wangzerui commited on
Commit
cbe21b4
Β·
verified Β·
1 Parent(s): 2b75b43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -307
README.md CHANGED
@@ -4,310 +4,3 @@ app_file: app.py
4
  sdk: gradio
5
  sdk_version: 4.31.5
6
  ---
7
- <div align="center">
8
- <img align="center" width="30%" alt="image" src="https://github.com/AI4Finance-Foundation/FinGPT/assets/31713746/e0371951-1ce1-488e-aa25-0992dafcc139">
9
- </div>
10
-
11
- # FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models
12
- [![Downloads](https://static.pepy.tech/badge/finrobot)]([https://pepy.tech/project/finrobot](https://pepy.tech/project/finrobot))
13
- [![Downloads](https://static.pepy.tech/badge/finrobot/week)](https://pepy.tech/project/finrobot)
14
- [![Python 3.8](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)
15
- [![PyPI](https://img.shields.io/pypi/v/finrobot.svg)](https://pypi.org/project/finrobot/)
16
- ![License](https://img.shields.io/github/license/AI4Finance-Foundation/finrobot.svg?color=brightgreen)
17
-
18
- <div align="center">
19
- <img align="center" src=figs/logo_white_background.jpg width="40%"/>
20
- </div>
21
-
22
- **FinRobot** is an AI Agent Platform that transcends the scope of FinGPT, representing a comprehensive solution meticulously designed for financial applications. It integrates **a diverse array of AI technologies**, extending beyond mere language models. This expansive vision highlights the platform's versatility and adaptability, addressing the multifaceted needs of the financial industry.
23
-
24
- **Concept of AI Agent**: an AI Agent is an intelligent entity that uses large language models as its brain to perceive its environment, make decisions, and execute actions. Unlike traditional artificial intelligence, AI Agents possess the ability to independently think and utilize tools to progressively achieve given objectives.
25
-
26
- [Whitepaper of FinRobot](https://arxiv.org/abs/2405.14767)
27
-
28
- [![](https://dcbadge.vercel.app/api/server/trsr8SXpW5)](https://discord.gg/trsr8SXpW5)
29
-
30
- ## FinRobot Ecosystem
31
- <div align="center">
32
- <img align="center" src="https://github.com/AI4Finance-Foundation/FinRobot/assets/31713746/6b30d9c1-35e5-4d36-a138-7e2769718f62" width="90%"/>
33
- </div>
34
-
35
- ### The overall framework of FinRobot is organized into four distinct layers, each designed to address specific aspects of financial AI processing and application:
36
- 1. **Financial AI Agents Layer**: The Financial AI Agents Layer now includes Financial Chain-of-Thought (CoT) prompting, enhancing complex analysis and decision-making capacity. Market Forecasting Agents, Document Analysis Agents, and Trading Strategies Agents utilize CoT to dissect financial challenges into logical steps, aligning their advanced algorithms and domain expertise with the evolving dynamics of financial markets for precise, actionable insights.
37
- 2. **Financial LLMs Algorithms Layer**: The Financial LLMs Algorithms Layer configures and utilizes specially tuned models tailored to specific domains and global market analysis.
38
- 3. **LLMOps and DataOps Layers**: The LLMOps layer implements a multi-source integration strategy that selects the most suitable LLMs for specific financial tasks, utilizing a range of state-of-the-art models.
39
- 4. **Multi-source LLM Foundation Models Layer**: This foundational layer supports the plug-and-play functionality of various general and specialized LLMs.
40
-
41
-
42
- ## FinRobot: Agent Workflow
43
- <div align="center">
44
- <img align="center" src="https://github.com/AI4Finance-Foundation/FinRobot/assets/31713746/ff8033be-2326-424a-ac11-17e2c9c4983d" width="60%"/>
45
- </div>
46
-
47
- 1. **Perception**: This module captures and interprets multimodal financial data from market feeds, news, and economic indicators, using sophisticated techniques to structure the data for thorough analysis.
48
-
49
- 2. **Brain**: Acting as the core processing unit, this module perceives data from the Perception module with LLMs and utilizes Financial Chain-of-Thought (CoT) processes to generate structured instructions.
