Spaces:
Running
Running
import os | |
import json | |
import pandas as pd | |
from datetime import date, timedelta, datetime | |
from typing import Annotated | |
# Define custom annotated types | |
# VerboseType = Annotated[bool, "Whether to print data to console. Default to True."] | |
SavePathType = Annotated[str, "File path to save data. If None, data is not saved."] | |
# def process_output(data: pd.DataFrame, tag: str, verbose: VerboseType = True, save_path: SavePathType = None) -> None: | |
# if verbose: | |
# print(data.to_string()) | |
# if save_path: | |
# data.to_csv(save_path) | |
# print(f"{tag} saved to {save_path}") | |
def save_output(data: pd.DataFrame, tag: str, save_path: SavePathType = None) -> None: | |
if save_path: | |
data.to_csv(save_path) | |
print(f"{tag} saved to {save_path}") | |
def get_current_date(): | |
return date.today().strftime("%Y-%m-%d") | |
def register_keys_from_json(file_path): | |
with open(file_path, "r") as f: | |
keys = json.load(f) | |
for key, value in keys.items(): | |
os.environ[key] = value | |
def decorate_all_methods(decorator): | |
def class_decorator(cls): | |
for attr_name, attr_value in cls.__dict__.items(): | |
if callable(attr_value): | |
setattr(cls, attr_name, decorator(attr_value)) | |
return cls | |
return class_decorator | |
def get_next_weekday(date): | |
if not isinstance(date, datetime): | |
date = datetime.strptime(date, "%Y-%m-%d") | |
if date.weekday() >= 5: | |
days_to_add = 7 - date.weekday() | |
next_weekday = date + timedelta(days=days_to_add) | |
return next_weekday | |
else: | |
return date | |
# def create_inner_assistant( | |
# name, system_message, llm_config, max_round=10, | |
# code_execution_config=None | |
# ): | |
# inner_assistant = autogen.AssistantAgent( | |
# name=name, | |
# system_message=system_message + "Reply TERMINATE when the task is done.", | |
# llm_config=llm_config, | |
# is_termination_msg=lambda x: x.get("content", "").find("TERMINATE") >= 0, | |
# ) | |
# executor = autogen.UserProxyAgent( | |
# name=f"{name}-executor", | |
# human_input_mode="NEVER", | |
# code_execution_config=code_execution_config, | |
# default_auto_reply="", | |
# is_termination_msg=lambda x: x.get("content", "").find("TERMINATE") >= 0, | |
# ) | |
# assistant.register_nested_chats( | |
# [{"recipient": assistant, "message": reflection_message, "summary_method": "last_msg", "max_turns": 1}], | |
# trigger=ConversableAgent | |
# ) | |
# return manager | |