File size: 10,324 Bytes
3c2bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import finnhub
import pandas as pd
import json
import random
from typing import Annotated
from collections import defaultdict
from functools import wraps
from datetime import datetime
from ..utils import decorate_all_methods, save_output, SavePathType


def init_finnhub_client(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        global finnhub_client
        if os.environ.get("FINNHUB_API_KEY") is None:
            print(
                "Please set the environment variable FINNHUB_API_KEY to use the Finnhub API."
            )
            return None
        else:
            finnhub_client = finnhub.Client(api_key=os.environ["FINNHUB_API_KEY"])
            print("Finnhub client initialized")
            return func(*args, **kwargs)

    # wrapper.__annotations__ = func.__annotations__
    return wrapper


@decorate_all_methods(init_finnhub_client)
class FinnHubUtils:

    def get_company_profile(symbol: Annotated[str, "ticker symbol"]) -> str:

        profile = finnhub_client.company_profile2(symbol=symbol)
        if not profile:
            return f"Failed to find company profile for symbol {symbol} from finnhub!"

        formatted_str = (
            "[Company Introduction]:\n\n{name} is a leading entity in the {finnhubIndustry} sector. "
            "Incorporated and publicly traded since {ipo}, the company has established its reputation as "
            "one of the key players in the market. As of today, {name} has a market capitalization "
            "of {marketCapitalization:.2f} in {currency}, with {shareOutstanding:.2f} shares outstanding."
            "\n\n{name} operates primarily in the {country}, trading under the ticker {ticker} on the {exchange}. "
            "As a dominant force in the {finnhubIndustry} space, the company continues to innovate and drive "
            "progress within the industry."
        ).format(**profile)

        return formatted_str

    def get_company_news(
        symbol: Annotated[str, "ticker symbol"],
        start_date: Annotated[
            str,
            "start date of the search period for the company's basic financials, yyyy-mm-dd",
        ],
        end_date: Annotated[
            str,
            "end date of the search period for the company's basic financials, yyyy-mm-dd",
        ],
        max_news_num: Annotated[
            int, "maximum number of news to return, default to 10"
        ] = 10,
        save_path: SavePathType = None,
    ) -> pd.DataFrame:

        news = finnhub_client.company_news(symbol, _from=start_date, to=end_date)
        if len(news) == 0:
            print(f"No company news found for symbol {symbol} from finnhub!")
        news = [
            {
                "date": datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"),
                "headline": n["headline"],
                "summary": n["summary"],
            }
            for n in news
        ]
        # Randomly select a subset of news if the number of news exceeds the maximum
        if len(news) > max_news_num:
            news = random.choices(news, k=max_news_num)
        news.sort(key=lambda x: x["date"])
        output = pd.DataFrame(news)
        save_output(output, f"company news of {symbol}", save_path=save_path)

        return output

    def get_basic_financials_history(
        symbol: Annotated[str, "ticker symbol"],
        freq: Annotated[
            str,
            "reporting frequency of the company's basic financials: annual / quarterly",
        ],
        start_date: Annotated[
            str,
            "start date of the search period for the company's basic financials, yyyy-mm-dd",
        ],
        end_date: Annotated[
            str,
            "end date of the search period for the company's basic financials, yyyy-mm-dd",
        ],
        selected_columns: Annotated[
            list[str] | None,
            "List of column names of news to return, should be chosen from 'assetTurnoverTTM', 'bookValue', 'cashRatio', 'currentRatio', 'ebitPerShare', 'eps', 'ev', 'fcfMargin', 'fcfPerShareTTM', 'grossMargin', 'inventoryTurnoverTTM', 'longtermDebtTotalAsset', 'longtermDebtTotalCapital', 'longtermDebtTotalEquity', 'netDebtToTotalCapital', 'netDebtToTotalEquity', 'netMargin', 'operatingMargin', 'payoutRatioTTM', 'pb', 'peTTM', 'pfcfTTM', 'pretaxMargin', 'psTTM', 'ptbv', 'quickRatio', 'receivablesTurnoverTTM', 'roaTTM', 'roeTTM', 'roicTTM', 'rotcTTM', 'salesPerShare', 'sgaToSale', 'tangibleBookValue', 'totalDebtToEquity', 'totalDebtToTotalAsset', 'totalDebtToTotalCapital', 'totalRatio'",
        ] = None,
        save_path: SavePathType = None,
    ) -> pd.DataFrame:

