Spaces:
Running
Running
File size: 14,297 Bytes
3c2bfb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os
from typing import Annotated
from pandas import DataFrame
from finnlp.data_sources.news.cnbc_streaming import CNBC_Streaming
from finnlp.data_sources.news.yicai_streaming import Yicai_Streaming
from finnlp.data_sources.news.investorplace_streaming import InvestorPlace_Streaming
# from finnlp.data_sources.news.eastmoney_streaming import Eastmoney_Streaming
from finnlp.data_sources.social_media.xueqiu_streaming import Xueqiu_Streaming
from finnlp.data_sources.social_media.stocktwits_streaming import Stocktwits_Streaming
# from finnlp.data_sources.social_media.reddit_streaming import Reddit_Streaming
from finnlp.data_sources.news.sina_finance_date_range import Sina_Finance_Date_Range
from finnlp.data_sources.news.finnhub_date_range import Finnhub_Date_Range
from ..utils import save_output, SavePathType
US_Proxy = {
"use_proxy": "us_free",
"max_retry": 5,
"proxy_pages": 5,
}
CN_Proxy = {
"use_proxy": "china_free",
"max_retry": 5,
"proxy_pages": 5,
}
def streaming_download(streaming, config, tag, keyword, rounds, selected_columns, save_path):
downloader = streaming(config)
if hasattr(downloader, 'download_streaming_search'):
downloader.download_streaming_search(keyword, rounds)
elif hasattr(downloader, 'download_streaming_stock'):
downloader.download_streaming_stock(keyword, rounds)
else:
downloader.download_streaming_all(rounds)
# print(downloader.dataframe.columns)
selected = downloader.dataframe[selected_columns]
save_output(selected, tag, save_path)
return selected
def date_range_download(date_range, config, tag, start_date, end_date, stock, selected_columns, save_path):
downloader = date_range(config)
if hasattr(downloader, 'download_date_range_stock'):
downloader.download_date_range_stock(start_date, end_date, stock)
else:
downloader.download_date_range_all(start_date, end_date)
if hasattr(downloader, 'gather_content'):
downloader.gather_content()
# print(downloader.dataframe.columns)
selected_news = downloader.dataframe[selected_columns]
save_output(selected_news, tag, save_path)
return selected_news
class FinNLPUtils:
"""
Streaming News Download
"""
def cnbc_news_download(
keyword: Annotated[str, "Keyword to search in news stream"],
rounds: Annotated[int, "Number of rounds to search. Default to 1"] = 1,
selected_columns: Annotated[list[str], "List of column names of news to return, should be chosen from 'description', 'cn:lastPubDate', 'dateModified', 'cn:dateline', 'cn:branding', 'section', 'cn:type', 'author', 'cn:source', 'cn:subtype', 'duration', 'summary', 'expires', 'cn:sectionSubType', 'cn:contentClassification', 'pubdateunix', 'url', 'datePublished', 'cn:promoImage', 'cn:title', 'cn:keyword', 'cn:liveURL', 'brand', 'hint', 'hint_detail'. Default to ['author', 'datePublished', 'description' ,'section', 'cn:title', 'summary']"] = ["author", "datePublished", "description" ,"section", "cn:title", "summary"],
save_path: SavePathType = None
) -> DataFrame:
return streaming_download(CNBC_Streaming, {}, "CNBC News", keyword, rounds, selected_columns, save_path)
def yicai_news_download(
keyword: Annotated[str, "Keyword to search in news stream"],
rounds: Annotated[int, "Number of rounds to search. Default to 1"] = 1,
selected_columns: Annotated[list[str], "List of column names of news to return, should be chosen from 'author','channelid','creationDate','desc','id','previewImage','source','tags','title','topics','typeo','url','weight'. Default to ['author', 'creationDate', 'desc' ,'source', 'title']"] = ["author", "creationDate", "desc" ,"source", "title"],
save_path: SavePathType = None
) -> DataFrame:
return streaming_download(Yicai_Streaming, {}, "Yicai News", keyword, rounds, selected_columns, save_path)
def investor_place_news_download(
keyword: Annotated[str, "Keyword to search in news stream"],
rounds: Annotated[int, "Number of rounds to search. Default to 1"] = 1,