50
-
51
- 3. **Action**: This module executes instructions from the Brain module, applying tools to translate analytical insights into actionable outcomes. Actions include trading, portfolio adjustments, generating reports, or sending alerts, thereby actively influencing the financial environment.
52
-
53
- ## FinRobot: Smart Scheduler
54
- <div align="center">
55
- <img align="center" src="https://github.com/AI4Finance-Foundation/FinRobot/assets/31713746/06fa0b78-ac53-48d3-8a6e-98d15386327e" width="60%"/>
56
- </div>
57
-
58
- The Smart Scheduler is central to ensuring model diversity and optimizing the integration and selection of the most appropriate LLM for each task.
59
- * **Director Agent**: This component orchestrates the task assignment process, ensuring that tasks are allocated to agents based on their performance metrics and suitability for specific tasks.
60
- * **Agent Registration**: Manages the registration and tracks the availability of agents within the system, facilitating an efficient task allocation process.
61
- * **Agent Adaptor**: Tailor agent functionalities to specific tasks, enhancing their performance and integration within the overall system.
62
- * **Task Manager**: Manages and stores different general and fine-tuned LLMs-based agents tailored for various financial tasks, updated periodically to ensure relevance and efficacy.
63
-
64
- ## File Structure
65
-
66
- The main folder **finrobot** has three subfolders **agents, data_source, functional**.
67
-
68
- ```
69
- FinRobot
70
- β”œβ”€β”€ finrobot (main folder)
71
- β”‚ β”œβ”€β”€ agents
72
- β”‚ β”œβ”€β”€ agent_library.py
73
- β”‚ └── workflow.py
74
- β”‚ β”œβ”€β”€ data_source
75
- β”‚ β”œβ”€β”€ finnhub_utils.py
76
- β”‚ β”œβ”€β”€ finnlp_utils.py
77
- β”‚ β”œβ”€β”€ fmp_utils.py
78
- β”‚ β”œβ”€β”€ sec_utils.py
79
- β”‚ └── yfinance_utils.py
80
- β”‚ β”œβ”€β”€ functional
81
- β”‚ β”œβ”€β”€ analyzer.py
82
- β”‚ β”œβ”€β”€ charting.py
83
- β”‚ β”œβ”€β”€ coding.py
84
- β”‚ β”œβ”€β”€ quantitative.py
85
- β”‚ β”œβ”€β”€ reportlab.py
86
- β”‚ └── text.py
87
- β”‚ β”œβ”€β”€ toolkits.py
88
- β”‚ └── utils.py
89
- β”‚
90
- β”œβ”€β”€ configs
91
- β”œβ”€β”€ experiments
92
- β”œβ”€β”€ tutorials_beginner (hands-on tutorial)
93
- β”‚ β”œβ”€β”€ agent_fingpt_forecaster.ipynb
94
- β”‚ └── agent_annual_report.ipynb
95
- β”œβ”€β”€ tutorials_advanced (advanced tutorials for potential finrobot developers)
96
- β”‚ β”œβ”€β”€ agent_trade_strategist.ipynb
97
- β”‚ β”œβ”€β”€ agent_fingpt_forecaster.ipynb
98
- β”‚ β”œβ”€β”€ agent_annual_report.ipynb
99
- β”‚ β”œβ”€β”€ lmm_agent_mplfinance.ipynb
100
- β”‚ └── lmm_agent_opt_smacross.ipynb
101
- β”œβ”€β”€ setup.py
102
- β”œβ”€β”€ OAI_CONFIG_LIST_sample
103
- β”œβ”€β”€ config_api_keys_sample
104
- β”œβ”€β”€ requirements.txt
105
- └── README.md
106
- ```
107
-
108
- ## Installation:
109
-
110
- **1. (Recommended) Create a new virtual environment**
111
- ```shell
112
- conda create --name finrobot python=3.10
113
- conda activate finrobot
114
- ```
115
- **2. download the FinRobot repo use terminal or download it manually**
116
- ```shell
117
- git clone https://github.com/AI4Finance-Foundation/FinRobot.git
118
- cd FinRobot
119
- ```
120
- **3. install finrobot & dependencies from source or pypi**
121
-
122
- get our latest release from pypi
123
- ```bash
124
- pip install -U finrobot
125
- ```
126
- or install from this repo directly
127
- ```
128
- pip install -e .