        if freq not in ["annual", "quarterly"]:
            return f"Invalid reporting frequency {freq}. Please specify either 'annual' or 'quarterly'."

        basic_financials = finnhub_client.company_basic_financials(symbol, "all")
        if not basic_financials["series"]:
            return f"Failed to find basic financials for symbol {symbol} from finnhub! Try a different symbol."

        output_dict = defaultdict(dict)
        for metric, value_list in basic_financials["series"][freq].items():
            if selected_columns and metric not in selected_columns:
                continue
            for value in value_list:
                if value["period"] >= start_date and value["period"] <= end_date:
                    output_dict[metric].update({value["period"]: value["v"]})

        financials_output = pd.DataFrame(output_dict)
        financials_output = financials_output.rename_axis(index="date")
        save_output(financials_output, "basic financials", save_path=save_path)

        return financials_output

    def get_basic_financials(
        symbol: Annotated[str, "ticker symbol"],
        selected_columns: Annotated[
            list[str] | None,
            "List of column names of news to return, should be chosen from 'assetTurnoverTTM', 'bookValue', 'cashRatio', 'currentRatio', 'ebitPerShare', 'eps', 'ev', 'fcfMargin', 'fcfPerShareTTM', 'grossMargin', 'inventoryTurnoverTTM', 'longtermDebtTotalAsset', 'longtermDebtTotalCapital', 'longtermDebtTotalEquity', 'netDebtToTotalCapital', 'netDebtToTotalEquity', 'netMargin', 'operatingMargin', 'payoutRatioTTM', 'pb', 'peTTM', 'pfcfTTM', 'pretaxMargin', 'psTTM', 'ptbv', 'quickRatio', 'receivablesTurnoverTTM', 'roaTTM', 'roeTTM', 'roicTTM', 'rotcTTM', 'salesPerShare', 'sgaToSale', 'tangibleBookValue', 'totalDebtToEquity', 'totalDebtToTotalAsset', 'totalDebtToTotalCapital', 'totalRatio','10DayAverageTradingVolume', '13WeekPriceReturnDaily', '26WeekPriceReturnDaily', '3MonthADReturnStd', '3MonthAverageTradingVolume', '52WeekHigh', '52WeekHighDate', '52WeekLow', '52WeekLowDate', '52WeekPriceReturnDaily', '5DayPriceReturnDaily', 'assetTurnoverAnnual', 'assetTurnoverTTM', 'beta', 'bookValuePerShareAnnual', 'bookValuePerShareQuarterly', 'bookValueShareGrowth5Y', 'capexCagr5Y', 'cashFlowPerShareAnnual', 'cashFlowPerShareQuarterly', 'cashFlowPerShareTTM', 'cashPerSharePerShareAnnual', 'cashPerSharePerShareQuarterly', 'currentDividendYieldTTM', 'currentEv/freeCashFlowAnnual', 'currentEv/freeCashFlowTTM', 'currentRatioAnnual', 'currentRatioQuarterly', 'dividendGrowthRate5Y', 'dividendPerShareAnnual', 'dividendPerShareTTM', 'dividendYieldIndicatedAnnual', 'ebitdPerShareAnnual', 'ebitdPerShareTTM', 'ebitdaCagr5Y', 'ebitdaInterimCagr5Y', 'enterpriseValue', 'epsAnnual', 'epsBasicExclExtraItemsAnnual', 'epsBasicExclExtraItemsTTM', 