selected_columns: Annotated[list[str], "List of column names of news to return, should be chosen from 'title', 'time', 'author', 'summary'. Default to ['title', 'time', 'author', 'summary']"] = ['title', 'time', 'author', 'summary'],
save_path: SavePathType = None
) -> DataFrame:
return streaming_download(InvestorPlace_Streaming, {}, "Investor Place News", keyword, rounds, selected_columns, save_path)
# def eastmoney_news_download(
# stock: Annotated[str, "stock code, e.g. 600519"],
# pages: Annotated[int, "Number of pages to retrieve. Default to 1"] = 1,
# selected_columns: Annotated[list[str], "List of column names of news to return, should be chosen from 'title', 'time', 'author', 'summary'. Default to ['title', 'time', 'author', 'summary']"] = ['title', 'time', 'author', 'summary'],
# verbose: Annotated[bool, "Whether to print downloaded news to console. Default to True"] = True,
# save_path: Annotated[str, "If specified (recommended if the amount of news is large), the downloaded news will be saved to save_path, otherwise the news will be returned as a string. Default to None"] = None,
# ) -> str:
# return streaming_download(Eastmoney_Streaming, "Eastmoney", stock, pages, selected_columns, save_path)
"""
Date Range News Download
"""
def sina_finance_news_download(
start_date: Annotated[str, "Start date of the news to retrieve, YYYY-mm-dd"],
end_date: Annotated[str, "End date of the news to retrieve, YYYY-mm-dd"],
selected_columns: Annotated[list[str], """
List of column names of news to return, should be chosen from
'mediaid', 'productid', 'summary', 'ctime', 'url', 'author', 'stitle',
'authoruid', 'wapsummary', 'images', 'level', 'keywords', 'mlids',
'wapurl', 'columnid', 'oid', 'img', 'subjectid', 'commentid',
'ipad_vid', 'vid', 'video_id', 'channelid', 'intime',
'video_time_length', 'categoryid', 'hqChart', 'intro', 'is_cre_manual',
'icons', 'mtime', 'media_name', 'title', 'docid', 'urls', 'templateid',
'lids', 'wapurls', 'ext', 'comment_reply', 'comment_show', 'comment_total', 'praise',
'dispraise', 'important', 'content'. Default to ['title', 'author', 'content']
"""
] = ['title', 'author', 'content'],
save_path: SavePathType = None
) -> DataFrame:
return date_range_download(Sina_Finance_Date_Range, {}, "Sina Finance News", start_date, end_date, None, selected_columns, save_path)
def finnhub_news_download(
start_date: Annotated[str, "Start date of the news to retrieve, YYYY-mm-dd"],
end_date: Annotated[str, "End date of the news to retrieve, YYYY-mm-dd"],
stock: Annotated[str, "Stock symbol, e.g. AAPL"],
selected_columns: Annotated[list[str], "List of column names of news to return, should be chosen from 'category', 'datetime', 'headline', 'id', 'image', 'related', 'source', 'summary', 'url', 'content'. Default to ['headline', 'datetime', 'source', 'summary']"] = ['headline', 'datetime', 'source', 'summary'],
save_path: SavePathType = None
) -> DataFrame:
return date_range_download(Finnhub_Date_Range, {"token": os.environ['FINNHUB_API_KEY']}, "Finnhub News", start_date, end_date, stock, selected_columns, save_path)
"""
Social Media
"""
def xueqiu_social_media_download(
stock: Annotated[str, "Stock symbol, e.g. 'AAPL'"],
rounds: Annotated[int, "Number of rounds to search. Default to 1"] = 1,
selected_columns: Annotated[list[str], """
List of column names of news to return, should be chosen from blocked',
'blocking', 'canEdit', 'commentId', 'controversial',
'created_at', 'description', 'donate_count', 'donate_snowcoin',
'editable', 'expend', 'fav_count', 'favorited', 'flags', 'flagsObj',
'hot', 'id', 'is_answer', 'is_bonus', 'is_refused', 'is_reward',
'is_ss_multi_pic', 'legal_user_visible', 'like_count', 'liked', 'mark',
'pic', 'promotion_id', 'reply_count', 'retweet_count',
'retweet_status_id', 'reward_count', 'reward_user_count', 'rqid',
'source', 'source_feed', 'source_link', 'target', 'text', 'timeBefore',
'title', 'trackJson', 'truncated', 'truncated_by', 'type', 'user',
'user_id', 'view_count', 'firstImg', 'pic_sizes', 'edited_at'.
