File size: 7,357 Bytes
4ed8ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import json
import importlib
import yfinance as yf
import backtrader as bt
from backtrader.strategies import SMA_CrossOver
from typing import Annotated, List, Tuple
from matplotlib import pyplot as plt
from pprint import pformat
from IPython import get_ipython


class DeployedCapitalAnalyzer(bt.Analyzer):
    def start(self):
        self.deployed_capital = []
        self.initial_cash = self.strategy.broker.get_cash()  # Initial cash in account

    def notify_order(self, order):
        if order.status in [order.Completed]:
            if order.isbuy():
                self.deployed_capital.append(order.executed.price * order.executed.size)
            elif order.issell():
                self.deployed_capital.append(order.executed.price * order.executed.size)

    def stop(self):
        total_deployed = sum(self.deployed_capital)
        final_cash = self.strategy.broker.get_value()
        net_profit = final_cash - self.initial_cash
        if total_deployed > 0:
            self.retn = net_profit / total_deployed
        else:
            self.retn = 0

    def get_analysis(self):
        return {"return_on_deployed_capital": self.retn}


class BackTraderUtils:

    def back_test(
        ticker_symbol: Annotated[
            str, "Ticker symbol of the stock (e.g., 'AAPL' for Apple)"
        ],
        start_date: Annotated[
            str, "Start date of the historical data in 'YYYY-MM-DD' format"
        ],
        end_date: Annotated[
            str, "End date of the historical data in 'YYYY-MM-DD' format"
        ],
        strategy: Annotated[
            str,
            "BackTrader Strategy class to be backtested. Can be pre-defined or custom. Pre-defined options: 'SMA_CrossOver'. If custom, provide module path and class name as a string like 'my_module:TestStrategy'.",
        ],
        strategy_params: Annotated[
            str,
            "Additional parameters to be passed to the strategy class formatted as json string. E.g. {'fast': 10, 'slow': 30} for SMACross.",
        ] = "",
        sizer: Annotated[
            int | str | None,
            "Sizer used for backtesting. Can be a fixed number or a custom Sizer class. If input is integer, a corresponding fixed sizer will be applied. If custom, provide module path and class name as a string like 'my_module:TestSizer'.",
        ] = None,
        sizer_params: Annotated[
            str,
            "Additional parameters to be passed to the sizer class formatted as json string.",
        ] = "",
        indicator: Annotated[
            str | None,
            "Custom indicator class added to strategy. Provide module path and class name as a string like 'my_module:TestIndicator'.",
        ] = None,
        indicator_params: Annotated[
            str,
            "Additional parameters to be passed to the indicator class formatted as json string.",
        ] = "",
        cash: Annotated[
            float, "Initial cash amount for the backtest. Default to 10000.0"
        ] = 10000.0,
        save_fig: Annotated[
            str | None, "Path to save the plot of backtest results. Default to None."
        ] = None,
    ) -> str:
        """
        Use the Backtrader library to backtest a trading strategy on historical stock data.
        """
        cerebro = bt.Cerebro()

        if strategy == "SMA_CrossOver":
            strategy_class = SMA_CrossOver
        else:
            assert (
                ":" in strategy
            ), "Custom strategy should be module path and class name separated by a colon."
            module_path, class_name = strategy.split(":")
            module = importlib.import_module(module_path)
            strategy_class = getattr(module, class_name)

        strategy_params = json.loads(strategy_params) if strategy_params else {}
        cerebro.addstrategy(strategy_class, **strategy_params)

        # Create a data feed
        data = bt.feeds.PandasData(
            dataname=yf.download(ticker_symbol, start_date, end_date, auto_adjust=True)
        )
        cerebro.adddata(data)  # Add the data feed
        # Set our desired cash start
        cerebro.broker.setcash(cash)

        # Set the size of the trades
        if sizer is not None:
            if isinstance(sizer, int):
                cerebro.addsizer(bt.sizers.FixedSize, stake=sizer)
            else:
                assert (
                    ":" in sizer
                ), "Custom sizer should be module path and class name separated by a colon."
                module_path, class_name = sizer.split(":")
                module = importlib.import_module(module_path)
                sizer_class = getattr(module, class_name)
                sizer_params = json.loads(sizer_params) if sizer_params else {}
                cerebro.addsizer(sizer_class, **sizer_params)

        # Set additional indicator
        if indicator is not None:
            assert (
                ":" in indicator
            ), "Custom indicator should be module path and class name separated by a colon."
            module_path, class_name = indicator.split(":")
            module = importlib.import_module(module_path)
            indicator_class = getattr(module, class_name)
            indicator_params = json.loads(indicator_params) if indicator_params else {}
            cerebro.addindicator(indicator_class, **indicator_params)

        # Attach analyzers
        cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name="sharpe_ratio")
        cerebro.addanalyzer(bt.analyzers.DrawDown, _name="draw_down")
        cerebro.addanalyzer(bt.analyzers.Returns, _name="returns")
        cerebro.addanalyzer(bt.analyzers.TradeAnalyzer, _name="trade_analyzer")
        # cerebro.addanalyzer(DeployedCapitalAnalyzer, _name="deployed_capital")

        stats_dict = {"Starting Portfolio Value:": cerebro.broker.getvalue()}

        results = cerebro.run()  # run it all
        first_strategy = results[0]

        # Access analysis results
        stats_dict["Final Portfolio Value"] = cerebro.broker.getvalue()
        # stats_dict["Deployed Capital"] = pformat(
        #     first_strategy.analyzers.deployed_capital.get_analysis(), indent=4
        # )
        stats_dict["Sharpe Ratio"] = (
            first_strategy.analyzers.sharpe_ratio.get_analysis()
        )
        stats_dict["Drawdown"] = first_strategy.analyzers.draw_down.get_analysis()
        stats_dict["Returns"] = first_strategy.analyzers.returns.get_analysis()
        stats_dict["Trade Analysis"] = (
            first_strategy.analyzers.trade_analyzer.get_analysis()
        )

        if save_fig:
            directory = os.path.dirname(save_fig)
            if directory:
                os.makedirs(directory, exist_ok=True)
            plt.figure(figsize=(12, 8))
            cerebro.plot()
            plt.savefig(save_fig)
            plt.close()

        return "Back Test Finished. Results: \n" + pformat(stats_dict, indent=2)


if __name__ == "__main__":
    # Example usage:
    start_date = "2011-01-01"
    end_date = "2012-12-31"
    ticker = "MSFT"
    # BackTraderUtils.back_test(
    #     ticker, start_date, end_date, "SMA_CrossOver", {"fast": 10, "slow": 30}
    # )
    BackTraderUtils.back_test(
        ticker,
        start_date,
        end_date,
        "test_module:TestStrategy",
        {"exitbars": 5},
    )