'epsExclExtraItemsAnnual', 'epsExclExtraItemsTTM', 'epsGrowth3Y', 'epsGrowth5Y', 'epsGrowthQuarterlyYoy', 'epsGrowthTTMYoy', 'epsInclExtraItemsAnnual', 'epsInclExtraItemsTTM', 'epsNormalizedAnnual', 'epsTTM', 'focfCagr5Y', 'grossMargin5Y', 'grossMarginAnnual', 'grossMarginTTM', 'inventoryTurnoverAnnual', 'inventoryTurnoverTTM', 'longTermDebt/equityAnnual', 'longTermDebt/equityQuarterly', 'marketCapitalization', 'monthToDatePriceReturnDaily', 'netIncomeEmployeeAnnual', 'netIncomeEmployeeTTM', 'netInterestCoverageAnnual', 'netInterestCoverageTTM', 'netMarginGrowth5Y', 'netProfitMargin5Y', 'netProfitMarginAnnual', 'netProfitMarginTTM', 'operatingMargin5Y', 'operatingMarginAnnual', 'operatingMarginTTM', 'payoutRatioAnnual', 'payoutRatioTTM', 'pbAnnual', 'pbQuarterly', 'pcfShareAnnual', 'pcfShareTTM', 'peAnnual', 'peBasicExclExtraTTM', 'peExclExtraAnnual', 'peExclExtraTTM', 'peInclExtraTTM', 'peNormalizedAnnual', 'peTTM', 'pfcfShareAnnual', 'pfcfShareTTM', 'pretaxMargin5Y', 'pretaxMarginAnnual', 'pretaxMarginTTM', 'priceRelativeToS&P50013Week', 'priceRelativeToS&P50026Week', 'priceRelativeToS&P5004Week', 'priceRelativeToS&P50052Week', 'priceRelativeToS&P500Ytd', 'psAnnual', 'psTTM', 'ptbvAnnual', 'ptbvQuarterly', 'quickRatioAnnual', 'quickRatioQuarterly', 'receivablesTurnoverAnnual', 'receivablesTurnoverTTM', 'revenueEmployeeAnnual', 'revenueEmployeeTTM', 'revenueGrowth3Y', 'revenueGrowth5Y', 'revenueGrowthQuarterlyYoy', 'revenueGrowthTTMYoy', 'revenuePerShareAnnual', 'revenuePerShareTTM', 'revenueShareGrowth5Y', 'roa5Y', 'roaRfy', 'roaTTM', 'roe5Y', 'roeRfy', 'roeTTM', 'roi5Y', 'roiAnnual', 'roiTTM', 'tangibleBookValuePerShareAnnual', 'tangibleBookValuePerShareQuarterly', 'tbvCagr5Y', 'totalDebt/totalEquityAnnual', 'totalDebt/totalEquityQuarterly', 'yearToDatePriceReturnDaily'",
        ] = None,
    ) -> str:

        basic_financials = finnhub_client.company_basic_financials(symbol, "all")
        if not basic_financials["series"]:
            return f"Failed to find basic financials for symbol {symbol} from finnhub! Try a different symbol."

        output_dict = basic_financials["metric"]
        for metric, value_list in basic_financials["series"]["quarterly"].items():
            value = value_list[0]
            output_dict.update({metric: value["v"]})

        for k in output_dict.keys():
            if selected_columns and k not in selected_columns:
                output_dict.pop(k)

        return json.dumps(output_dict, indent=2)


if __name__ == "__main__":

    from finrobot.utils import register_keys_from_json

    register_keys_from_json("../../config_api_keys")
    # print(FinnHubUtils.get_company_profile("AAPL"))
    # print(FinnHubUtils.get_basic_financials_history("AAPL", "annual", "2019-01-01", "2021-01-01"))
    print(FinnHubUtils.get_basic_financials("AAPL"))