129
- ```
130
- **4. modify OAI_CONFIG_LIST_sample file**
131
- ```shell
132
- 1) rename OAI_CONFIG_LIST_sample to OAI_CONFIG_LIST
133
- 2) remove the four lines of comment within the OAI_CONFIG_LIST file
134
- 3) add your own openai api-key <your OpenAI API key here>
135
- ```
136
- **5. modify config_api_keys_sample file**
137
- ```shell
138
- 1) rename config_api_keys_sample to config_api_keys
139
- 2) remove the comment within the config_api_keys file
140
- 3) add your own finnhub-api "YOUR_FINNHUB_API_KEY"
141
- 4) add your own financialmodelingprep and sec-api keys "YOUR_FMP_API_KEY" and "YOUR_SEC_API_KEY" (for financial report generation)
142
- ```
143
- **6. start navigating the tutorials or the demos below:**
144
- ```
145
- # find these notebooks in tutorials
146
- 1) agent_annual_report.ipynb
147
- 2) agent_fingpt_forecaster.ipynb
148
- 3) agent_trade_strategist.ipynb
149
- 4) lmm_agent_mplfinance.ipynb
150
- 5) lmm_agent_opt_smacross.ipynb
151
- ```
152
-
153
- ## Demos
154
- ### 1. Market Forecaster Agent (Predict Stock Movements Direction)
155
- Takes a company's ticker symbol, recent basic financials, and market news as input and predicts its stock movements.
156
-
157
- 1. Import
158
- ```python
159
- import autogen
160
- from finrobot.utils import get_current_date, register_keys_from_json
161
- from finrobot.agents.workflow import SingleAssistant
162
- ```
163
- 2. Config
164
- ```python
165
- # Read OpenAI API keys from a JSON file
166
- llm_config = {
167
- "config_list": autogen.config_list_from_json(
168
- "../OAI_CONFIG_LIST",
169
- filter_dict={"model": ["gpt-4-0125-preview"]},
170
- ),
171
- "timeout": 120,
172
- "temperature": 0,
173
- }
174
-
175
- # Register FINNHUB API keys
176
- register_keys_from_json("../config_api_keys")
177
- ```
178
- 3. Run
179
- ```python
180
- company = "NVDA"
181
-
182
- assitant = SingleAssistant(
183
- "Market_Analyst",
184
- llm_config,
185
- # set to "ALWAYS" if you want to chat instead of simply receiving the prediciton
186
- human_input_mode="NEVER",
187
- )
188
- assitant.chat(
189
- f"Use all the tools provided to retrieve information available for {company} upon {get_current_date()}. Analyze the positive developments and potential concerns of {company} "
190
- "with 2-4 most important factors respectively and keep them concise. Most factors should be inferred from company related news. "
191
- f"Then make a rough prediction (e.g. up/down by 2-3%) of the {company} stock price movement for next week. Provide a summary analysis to support your prediction."
192
- )
193
- ```
194
- 4. Result
195
- <div align="center">
196
- <img align="center" src="https://github.com/AI4Finance-Foundation/FinRobot/assets/31713746/812ec23a-9cb3-4fad-b716-78533ddcd9dc" width="40%"/>
197
- <img align="center" src="https://github.com/AI4Finance-Foundation/FinRobot/assets/31713746/9a2f9f48-b0e1-489c-8679-9a4c530f313c" width="41%"/>
198
- </div>
199
-
200
- ### 2. Financial Analyst Agent for Report Writing (Equity Research Report)
201
- Take a company's 10-k form, financial data, and market data as input and output an equity research report
202
-
203
- 1. Import
204
- ```python
205
- import os
206
- import autogen
207
- from textwrap import dedent
208
- from finrobot.utils import register_keys_from_json
209
- from finrobot.agents.workflow import SingleAssistantShadow
210
- ```
211
- 2. Config
212
- ```python
213
- llm_config = {
214
- "config_list": autogen.config_list_from_json(
215
- "../OAI_CONFIG_LIST",
216
- filter_dict={
217
- "model": ["gpt-4-0125-preview"],
218
- },
219
- ),
220
- "timeout": 120,
221
- "temperature": 0.5,
222
- }
223
- register_keys_from_json("../config_api_keys")
224
-
225
- # Intermediate strategy modules will be saved in this directory
226
- work_dir = "../report"
227
- os.makedirs(work_dir, exist_ok=True)
228
-
229
- assistant = SingleAssistantShadow(
230
- "Expert_Investor",
231
- llm_config,
232
- max_consecutive_auto_reply=None,
233
- human_input_mode="TERMINATE",
234
- )
235
-
236
- ```
237
- 3. Run
238
- ```python
239
- company = "Microsoft"
240
- fyear = "2023"
241
-
242
- message = dedent(
243
- f"""
244
- With the tools you've been provided, write an annual report based on {company}'s {fyear} 10-k report, format it into a pdf.
