = symbol | |
stock_data = ticker.history(start=start_date, end=end_date) | |
save_output(stock_data, f"Stock data for {ticker.ticker}", save_path) | |
return stock_data | |
def get_stock_info( | |
symbol: Annotated[str, "ticker symbol"], | |
) -> dict: | |
"""Fetches and returns stock information.""" | |
ticker = symbol | |
stock_info = ticker.info | |
return stock_info | |
def get_company_info( | |
self, | |
symbol: Annotated[str, "ticker symbol"], | |
save_path: Optional[str] = None, | |
) -> DataFrame: | |
"""Fetches and returns company information as a DataFrame.""" | |
ticker = symbol | |
info = ticker.info | |
company_info = { | |
"Company Name": info.get("shortName", "N/A"), | |
"Industry": info.get("industry", "N/A"), | |
"Sector": info.get("sector", "N/A"), | |
"Country": info.get("country", "N/A"), | |
"Website": info.get("website", "N/A"), | |
} | |
company_info_df = DataFrame([company_info]) | |
if save_path: | |
company_info_df.to_csv(save_path) | |
print(f"Company info for {ticker.ticker} saved to {save_path}") | |
return company_info_df | |
def get_stock_dividends( | |
self, | |
symbol: Annotated[str, "ticker symbol"], | |
save_path: Optional[str] = None, | |
) -> DataFrame: | |
"""Fetches and returns the dividends data as a DataFrame.""" | |
ticker = symbol | |
dividends = ticker.dividends | |
if save_path: | |
dividends.to_csv(save_path) | |
print(f"Dividends for {ticker.ticker} saved to {save_path}") | |
return dividends | |
def get_income_stmt(symbol: Annotated[str, "ticker symbol"]) -> DataFrame: | |
"""Fetches and returns the income statement of the company as a DataFrame.""" | |
ticker = symbol | |
income_stmt = ticker.financials | |
return income_stmt | |
def get_balance_sheet(symbol: Annotated[str, "ticker symbol"]) -> DataFrame: | |
"""Fetches and returns the balance sheet of the company as a DataFrame.""" | |
ticker = symbol | |
balance_sheet = ticker.balance_sheet | |
return balance_sheet | |
def get_cash_flow(symbol: Annotated[str, "ticker symbol"]) -> DataFrame: | |
"""Fetches and returns the cash flow statement of the company as a DataFrame.""" | |
ticker = symbol | |
cash_flow = ticker.cashflow | |
return cash_flow | |
def get_analyst_recommendations(symbol: Annotated[str, "ticker symbol"]) -> tuple: | |
"""Fetches the latest analyst recommendations and returns the most common recommendation and its count.""" | |
ticker = symbol | |
recommendations = ticker.recommendations | |
if recommendations.empty: | |
return None, 0 # No recommendations available | |
# Assuming 'period' column exists and needs to be excluded | |
row_0 = recommendations.iloc[0, 1:] # Exclude 'period' column if necessary | |
# Find the maximum voting result | |
max_votes = row_0.max() | |
majority_voting_result = row_0[row_0 == max_votes].index.tolist() | |
return majority_voting_result[0], max_votes | |
if __name__ == "__main__": | |
print(YFinanceUtils.get_stock_data("AAPL", "2021-01-01", "2021-12-31")) | |
# print(YFinanceUtils.get_stock_data()) | |