Default to ['created_at', 'description', 'title', 'text', 'target', 'source']
"""] = ['created_at', 'description', 'title', 'text', 'target', 'source'],
save_path: SavePathType = None
) -> DataFrame:
return streaming_download(Xueqiu_Streaming, {}, "Xueqiu Social Media", stock, rounds, selected_columns, save_path)
def stocktwits_social_media_download(
stock: Annotated[str, "Stock symbol, e.g. 'AAPL'"],
rounds: Annotated[int, "Number of rounds to search. Default to 1"] = 1,
selected_columns: Annotated[list[str], """
List of column names of news to return, should be chosen from 'id',
'body', 'created_at', 'user', 'source', 'symbols', 'prices',
'mentioned_users', 'entities', 'liked_by_self', 'reshared_by_self',
'conversation', 'links', 'likes', 'reshare_message', 'structurable',
'reshares'. Default to ['created_at', 'body']
"""] = ['created_at', 'body'],
save_path: SavePathType = None
) -> DataFrame:
return streaming_download(Stocktwits_Streaming, {}, "Stocktwits Social Media", stock, rounds, selected_columns, save_path)
# def reddit_social_media_download(
# pages: Annotated[int, "Number of pages to retrieve. Default to 1"] = 1,
# selected_columns: Annotated[list[str], """
# List of column names of news to return, should be chosen from 'id',
# 'body', 'created_at', 'user', 'source', 'symbols', 'prices',
# 'mentioned_users', 'entities', 'liked_by_self', 'reshared_by_self',
# 'conversation', 'links', 'likes', 'reshare_message', 'structurable',
# 'reshares'. Default to ['created_at', 'body']
# """] = ['created_at', 'body'],
# verbose: Annotated[bool, "Whether to print downloaded news to console. Default to True"] = True,
# save_path: Annotated[str, "If specified (recommended if the amount of news is large), the downloaded news will be saved to save_path. Default to None"] = None,
# ) -> DataFrame:
# return streaming_download(Reddit_Streaming, {}, "Reddit Social Media", None, pages, selected_columns, save_path)
"""
Company Announcements
(Not working well)
"""
# from finnlp.data_sources.company_announcement.sec import SEC_Announcement
# from finnlp.data_sources.company_announcement.juchao import Juchao_Announcement
# def sec_announcement_download(
# start_date: Annotated[str, "Start date of the news to retrieve, YYYY-mm-dd"],
# end_date: Annotated[str, "End date of the news to retrieve, YYYY-mm-dd"],
# stock: Annotated[str, "Stock symbol, e.g. AAPL"],
# selected_columns: Annotated[list[str], "List of column names of news to return, should be chosen from 'category', 'datetime', 'headline', 'id', 'image', 'related', 'source', 'summary', 'url', 'content'. Default to ['headline', 'datetime', 'source', 'summary']"] = ['headline', 'datetime', 'source', 'summary'],
# verbose: Annotated[bool, "Whether to print downloaded news to console. Default to True"] = True,
# save_path: Annotated[str, "If specified (recommended if the amount of news is large), the downloaded news will be saved to save_path. Default to None"] = None,
# ) -> DataFrame:
# return date_range_download(SEC_Announcement, {}, "SEC Announcements", start_date, end_date, stock, selected_columns, save_path)
# def juchao_announcement_download(
# start_date: Annotated[str, "Start date of the news to retrieve, YYYY-mm-dd"],
# end_date: Annotated[str, "End date of the news to retrieve, YYYY-mm-dd"],
# stock: Annotated[str, "Stock code, e.g. 000001"],
# selected_columns: Annotated[list[str], "List of column names of news to return, should be chosen from 'category', 'datetime', 'headline', 'id', 'image', 'related', 'source', 'summary', 'url', 'content'. Default to ['headline', 'datetime', 'source', 'summary']"] = ['headline', 'datetime', 'source', 'summary'],
# verbose: Annotated[bool, "Whether to print downloaded news to console. Default to True"] = True,
# save_path: Annotated[str, "If specified (recommended if the amount of news is large), the downloaded news will be saved to save_path. Default to None"] = None,
# ) -> DataFrame:
# return date_range_download(Juchao_Announcement, {}, "Juchao Announcements", start_date, end_date, stock, selected_columns, save_path)
if __name__ == "__main__":
print(FinNLPUtils.yicai_news_download("茅台", save_path="yicai_maotai.csv"))
# print(cnbc_news_download("tesla", save_path="cnbc_tesla.csv"))
# investor_place_news_download("tesla", save_path="invpl_tesla.csv")
# eastmoney_news_download("600519", save_path="estmny_maotai.csv")
# sina_finance_news_download("2024-03-02", "2024-03-02", save_path="sina_news.csv")
# finnhub_news_download("2024-03-02", "2024-03-02", "AAPL", save_path="finnhub_aapl_news.csv")
# stocktwits_social_media_download("AAPL", save_path="stocktwits_aapl.csv")
# xueqiu_social_media_download("茅台", save_path="xueqiu_maotai.csv")
# reddit_social_media_download(save_path="reddit_social_media.csv")
# juchao_announcement_download("000001", "2020-01-01", "2020-06-01", save_path="sec_announcement.csv") |