245
- Pay attention to the followings:
246
- - Explicitly explain your working plan before you kick off.
247
- - Use tools one by one for clarity, especially when asking for instructions.
248
- - All your file operations should be done in "{work_dir}".
249
- - Display any image in the chat once generated.
250
- - All the paragraphs should combine between 400 and 450 words, don't generate the pdf until this is explicitly fulfilled.
251
- """
252
- )
253
-
254
- assistant.chat(message, use_cache=True, max_turns=50,
255
- summary_method="last_msg")
256
- ```
257
- 4. Result
258
- <div align="center">
259
- <img align="center" src="https://github.com/AI4Finance-Foundation/FinRobot/assets/31713746/d2d999e0-dc0e-4196-aca1-218f5fadcc5b" width="60%"/>
260
- <img align="center" src="https://github.com/AI4Finance-Foundation/FinRobot/assets/31713746/3a21873f-9498-4d73-896b-3740bf6d116d" width="60%"/>
261
- </div>
262
-
263
- **Financial CoT**:
264
- 1. **Gather Preliminary Data**: 10-K report, market data, financial ratios
265
- 2. **Analyze Financial Statements**: balance sheet, income statement, cash flow
266
- 3. **Company Overview and Performance**: company description, business highlights, segment analysis
267
- 4. **Risk Assessment**: assess risks
268
- 5. **Financial Performance Visualization**: plot PE ratio and EPS
269
- 6. **Synthesize Findings into Paragraphs**: combine all parts into a coherent summary
270
- 7. **Generate PDF Report**: use tools to generate PDF automatically
271
- 8. **Quality Assurance**: check word counts
272
-
273
- ### 3. Trade Strategist Agent with multimodal capabilities
274
-
275
-
276
- ## AI Agent Papers
277
-
278
- + [Stanford University + Microsoft Research] [Agent AI: Surveying the Horizons of Multimodal Interaction](https://arxiv.org/abs/2401.03568)
279
- + [Stanford University] [Generative Agents: Interactive Simulacra of Human Behavior](https://arxiv.org/abs/2304.03442)
280
- + [Fudan NLP Group] [The Rise and Potential of Large Language Model Based Agents: A Survey](https://arxiv.org/abs/2309.07864)
281
- + [Fudan NLP Group] [LLM-Agent-Paper-List](https://github.com/WooooDyy/LLM-Agent-Paper-List)
282
- + [Tsinghua University] [Large Language Models Empowered Agent-based Modeling and Simulation: A Survey and Perspectives](https://arxiv.org/abs/2312.11970)
283
- + [Renmin University] [A Survey on Large Language Model-based Autonomous Agents](https://arxiv.org/pdf/2308.11432.pdf)
284
- + [Nanyang Technological University] [FinAgent: A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist](https://arxiv.org/abs/2402.18485)
285
-
286
- ## AI Agent Blogs and Videos
287
- + [Medium] [An Introduction to AI Agents](https://medium.com/humansdotai/an-introduction-to-ai-agents-e8c4afd2ee8f)
288
- + [Medium] [Unmasking the Best Character AI Chatbots | 2024](https://medium.com/@aitrendorbit/unmasking-the-best-character-ai-chatbots-2024-351de43792f4#the-best-character-ai-chatbots)
289
- + [big-picture] [ChatGPT, Next Level: Meet 10 Autonomous AI Agents](https://blog.big-picture.com/en/chatgpt-next-level-meet-10-autonomous-ai-agents-auto-gpt-babyagi-agentgpt-microsoft-jarvis-chaosgpt-friends/)
290
- + [TowardsDataScience] [Navigating the World of LLM Agents: A Beginner’s Guide](https://towardsdatascience.com/navigating-the-world-of-llm-agents-a-beginners-guide-3b8d499db7a9)
291
- + [YouTube] [Introducing Devin - The "First" AI Agent Software Engineer](https://www.youtube.com/watch?v=iVbN95ica_k)
292
-
293
-
294
- ## AI Agent Open-Source Framework & Tool
295
- + [AutoGPT (161k stars)](https://github.com/Significant-Gravitas/AutoGPT) is a tool for everyone to use, aiming to democratize AI, making it accessible for everyone to use and build upon.
296
- + [LangChain (82.7k stars)](https://github.com/langchain-ai/langchain) is a framework for developing context-aware applications powered by language models, enabling them to connect to sources of context and rely on the model's reasoning capabilities for responses and actions.
297
- + [MetaGPT (39.1k stars)](https://github.com/geekan/MetaGPT) is a multi-agent open-source framework that assigns different roles to GPTs, forming a collaborative software entity to execute complex tasks.
298
- + [AutoGen (24.8k stars)](https://github.com/microsoft/autogen) is a framework for developing LLM applications with conversational agents that collaborate to solve tasks. These agents are customizable, support human interaction, and operate in modes combining LLMs, human inputs, and tools.
299
- + [dify (22.7k stars)](https://github.com/langgenius/dify) is an LLM application development platform. It integrates the concepts of Backend as a Service and LLMOps, covering the core tech stack required for building generative AI-native applications, including a built-in RAG engine
300
- + [ChatDev (22.7k stars)](https://github.com/OpenBMB/ChatDev) is a framework that focuses on developing conversational AI Agents capable of dialogue and question-answering. It provides a range of pre-trained models and interactive interfaces, facilitating the development of customized chat Agents for users.
301
- + [BabyAGI (19.2k stars)](https://github.com/yoheinakajima/babyagi) is an AI-powered task management system, dedicated to building AI Agents with preliminary general intelligence.
302
- + [SuperAGI (14.4k stars)](https://github.com/TransformerOptimus/SuperAGI) is a dev-first open-source autonomous AI agent framework enabling developers to build, manage & run useful autonomous agents.
303
- + [FastGPT (12.5k stars)](https://github.com/labring/FastGPT) is a knowledge-based platform built on the LLM, offers out-of-the-box data processing and model invocation capabilities, allows for workflow orchestration through Flow visualization.
304
- + [CrewAI (12.1k stars)](https://github.com/joaomdmoura/crewAI) is a framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
305
- + [XAgent (7.5k stars)](https://github.com/OpenBMB/XAgent) is an open-source experimental Large Language Model (LLM) driven autonomous agent that can automatically solve various tasks.
306
- + [Bisheng (5.5k stars)](https://github.com/dataelement/bisheng) is a leading open-source platform for developing LLM applications.
307
- + [Voyager (5.1k stars)](https://github.com/OpenBMB/XAgent) An Open-Ended Embodied Agent with Large Language Models.
308
- + [CAMEL (4.4k stars)](https://github.com/camel-ai/camel) is a framework that offers a comprehensive set of tools and algorithms for building multimodal AI Agents, enabling them to handle various data forms such as text, images, and speech.
309
- + [Langfuse (2.9k stars)](https://github.com/langfuse/langfuse) is a language fusion framework that can integrate the language abilities of multiple AI Agents, enabling them to simultaneously possess multilingual understanding and generation capabilities.
310
-
311
- **Disclaimer**: The codes and documents provided herein are released under the Apache-2.0 license. They should not be construed as financial counsel or recommendations for live trading. It is imperative to exercise caution and consult with qualified financial professionals prior to any trading or investment actions.
312
-
313
-
 
4
  sdk: gradio
5
  sdk_version: 4.31.5
6
  ---